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system systems.
o (Nearly) integrable Hamiltonian, KAM theory, Arnold diffusion.

e The first example: the Asteroid belt and Kirkwood gaps.

o Quasiperiodic (KAM) behavior away from Kirkwood gaps
@ Stochastic behavior in Kirkwood gaps

@ The second (Arnold’s) example:
the pendulum x rotor + small coupling.

o Our result about stochastic diffusion inside instability layers.
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Hamiltonian systems and Ergodicity

Let H: R2" — R be a smooth function, (g, p) € R" x R" . Let &, be
the Hamiltonian flow of H.

p=—0qH = —VU(q).
For example, n= 1 and

H(p, g) = Kinetic energy + Potential energy = %2 + U(q) for some
potential U(x).

Denote by ¢, the time t flow. Let Sg = {(q,p) € R?": H(q,p) = E} be
an energy surface. Assume Sg is compact.

o ol preserves energy H(q,p) = H(®4,(q,p)) = E;

e ol preserves volume dqg dp.

Ergodic Hypothesis (Boltzmann, Maxwell) |s
generically ¢!, ergodic on Sg?
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springs

Un = k(un+1 —2Up + Un—1) + Oé(Un+1 - Un)2 + Oé(Un - Un—1)2

the a-term — nonlinearity. Most “small” solutions are
quasi-periodic!

KAM theory gave mathematical proof that ergodicity fails! (to be
discussed)
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Problems on solving ODEs.

x = f(x), x € M — a manifold.

e A tiny fraction of differential equations have explicit solutions.
e Most ODEs have sensitive dependence on initial conditions,
i.e. for some (Lyapunov exponent) d > 0

X, and x|, are two initial conditions X, - x = a.
x, and X, are two solutions at time t>0.

Figure: No practical hope to describe an individual solution!
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Enselmble of solutions of ODEs.

x = f(x), x € M — a manifold, e.g. R", T"...

e Consider an emseble of initial conditions. For example, a
grid of initial conditions in a region of the phase space.
Then study statistics of evolution of this ensemble.

e More generally, consider a probability measure p of initial
conditions. Then study distributions of the pushforward of
this measure p.

e Modified goal: Analyze long time behavior statistically.
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Ergodic systems and systems with mixed behavior

7= OpH
{g_ o H (9,p) € R*"
- Yq

Let . be the volume and the flow is volume preserving.
e The system is ergodic if for a y-almost every initial condition

long time behavior is the same, i.e. time and space
averages coincide.

e The system has mixed behavior if there are at least two sets

of positive u-measure of initial conditions with different long
time behavior.
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Laskar simulations on instability of the Solar system

BERME NEWS

'Tiny chance’' of planet collision

By Pallab Ghosh
Science correspondent, BBC News

Astronomers calculate there is a tiny chance that Mars or Venus could collide with Earth - though
it would not happen for at least a billion years.

Astronomers had thought that the orbits of the planets were predictable. But 20 years ago, researchers
showed that there were slight fluctuations in their paths.

The researchers carried out more than 2,500 simulations. They found that in some, Mars and Venus collided
withi the Earth.

"It will be complete devastation," said Professor Laskar.

"The planet is coming in at 10km per second - 10 times the speed of a bullet - and of course Mars is much
more massive than a bullet.”

Professor Laskar's calculations also show that there is a possibility of Mercury crashing into Venus. But in
that scenario, the Earth would not be significantly affected.
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Laskar simulations on instability of the Solar system

Figure: Venus and Earth collide
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Figure: Venus and Earth collide Mars and Earth collide
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@ Rotor: o =, i:O,H:% (p,r) € 2nT x R.
@ Pendulum: g = p, p:sinq,Hzé—cosq, (g p)ezw’]I‘x]R{
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@ Harmonic oscillator: g =p, p= —kq or H =
@ Motion in a central force field: g = F(||q]|)q-
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Integrable systems

@ Rotor: o =, i:O,H:% (p,r) € 2nT x R.
Pendulum: g = p, p:sinq,Hzé—cosq, (g p)ezw’]I‘x]R{
p

Harmonic oscillator: g =p, p= —kq or H =

°
° +
@ Motion in a central force field: g = F(]|ql)q.

