Lagrangian Coherent Structures and DNS with
Discontinuous Galerkin methods

Gustaaf Jacobs, San Diego State University

Acknowledgment: Daniel Nelson (PhD Fall 2015), Bjoern Klose (PhD)

Solar Turbines

A Caterpillar Company

SAN DIEGO STATE
UNIVERSITY

="y 3
U.S.AIR FORCE \.-./ ﬁ
I >

amical Systems , May 25, 2017




Outline A

UNIVERSITY

Background and Motivation
o Unsteady chaotic flow and higher-order DNS
o LCS; FTLE with Finite Difference

* DG-FTLE (Finite-Time Lyapunov Exponent)

o High-order FTLE with DG

o Multiple FTLE fields from a single particle trace
o Benchmark tests

* Examples
o Rectangular cylinder
o Airfoil

* (Conclusions




Vortex Dominated Flows
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Small scale perturbations upstream and _—
downstream of the separation point have B g
a blg lmp act on the glObal ﬂOW features E%’ )

o Directly related to effective flow
control methods

High-fidelity numerical methods are
required that combine the following
characteristics:

o Accurately captures small scale features and unstable modes
o Long time accuracy to trace vortex structures
o High-fidelity boundary representation

High-fidelity (quantitative) analysis of the flow topology is also required

Application of synthetic jet
to separated flow.

[Dandois et al., JFM,’07]




SRL  Direct Numerical Simulation  @@vsw™"

* Navier-Stokes Model

Q+F{+GJ+H! = (F_‘\T+G;i+H§)

I

Ref

o First principle model with potential assumptions of constant density and
temperature independent viscosity for low Mach number

 Requirement: Resolve the smallest scales

* Turbulence up to the Kolmogorov scales
* General unsteady flow: not perse known a priori
* Numerical Methods: FD, FV, FEM, SEM, etc...

o Convergence/Accuracy: converge until grid independence; dispersion;
numerical diffusion, geometric complexity, boundary accuracy

o Efficiency/Feasiblity;

» Degrees of freedom scale with Re? ; relatively low Reynolds
numbers must be considered

o Numerical methods that require few number of grid points per smallest
scale improve accuracy and feasibility.
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CRL [ ow-Order vs. High-Order DNS
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Low Order Higher Order
Polynomial order p<=2 p>3
Implementation Easy Doable
Resolution per wave number|20-30 points 3-7 points

Smooth turbulence

Dissipation

No or Low Dissipation

Wave Propagation

Dispersion

No or Low Dispersion

Shocks/Discontinuity

Upwind stable, but dissipative

Gibb's phenomena

Fidelity Limited or excessive resolution [Very good
Robustness Typically very stable Robust if done the right way
Flexiblitiy Any complexity, overlap at Any complexity with curved

boundary reduces accuracy

boundary elements




Discontinuous Galerkin NP

Divide computational domain into elements

Map each physical element onto a master element

Approximate solution with higher-order (Jacobi) polynomial

N N N
fla) = fiLj(z:) = fitj(x:) fila) =Y fil ()

7=0 7=0 j=0

Based on Method of Weighted Residuals & |-
Elements are connected through Riemann solvers




Deformed Elements

SAN DIEGO STATE
UNIVERSITY

The solution is mapped from physical space to the reference element:
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y Q,/ .é
6 12 8
Mapping incorporates contributions X(E Q) =) pZi+ ) ali+ ) rx;
from the faces, edges and corners: - = -
N N .
— ,, , ¢, and r; are shape functions:
LR = Y x4 P 4 817 1 418 DT T
Faces: ;; ! ! eg. 11 =1-1-n)(1-])

N
Edges: T(©) =) _xi(

Metric terms and derivatives are computed from the mapping
3
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Finite-Time Lyapunov Exponent (FTLE)

* Dynamical systems of the form:

{x(to; to, Xp) = X0
x'(t; tO; x()) = v(x(ti t(), x()), t)

* Integrate particle trajectories to
determine the flow map:

xg = ¢¢, = x(t; to, xo)

t
= Xxg + f v(x(t; ty, xg),7) dT
to

* Exponentially growing perturbations in the flow map quantify a stretching rate:
09t 0t
B 6x0 6x0

max|6x| = \/Amax (€)[6xg| where € max|5x| = e?ITl|5x|

¢ Maximal material stretching measured by the FTLE (o):

1 1
el = [Aax (O = a=mln,/lmax(6)=|ﬂln

O,
axo




FD and FTLE o

» Use Finite Difference to determine Cauchy-Green strain tensor

o Seed five particles on an orthogonal grid

o Trace fluid particles in velocity field, which 1s usually stored in separate files
and post-processed

* requires lots of memory/storage
* large At

o Use central FD stencil to determine Cauchy-Green strains: d¢/dx, d¢/
ay, dn/ox, dn/dy
o Eigenvalue of the CG tensor determines FTLE
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Can we detepmine FTLE compatible with higher2order solvers?
S
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Fluid particles are initialized at the Lobatto quadrature nodes.
Particles are integrated in time with a 3"9-order Adams-Bashforth scheme.

o Lo ()
~ (%) Fon The flow map is approximated by

T “47: ¢§n P L a high-order polynomial
WY F— {/ . . [ interpolant, ® .

‘\. ;JJ \\\ ‘/a , ’

L o .? . ’,»/

~—i
* After the time interval, 7, DG operators are used to determine the deformation
gradient:

N N
e % (Inf@) = ) 4@ = ) Dyf,
j=0 Jj=0

Under mapped coordinates (2D):

N N

e 1 & 3o (m) dyo

92\ (2% o) [fo® v (ZDm ‘%)a‘(z%d’k %
dxo | | 8xo xo || ¢ N L \ie=0 k=0

= » F s N N

[ d o o ||o® o 1 o . \3%0 » . \ox

d¥o dyo 9yo/ \9n E=7 ZD)k Pixe 3 Z ix Prj an
- k=0 k=0

[Nelson and Jacobs, ASME, "13]
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L Fluid Particle Tracking Algorithm WA .

