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BIG PICTURE

Reaction-diffusion equations on networks
e Network given as a graph G = (V, F)
e Local reaction prescribed by an ordinary differential equation

Main Question: Given an unstable homogeneous state, if a local perturbation
is applied how quickly does that perturbation spread through the network?

Motivating example: invasive species on a transportation network
N e '

Complications: heterogeneities,
network topology,
transport mechanism
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SMALL PICTURE

We focus on the Fisher-KPP equation on a graph
ur = aAgu + u(l — u)
e G = (V,FE) is a undirected, unweighted graph
Ag = A(G) — D(G)
e Initial conditions — u;(0) =1, u;(0) = 0 otherwise
We study two classes of graphs

e Homogeneous Trees

e Erdos Réyni random graphs
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THE HOMOGENOUS TREE

Consider the infinite homogeneous tree
of degree k + 1

Due to symmetry we consider only a ® e o
representative element w,, (1), / / \ \ /X
© 00 ®© o000 0

distance n — 1 from the root

duy,
dt

= o (Up—1 — (K + Dy + ktpyr) + up — u2.

d
% = a(k + 1)(—u1 +u2)) +ur — ui.
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KEY QUESTIONS

1. What is the behavior of u,(t), i.e. does u,(t) converge to one or zero?

2. How does the total population

P(t) = k" lun(t)

neN

evolve in time? The linear problem has exponential growth rate e!, but
what about the nonlinear equation?
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EXISTENCE/NONEXISTENCE OF INVASION

FRONTS

Factoring

du,,

dt

= (Up_1 — 2Up + Upt1) + @(k — 1) (Upt1 — Un) + Uy — u%

Two Observations
e If o < 1, then reaction dominates and we expect traveling fronts

e lfa>1 a= ﬁ the system can be viewed as a discretization of the

PDE
k—1

Az

advection dominates and solution converges to zero

U = Ugy + Uy +u(l —u),
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RELATED WORKS

e Fisher-KPP front propagation — many works
Weinberger — linear determinacy

Matano, Punzo, Tesei — propagation/extinction in hyperbolic space

e Reaction-Diffusion on Networks (meta-population models)

Burioni, Chibbaro, Vergni, Vulpiani — population growth rates for
Erdds Réyni graphs

Observed sub-linear population growth rates

Kouvaris, Kori, Mikhailov — pinned fronts for bistable reactions
Brockmann, Helbing — SIR model
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POINTWISE GROWTH AND LINEAR

SPREADING SPEED

Linearize about zero state

du,,

— = 0 (uny = (b + 1)tn + ktin 1) + up,

Dispersion relation from ansatz u, (t) = e*e=7(?=5t)
ds(N\,7)=a(e”—k—14+ke™")+sy+1—A
Defn: A pinched double root is a pair (A*,~*) for which
ds(\,y) =0, 0yds(A\,y) =0
A* gives the pointwise growth/decay rate in a frame moving with speed s,

See references related to absolute/convective instabilities — Bers, Briggs, etc.
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THE LINEAR SPREADING SPEED

Defn: The linear spreading speed is a solution of

dSzm (07 7) =0, 8’7d8lin (07’7) =0,

Thus, we need to solve the system

ae”—k—1+ke™?)—sy+1
F(S77):( a(e'y_k'e_’y)_s )ZO

TR
g AW

0 0.5 1 1.5 2
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CRITICAL DIFFUSION COEFFICIENTS

For s;;,, = 0 we solve

ae" —k—14+ke™")+1 _ 0
a(e’ — ke ) -

We find solution for

log(k
Yo = g2()
1
[0 —
’ k+1—2vk

Note that -y, is [?-critcal

[lull2 = (Z k"’lv%(t))

neN
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For s;;,, maximal we observe

71 = log(k)
1
T k= 1)log(k)
Lo 1
: log (k)

solves F'(s1,71,1) =0

Note that ~v; is [!-critcal

Julli = Y k" tun(t)

neN

10



FURTHER PROPERTIES

e Spreading speed is increasing for 0 < a < ap and decreasing for a1 < a <
a2

e Spreading speed for small « is independent of k to leading order

1

Stin ™~ as a — 0
W(z)

e Properties generalize to periodic trees

[-critical front stationary, [!-critical front maximal

e Theorem: Selected spreading speed in the nonlinear system is the linear
spreading speed.

Proof by construction of sub and super solutions
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TOTAL POPULATION DYNAMICS

Let w,(t) = k" u,(t). Linearization near zero is

dw,,

dt

= a (kwp—1 — (kK + Dwy, + Wny1) + Wy,
Dispersion relation

ds(\,7) = a (ke” —(k+1)+e ) +sy+1—A
Calculation: If (A\*,v*) is a pinched double root of ds(\,v), then
(A" + slog(k),y" — log(k))

is a pinched root of ds.
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POINTWISE VERSUS POPULATION

BEHAVIOR

Lemma The maximal linear growth rate is one and is achieved in a frame
moving with

s* =a(k—1),

for which s* < s; for a < a1 and s* > s for a > «.

100
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CONCLUSIONS: NON-MONOTONE SPEEDS

e For a < ay, the maximal growth rate occurs in a frame moving slower
than the linear spreading speed.

Most of the population is added at the front interface
Sublinear growth rates for the total population
e For a > a7 the maximal growth rate is achieved ahead of the front inter-
face

Solution remains near zero and the system can achieve its maximum
growth rate of one

maximal growth rate
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FISHER-KPP ON RANDOM GRAPH

Consider Erdos-Reyni random graph G = (V, F) up = alAgu + u(l — u)

Nodes are assigned randomly with probability p

Example: N = 600000, p = 60300

a = .01 a=2.0
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POINTWISE COMPARISON - NUMERICAL

SIMULATIONS

blue — tree with £ = 3
P = %0000 cyan — mean over each level of random graph
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ERDOS-REYNI GRAPHS

Exponential growth rates of P(t) for Erdos-Reyni random graphs with N large
and k£ small

These rates can be compared with those observed on the homogeneous tree
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