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The 1990 Maasch-Saltzman Model

ODE system for x = anomalies of ice mass, y = atmospheric
CO2 and z = North Atlantic (NA) deep water

Dimensionless; parameters p, q, r , s > 0 are O(1)

ẋ = −x − y

ẏ = (r − z2)y − (p − sz)z

ż = −qx − qz
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Reductions in this Talk

Full MS
s = 0
−→ Symmetric MS

ẋ = −x − y

ẏ = (r − z2)y − (p − sz)z

ż = −qx − qz

ẋ = −x − y

ẏ = (r − z2)y − pz

ż = −qx − qz

↓ q � 1 ↓ q � 1

Asymmetric 2-D
s = 0
−→ Symmetric 2-D

ẋ = −x − y

ẏ = (r − x2)y + (p + sx)x

ẋ = −x − y

ẏ = (r − x2)y + px
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Slow-Fast System

q > 1 is a ratio of time scales.

Consider the case q � 1 or ε = 1
q
� 1.

Then x and y are slow, and z is fast.

ẋ = −x − y

ẏ = ry − pz + (s − y)z2

εż = −x − z

Invariant, normally attracting mfd M0 = {z = −x} for ε = 0

For small ε, invariant, normally attracting manifolds
Mε = {z = hε(x , y)} persist (Fenichel Theory).
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Slow Manifold and Invariance Equation

Describe Mε with invariance equation

ε
d

dt
hε(x , y) = −x − hε(x , y),

Expand hε(x , y) = h0(x , y) + εh1(x , y) + ε2h2(x , y) + . . . and find
the hi .

h0(x , y) = −x
h1(x , y) = −(x + y)

h2(x , y) = −(x + y) + (ry + px + (s − y)x2)
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Slow-Fast Decomposition of Typical Solutions

A solution X (t) starts on
the fast stable fiber
Fε(b(0)).

I It decomposes into a
fast component
decaying along
Fε(b(t))

I and a slow component
that moves with the
base point b(t).

Thus b(t) ∈Mε

represents X (t) faithfully.
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The Slow–Fast System

The system on Mε becomes

ẋ = −x − y

ẏ = ry − phε(x , y) + (s − y)(hε(x , y))2

Consider the symmetric case s = 0 and use first order
approximation hε(x , y) = −x − ε(x + y) +O(ε2).

The result is very similar to the case ε = 0.

Equilibria at P0 = (0, 0) for all (p, r) and at
P1,2 = (±

√
r − p,∓

√
r − p) if r > p

At (p, r) = ( 1
1+ε

, 1
1+ε

), P0 undergoes a Z2-symmetric BT
bifurcation (organizing center).

All bifurcation curves emanate from this point.
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Bifurcation of the Symmetric Slow–Fast System

q =∞ q = 10

Linear stability analysis is similar (Hopf bifurcations)

Bogdanov-Takens unfolding is similar (homoclinic bifurcation,
saddle-node bifurcation)
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Slow–Fast System: Limit Cycles

Integrate the full
system for q = 10
(ε = 0.1) with random
initial data and plot
x(p, r) = lim supt x(t).

Also shown are the
bifurcation curves of
the reduced system,
using an O(ε3)
approximation of hε.
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Basin of Attraction B1 of P1

(p, r) is between the Hopf
curve and the homoclinic
bifurcation curve.

P1 is stable and is
surrounded by an unstable
limit cycle γ1ε in Mε.

Also shown: a large stable
limit cycle γ3ε

The fast stable fibres with
base points on γ1ε form
the boundary of B1.
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Back to the Full System

ẋ = −x − y

ẏ = (r − z2)y − (p − sz)z

ż = −qx − qz

Trivial equilibrium P0 = (0, 0, 0)

Two additional equilibria if ρ = s2 + 4(r − p) > 0:

P1 = x∗1 · (1,−1,−1), P2 = x∗2 · (1,−1,−1)

with x∗1,2 = 1
2

(
−s ±√ρ

)
P2 is a “warm” state, P1 is a “cold” state.
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Linear Stability

P1, P2 exist above d2/sd
(ρ = 0)

P0 is stable below d0/d1
(r = p) and e0

Hopf bifurcations off P0,1,2

on e0, e1, e2

Supercritical on e0,
subcritical on e1, sub- to
supercritical on e2

Two organizing centers at
Q0 (where e0/e1 and
d0/d1 meet) and at
Q = Q1

q = 1.2, s = .8
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Symmetry Breaking Near the Organizing Centers
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Fix q = 1.2 and reduce s → 0.5→ 0.2→ 0.1→ 0.05. The two
organizing centers coalesce and the curves e1, e2 collapse into
one curve.

Homoclinic and fold bifurcation curves also collapse.
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Center Manifolds

Center manifolds associated with Pi exist near both organizing
centers.

Main steps near Q0 = ( q
1+q

, q
1+q

), for P0 (or P1):

Shift Q0 to (0, 0). Then p becomes p̃, r becomes r̃ . The system
is ẋ

ẏ
ż

 = A

x
y
z

+

0
n
0

 , A =

−1 −1 0
0 q

1+q
− q

1+q

−q 0 −q


where n = n(x , y , z , p̃, r̃ , s, q).
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Center Manifolds II

Jordan normal form for A is

J = F−1AF =

0 1 0
0 0 0
0 0 λ3


Transform to Jordan normal form with new variables (u, v ,w).
The nonlinear term is now complicated but still has rank 1.

The center manifold is Wc = {w = h(u, v , . . . )}.
There is an invariance equation for h that can be exploited.
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Center Manifold III

Write h = h2 + h3 + . . . as sum of homogeneous polynomials in
u, v , p̃, r̃ , with coefficients depending on q, s.

Consistency check: Transform the expansion for Wc back to
(x , y , z) coordinates and compare to the slow manifold
expansion. There is agreement as expected (to suitable powers
of ε = q−1 and of the state variables).
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Dynamics on Center Manifold

The blue surface is Wc ,
the blue streamlines
indicate the flow on Wc ,
the thick blue line is the
stable limit cycle there.

The black curve is a
solution of the full system.

q = 1.2, s = 0, p̃ = .15, r̃ = .1
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Region of Validity

For q < qc = qc(p, r , s), expect both Lyapunov type numbers to
become < 1, and Wc loses smoothness.

Our approach to approximate qc numerically:
I Compute the eigenvalues at all three equilibrium points, for the

system on Wc (three pairs).
I Compare their real parts to λ3, the transverse eigenvalue at Q0

(six ratios).
I q ≈ qc when one of these ratios becomes 1

For 0 < p < 2, 0 < r < 3
2
, this suggests qc < 1.

The reduced systems provide reliable qualitative
information about the full dynamics, over the entire
parameter range.
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Outlook: Slow Passage
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Maasch and Saltzman changed (p, r) slowly from (0.8, 0.7) to
(1.0, 0.8) over 2Myr (red path), crossing several bifurcation loci.
Limit cycles with the right periods were then observed.
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Slow Passage
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A less complicated path. The fold where P1 and P2 disappear is not
crossed. The Hopf line is crossed in a subcritical place.
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Slow Passage
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Another alternative. The fold where P1 and P2 disappear is not
crossed. The Hopf line is crossed in a supercritical place.
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Thank You!
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