°

°

Newtonial two body problem.
Newtonian two center problem.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 28/66



Integrable systems

@ Rotor: o =, i:O,H:é, (p,r) € 2nT x R.
Pendulum: g = p, p:sinq,Hzé—cosq, (g p)eZﬂI‘x]Ri
p

Harmonic oscillator: g =p, p= —kq or H =

°
° +
@ Motion in a central force field: g = F(]|ql)q.

°

°

°

Newtonial two body problem.

Newtonian two center problem.
Lagrange’s top,

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 28/66



Integrable systems

@ Rotor: o =, i:O,H:é, (p,r) € 2nT x R.
Pendulum: g = p, p:sinq,Hzé—cosq, (g p)eZﬂI‘x]Ri
p

Harmonic oscillator: g =p, p= —kq or H =

°
° +
@ Motion in a central force field: g = F(]|ql)q.

°

°

°

Newtonial two body problem.

Newtonian two center problem.
Lagrange’s top, Kovaleskaya’s top,

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 28/66



Integrable systems

@ Rotor: o =, i:O,H:é, (p,r) € 2nT x R.
Pendulum: g = p, p:sinq,Hzé—cosq, (g p)eZﬂI‘x]Ri
p

Harmonic oscillator: g =p, p= —kq or H =

°
° +
@ Motion in a central force field: g = F(]|ql)q.

°

°

°

Newtonial two body problem.

Newtonian two center problem.
Lagrange’s top, Kovaleskaya'’s top, Euler’s top.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 28/66



Integrable systems

Rotor: o =r, r=0,H = g, (p,r) € 2nT x R.

Pendulum: g=p, p=sing, H = é —cosq, (q p) € 27r’]I‘ x R.
Harmonic oscillator: g =p, p= —kq or H = p
Motion in a central force field: g = F(]|ql])q.
Newtonial two body problem.

Newtonian two center problem.

Lagrange’s top, Kovaleskaya'’s top, Euler’s top.

Toda lattice: chain --- < xp < xq < ... with the neighbor
interaction ) ; exp(X; — Xj;+1)

_l’_

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 28/66



Integrable systems

Rotor: o =r, i:O,H:% (p,r) € 2nT x R.

Pendulum: g=p, p=sing, H = g —cosq, (q,p) € 2nT x R.
Harmonic oscillator: g =p, p= —kq or H = %2 + %‘72.

Motion in a central force field: g = F(]|ql])q.

Newtonial two body problem.

Newtonian two center problem.

Lagrange’s top, Kovaleskaya'’s top, Euler’s top.

Toda lattice: chain --- < xg < X1 < ... with the neighbor
interaction ) ; exp(X; — Xj;+1)

Calogero-Moser system: chain of harmonic oscillators with a
neighbor repulsive interaction.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 28/66



Integrable systems

Rotor: o =r, i:O,H:% (p,r) € 2nT x R.

Pendulum: g=p, p=sing, H = g —cosq, (q,p) € 2nT x R.
Harmonic oscillator: g =p, p= —kq or H = %2 + %‘72.

Motion in a central force field: g = F(]|ql])q.

Newtonial two body problem.

Newtonian two center problem.

Lagrange’s top, Kovaleskaya'’s top, Euler’s top.

Toda lattice: chain --- < xg < X1 < ... with the neighbor
interaction ) ; exp(X; — Xj;+1)

Calogero-Moser system: chain of harmonic oscillators with a
neighbor repulsive interaction.

A geodesic flow on an n-dim’l ellipsoid with different main axes.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 28/66



Integrable systems

Rotor: o =r, i:O,H:% (p,r) € 2nT x R.

Pendulum: g=p, p=sing, H = g —cosq, (q,p) € 2nT x R.
Harmonic oscillator: g =p, p= —kq or H = %2 + %‘72.