Fluid tracers are integrated in a 3-step

1.

algorithm:
The host cell of the particle 1s located

2. The fluid velocity 1s interpolated from the

DG grid to the particle’s location:
expensive!

. The particle velocity is integrated in time

with a 3"-order Adams-Bashforth scheme

Fluid particles are initialized at

'/ Duplicate particles are present at
U/

the Lobatto quadrature
nodes=>

the subdomian boundaries, are
removed to trace fewer
particles

X = ¢r, = x(t; to, Xo)

t
=X+ J v(x(t; ty, xg),7) dT

to




Sequence of FTLEs -

* To analyze the temporal evolution of a flow with the FTLE field,
multiple FTLE fields must be computed, normally requiring redundant
particle integrations.
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Multiple Flow Maps

e Multiple FTLEs can be computed from a single particle trace with
interpolation:
1. Orthogonal polynomial basis is constructed at time ¢,.
2. The particles at ¢, are mapped to the unit square.
3. Construct the interpolation operator: 7, = ()l ( Bimn ) Ck(Yimn)
4

Interpolate to later time (¢, > ¢,) or
earlier time (7, <t?;) and compute FTLE.

I i i >
On () Sy (1)) Uy (7,)

[Nelson and Jacobs, JCP, ’15]




Inverse Mapping .
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* Deformed subdomains are constructed from the particle locations at a given
time.

* The isoparametric mapping is built
from the particles initialized in the
original subdomain.

o The faces are parametrized with
particles initialized at the edges
of the original subdomain.

* Once the faces are constructed, the interior particle locations are mapped to
the reference element through the inverse of the isoparametric map.

Dy (7))
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Interpolation

Given the locations of the particles in the reference element, the flow
map is interpolated from the quadrature points as follow

N N N
U= 3 Wil lon(B) (VL)

[=0 m=0 n=0
* Hence,

-

v, =T, ¥,

q=IN+1)2?+m(N+1)+n

* The conditioning of the I operator is related to the deformation of the

flow map
J— I
Aa = max|a;; — a;;]

_ Amax(D
K(I) Bl A‘min (I)
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Gyre Flow A

2D Gyre Flow * Qyre is a spatially periodic flow consisting of
Velocity given by: recirculating cells.
u = —mAsin(mx) cos(my) * Note FTLE ridges forming around the edges

v =TA Sin(]'[y) COS(T['X) of the vortices.

Velocity Field FTLE Field
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Spectral Convergence
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Accuracy and convergence rate increases with grid refinement.
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Velocity given by:

su=—(Uy*B)*(y—Y_)/Rxexp(—r’/2)
Sv=(U_ *B)*(x—X_,)/Rxexp(—r’/2)

u,=U,+ou,vy,=06v

Velocitv Field
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Inviscid Vortex
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the DG Euler solver.

computed on-the-fly.

FTLE Field

el

Convergence

Vortex Advected by Uniform Flow . The vortex flow is computed using

* The spectral FTLE algorithm i1s
implemented within the code and

1 . L L
4 5 5] 7
Polynomial Drdar

* Errors include numerical errors in particle tracking, computation of the

deformation gradient, and numerical errors in DG.




Error Analysis

Conditioning
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Spectral convergence

High deformation leads to high condition

number

Condition number increases with larger
subdomains and higher-order polynomial

Condition number decreases with grid

refinement
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Square Cylinder o
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Viscous flow over square cylinder

10c

) outlow e Re =150, based on
10c cylinder width
%’ DIC outflow 20c * M - 0'3

e 6th-order

outflow v

40¢
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Backward FTLE

* High-order method from
forward-time flow map. With Interpolation

. Direct Method
* Agrees well with standard

method.

* Some difference in near
wake due to poor
conditioning.




Multiple Forward FTLE Fields




CRL  Interpolation Conditioning S
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Forward FTLE (T = 10)

Condition Number

~ Amax (D)
K(I) N Amin (I)
Parameter Aa

— I
Aa = max|a;; — a;;




Problem Parameters

o Re =20,000
o Pr =0.72
o CFL=0.8

o AOA=4°

2D Airfoil DNS i =
I O I SAN DIEGO STATE University of California
SanDiego
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« NACA 65(1)-412 Airfoil
* Polynomial orders

o Curved-sided mesh,
P=4,6,8, 10,12

o Straight-sided mesh,
P=4,6,8, 10,12

Outflow

15¢

Outflow

Outflow

[Nelson, Jacobs & Kopriva, TCFD, '15]




FTLE Field =

\v
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Entropy: P= 12,
FTLE: P = 24,
T=0.37

e Foarward

University of California
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ABC Flow

1,000 elements

P =24 (13,997,521 particles)
T=2

Exact velocity (no interpolation)

Unfiltered

o
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ulx, y,z) = Asin(z) + C cos(y)
v(x,y,z) = Bsin(x) + Acos(z)

wi(x,y,z) = Csin(y) + B cos(x)

A=43,B=42,c=1

Filtered
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* Fluid Solution: P=18
 FTLE:P=236

Vorticity Magnitude




Conclusions doNvisiey

A FTLE algorithm is developed that commutes with a higher-order DG-based
DNS solver

o Exponentially convergent
o Uses same grid as fluid solver
* Geometric complexity
* Prevents expensive interpolation to determine flow map

o Multiple FTLEs can determined in parallel with DNS preventing

expensive post-processing

o Overhead is 10-50% depending on polynomial order

5/30/17



