Balanced Coloring

OR approach

Overview

An Integer program

Future work

Algorithms and Experiments for the Approximate Balanced Coloring Problem

SIAM DS17

DAVID PHILLIPS

United States Naval Academy

Joint work with Louis M. Pecora (Naval Research Laboratory) Francesco Sorrentino (University of New Mexico)

May 24, 2017

Balanced Coloring

OR approach

Overview

An Integer program

Future work

Overview

- Describe balanced coloring
 - Finds synchronous clusters of nodes
 - Algorithm of Belykh and Hasler (2011) finds the largest synchronous clustering of nodes
 - How do we generalize this?

Balanced Coloring

OR approach

Overview

An Integer program

Future work

Overview

- Describe balanced coloring
 - Finds synchronous clusters of nodes
 - Algorithm of Belykh and Hasler (2011) finds the largest synchronous clustering of nodes
 - How do we generalize this?
- Apply integer programming to problem
 - A technique from operations research, and, more specifically, mathematical programming
 - Provides a framework to systematically model variations of a given problem
- Cross disciplinary fun with operations research!
 - Disclaimer: I'm not a dynamical systems expert
 - Optimization, machine learning, (big) data analytics, stochastics, control, etc
 - Talk goal: breaking the DS/OR language barrier

Balanced Coloring

OR approach

Overview

An integer program

Future work

A *coloring* of G is a partition, C, of the nodes in G.

$$\mathcal{C} = \{\{1,3\},\{2,5\},\{4\}\}$$

Balanced Coloring

OR approach

Overview

An integer program

Future work

A balanced coloring: for every $S, T \in C$ and $u, v \in S$, the number of edges from u and v to nodes in T is equal.

Balanced

Balanced Coloring

OR approach

Overview

An Integer program

Future work

A minimal balanced coloring is the balanced coloring using as few colors as possible.

Still balanced, not minimal

Balanced Coloring

OR approach

Overview

An Integer program

Future work

Minimal balanced coloring finds the largest synchronous clusters

Balanced Coloring

OR approach

Overview

An Integer program

Future work

 A greedy algorithm by Belykh and Hasler (2011) finds the minimal balanced coloring in polynomial time.

- What about other generalizations?
 - Approximate edge weights, isolating nodes, directed graphs, etc.

Balanced Coloring

OR approach

Overview

An Integer program Future work

Mathematical programming:

max
$$f(x)$$
 subject to $x \in S$

$$f: S \subset \mathbf{R}^n \to \mathbf{R}$$

Linear programming: f is linear, S is a polyhedron, i.e.,

$$f(x) = \sum_{i} c_{i}x_{i},$$

$$S = \{x \in \mathbf{R}^{n} : Ax \leq b\}, A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}.$$

x are decision variables

Goal: find the optimal x

(Linear) Integer programming: f linear, S is a polyhedron intersected with Z^n .

Implementations exist to solve linear and integer programs.

LOW MORE TO THE RESIDENCE

G = (V, E), C = set of colors

Premise

Balanced Coloring

OR approach

Overview

An integer program

Future work

Balanced Coloring

OR approach

Overview

An integer program

Foture work

Decision variables

t = number of colors used

 z_c = indicator of color c used, $c \in C$

 y_{ic} = indicator of i colored $c, i \in V, c \in C$

 x_{iicd} = indicator of i colored c, j colored d, $ij \in E$, c, $d \in C$

$$1 + |C| + |V||C| + |E||C|^2 = O(|E||C|^2)$$
 variables

Idea: Use linear equations and inequalities to create the set of all feasible balanced colorings.

1 전 · 1 전 · 1 전 · 1 전 · 1 전 · 1 전 · 1 전 · 1 전 · 1

Balanced Coloring

OR approach

Overview

An integer program

Future work

min

 $\sum_{c \in C} y_{ic} = 1$ s.t.

$$\sum_{c \in C, d \in C} x_{ijcd} = 1$$

$$x_{ijcd} \leq y_{ic}$$

$$x_{ijcd} \leq y_{jd}$$

$$\sum_{ij \in E} x_{ijcd} \leq \sum_{pq \in E} x_{pqcd} + M(1 - y_{ik}) + M(1 - y_{pk})$$
 $i, p \in V, c, d \in C$

$$\sum_{ji \in E} x_{jicd} \leq \sum_{qp \in E} x_{qpcd} + M(1 - y_{ik}) + M(1 - y_{pk}) \quad i, p \in V, c, d \in C$$

$$y_{ic} \leq z_c$$

$$t = \sum_{c \in C} z_c$$

$$x_{ijcd}, y_{ic}, z_c \in \{0, 1\}$$

 $i \in V$

(a)

 $ij \in E$ (b)

 $ij \in E, c, d \in C$ (c1)

 $(i,j) \in E, c, d \in C$ (c2)

(d1)

(d2)

 $i \in V, c \in C$ (e)

(f)

 $\forall i, j, c, d$

 $|V| + |E| + 2|E||C|^2 + 2|V|^2|C|^2 + |V||C| + 1$

 $= O(|V|^2|C|^2)$ constraints.

Constraint examples:

Premise

Balanced Coloring

OR approach

Overview

An integer program

Future work

$$X_{34GR} \leq Y_{3G}$$

Forces $x_{34GR} = 0$ with this color setting

Balanced Coloring

OR approach

Overview

An integer program

Future work

Constraint examples:

 $X_{12YR} + X_{13YR} + X_{15YR} \le X_{42YR} + X_{43YR} + X_{45YR} + M(1-y_{1Y}) + M(1-y_{4Y})$

Symmetric constraint results in $x_{13YR} = x_{43YR}$ for this color setting

Balanced Coloring

OR approach

Overview

An integer program

Future work

Constraint examples:

 $X_{12YR} + X_{13YR} + X_{15YR} \leq X_{42YR} + X_{43YR} + X_{45YR} + M(1-y_{1Y}) + M(1-y_{4Y})$

Symmetric constraint results in $x_{13YR} = x_{43YR}$ for this color setting

Balanced Coloring

OR approach

Overview

An Integer program

Future work

Ongoing work

- Improve the runtime for solving the integer program
 - Can solve up to 50 node graphs tractably

- Adding families of valid inequalities
- O(|E||C|²): Reducing the size of the problem, specifically bounding the number of colors to consider
- More sophisticated techniques

- Extensions to model
 - Fixing the color number to fine additional colorings
 - Approximate coloring: weighting the edges
 - Solving the Laplacian case