Motion in a central force field: g = F(]|ql])q.

Newtonial two body problem.

Newtonian two center problem.

Lagrange’s top, Kovaleskaya'’s top, Euler’s top.

Toda lattice: chain --- < xg < X1 < ... with the neighbor
interaction ) ; exp(X; — Xj;+1)

Calogero-Moser system: chain of harmonic oscillators with a
neighbor repulsive interaction.

A geodesic flow on an n-dim’l ellipsoid with different main axes.
A geodesic flow on a surface of revolution.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 28/66



Integrable systems

Rotor: o =r, i:O,H:% (p,r) € 27T x R.

Pendulum: g=p, p=sing, H = g —cosq, (q,p) € 27T x R.
Harmonic oscillator: g =p, p=—kq or H = %2 + %‘72.

Motion in a central force field: g = F(]|ql])q.

Newtonial two body problem.

Newtonian two center problem.

Lagrange’s top, Kovaleskaya'’s top, Euler’s top.

Toda lattice: chain - -- < xg < X1 < ... with the neighbor
interaction ) ; exp(X; — Xj;+1)

Calogero-Moser system: chain of harmonic oscillators with a
neighbor repulsive interaction.

A geodesic flow on an n-dim’l ellipsoid with different main axes.

A geodesic flow on a surface of revolution.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 29/66



Integrable systems

Rotor: o =r, i:O,H:% (p,r) € 27T x R.

Pendulum: g=p, p=sing, H = g —cosq, (q,p) € 27T x R.
Harmonic oscillator: g =p, p=—kq or H = %2 + %‘72.

Motion in a central force field: g = F(]|ql])q.

Newtonial two body problem.

Newtonian two center problem.

Lagrange’s top, Kovaleskaya'’s top, Euler’s top.

Toda lattice: chain - -- < xg < X1 < ... with the neighbor
interaction ) ; exp(X; — Xj;+1)

Calogero-Moser system: chain of harmonic oscillators with a
neighbor repulsive interaction.

A geodesic flow on an n-dim’l ellipsoid with different main axes.

A geodesic flow on a surface of revolution.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 29/66



KAM Theorem and explanation of failure of ergodicity

Let Hy(/) have non-degenerate Hessian, I € R”, e.g. Hy(l) = >_ /].2/2.
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KAM Theorem and

i _\ PR
Let Ho(/) have non-degenerate Hessian, / € R”, e.g. Ho(/) = >_ I7/2.

KAM Theorem Let H.(¢, ) = Ho(/) + cH1 (¢, I) be a smooth
perturbation. Then with probability 1 — O(+/¢) an initial condition in
T" x B" has a quasiperiodic orbit. Moreover, T" x B" is laminated by
invariant n-dimensional tori with a linear flow on each.
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; NP2
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Arnold’s Conjecture

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V.1 ARNOL'D

Arnold conjecture For a generic perturbation H-(¢, ) =

Ho(!) + eHi (g, I) does there exist “diffusing orbits” whose action
component I(t) can “travel” O(1), i.e. |I(t) — I(0)| > O(1) for some
t>07?
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The Deterministic Model: the Sun-Jupiter-Asteroid

® Jupiter

Total mass of the Asteroid belt is 4% of the Earth’s moon.
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Kirkwood gaps in the Asteroid Belt

Moser: Is the Solar System Stable?
The Math Intelligencer, 78
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Kirkwood gaps in the Asteroid Belt

Moser: Is the Solar System Stable?
The Math Intelligencer, 78

1.0 ) 145 2.0 2.5 3.0 35
Kirkwood gap occurs at mean-motion resonance, i.e. when period of
Jupiter and of Asteroid are in small rational relation, e.g. 3:1, 5:2, 7:3.

