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Overview

Premise

e Describe balanced coloring
e Finds synchronous clusters of nodes
¢ Algorithm of Belykh and Hasler (2011) finds the largest

synchronous clustering of nodes
e How do we generalize this?
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Overview

Premise . E
S e Describe balanced coloring

e Finds synchronous clusters of nodes
e Algorithm of Belykh and Hasler (2011) finds the largest

synchronous clustering of nodes
e How do we generalize this?

¢ Apply integer programming to problem
e A technique from operations research, and, more

specifically, mathematical programming
e Provides a framework to systematically model

variations of a given problem

e Cross disciplinary fun with operations research!

e Disclaimer: I'm not a dynamical systems expert
e Optimization, machine learning, (big) data analytics,

stochastics, control, etc
e Talk goal: breaking the DS/OR language barrier

X




3/9

A coloring of G is a partition, C, of the nodes in G.

Balanced
Coloring

O

C={{1,3},{2,5},{4}}
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A balanced coloring: forevery S, T € Cand u,v € S, the
Balanced number of edges from u and v to nodes in T is equal.

Coloring
(2) (+)
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A minimal balanced coloring is the balanced coloring using

Balanced as few colors as possible.
Coloring

An [nleger progra:

Fuluho work

Still balanced, not minimal




3/9

Balanced G’\ /D
Coloring

Minimal balanced coloring finds the largest
synchronous clusters




S e A greedy algorithm by Belykh and Hasler (2011) finds
the minimal balanced coloring in polynomial time.

e What about other generalizations?

e Approximate edge weights, isolating nodes, directed
graphs, etc.
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Mathematical programming:

max f(x)
subjectto x € S

f:SCR'"— R

Linear programming: f is linear, S is a polyhedron, i.e.,
f(x) =)_;cix,

S={xeR": Ax < b},Ac R™" becR™

x are decision variables

Goal: find the optimal x

(Linear) Integer programming: f linear, Sis a
polyhedron intersected with Z”.

Implementations exist to solve linear and integer
programs.

e B




6/9

G=(V,E),C = setof colors

An integer program
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G=(V,E),C = setof colors

Decision variables

t — number of colors used
sl g Z. = indicator of color cused,c € C
Vie = indicatoroficoloredc,ic V,ce C

Xjed = Indicator of / colored c, jcolored d,jj € E,c,d € C

1+|C| +|VI|C| + |E||C? = O(|E||C[?) variables

ldea: Use linear equations and inequalities to create the set
of all feasible balanced colorings.

X
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min t

s.t. 2 cecVic =1 eV (a)
2_ceC.deC Xijod = j € E (b)
Xiied < Yic j e E,c,deC (c1)
Xiicd < Yid (i,j)e E,e,d e C (c2)

2 jjcE Xjed < 2 pgeE Xpged + M(1 — yi) + M(1 — ypx) i,p€ V,e,de € (d1)
2 jicE ¥jicd < 2_gpeE ¥qped + M1 — i) + M(1 — ypx)  Lbpe V,c,de C (d2)

Yie € Z¢ ie V,ce C (e)
g ECECEG {”
Xiicd s Yies» Zc € {0, 1} vi, j,c,d

V| +|E| +2|E||C[* + 2| VI?|CJ* + | V||C| + 1

= O(| V|?|C|?) constraints.




i_l'l B rIEsw
An integer program

Futing work

Constraint examples:

X34GR < V3G

X34GR % V4R
Forces x345r = 0 with this color setting

X
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Constraint examples:

Crveniew

An integer program

Futie work

XiovR+X13YR+X45vR < XaovR+Xaayr+XasvR+ M —yiy)+M(1—yiy)

Symmetric constraint results in xi13ys = Xa3yg for this color setting




Constraint examples:

XiovA+X13YR+X15vA < XaovA+Xaayr+XasvA+MO—yiy)+M(1—vay)

Symmetric constraint results in xi13ys = Xs3yg for this color setting
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Ongoing work

e Improve the runtime for solving the integer program

« Can solve up to 50 node graphs tractably

e Adding families of valid inequalities

e O(|E||C|?): Reducing the size of the problem,
specifically bounding the number of colors to consider

e More sophisticated techniques

Fulune work

e Extensions to model

e Fixing the color number to fine additional colorings
e Approximate coloring: weighting the edges
e Solving the Laplacian case
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