Wisdom ’82, 85, Neishtadt 87 explanation of 3:1 Kirkwood gaps

Fejoz-Guadia-K-Roldan ’11 an alternative mechanism for small Jupiter

eccentricity.
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Numerics and Chirikov’s diffusion conjecture

K-Roldan Fix mass ratio z, small Jupiter eccentr ey, Asteroid’s as""VZ(O) =1,
ea(0) = e*. Pick 10* initial angles. Run T; = . Plot histogram for ea(T;).

400
€=0.100 mmm=m 350
300
250
200
150
100
50
o]

450
400
350
300
250
200
150
100
50
0

e=0.150 ===

Frequency
Frequency

0.48 0.64 0.8 0.64 0.8
400 400
350 e=0.125 o 350
2 25 2 25
2 2
$ 200 $ 200
g 150 g 150
& 100 & 100
50 50
0 0
0.48 0.64 0.8

Diffusion conjecture Inside Kirkwood gaps as 1 — 0 distributions of
eccentricity ea(T:) in a certain time scale Weakly converge to
distributions of a diffusion process e; = eg + fo (es)dws, where dws is
the white noise and o(e) is a smooth function.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 48/ 66



Numerics and Chirikov’s diffusion conjecture

K-Roldan Fix mass ratio z, small Jupiter eccentr ey, Asteroid’s as""VZ(O) =1,
ea(0) = e*. Pick 10* initial angles. Run T; = . Plot histogram for ea(T;).

400
€=0.100 mmm=m 350
300
250
200
150
100
50
o]

450
400
350
300
250
200
150
100
50
0

e=0.150 ===

Frequency
Frequency

0.48 0.64 0.8 0.64 0.8
400 400
350 e=0.125 o 350
2 25 2 25
2 2
$ 200 $ 200
g 150 g 150
& 100 & 100
50 50
0 0
0.48 0.64 0.8

Diffusion conjecture Inside Kirkwood gaps as 1 — 0 distributions of
eccentricity ea(T:) in a certain time scale Weakly converge to
distributions of a diffusion process e; = eg + fo (es)dws, where dws is
the white noise and o(e) is a smooth function.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 48/ 66



Numerics and Chirikov’s diffusion conjecture

K-Roldan Fix mass ratio z, small Jupiter eccentr ey, Asteroid’s as""VZ(O) =1,
ea(0) = e*. Pick 10* initial angles. Run T; = . Plot histogram for ea(T;).

400
€=0.100 mmm=m 350
300
250
200
150
100
50
o]

450
400
350
300
250
200
150
100
50
0

e=0.150 ===

Frequency
Frequency

0.48 0.64 0.8 0.64 0.8
400 400
350 e=0.125 o 350
2 25 2 25
2 2
$ 200 $ 200
g 150 g 150
& 100 & 100
50 50
0 0
0.48 0.64 0.8

Diffusion conjecture Inside Kirkwood gaps as 1 — 0 distributions of
eccentricity ea(T:) in a certain time scale Weakly converge to
distributions of a diffusion process e; = eg + fo (es)dws, where dws is
the white noise and o(e) is a smooth function.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 49/ 66



Numerics and Chirikov’s diffusion conjecture

K-Roldan Fix mass ratio z, small Jupiter eccentr ey, Asteroid’s as""VZ(O) =1,
ea(0) = e*. Pick 10* initial angles. Run T; = . Plot histogram for ea(T;).

400
€=0.100 mmm=m 350
300
250
200
150
100
50
o]

450
400
350
300
250
200
150
100
50
0

e=0.150 ===

Frequency
Frequency

0.48 0.64 0.8 0.64 0.8
400 400
350 e=0.125 o 350
2 25 2 25
2 2
$ 200 $ 200
g 150 g 150
& 100 & 100
50 50
0 0
0.48 0.64 0.8

Diffusion conjecture Inside Kirkwood gaps as 1 — 0 distributions of
eccentricity ea(T:) in a certain time scale Weakly converge to
distributions of a diffusion process e; = eg + fo (es)dws, where dws is
the white noise and o(e) is a smooth function.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 49/ 66



Numerics and Chirikov’s diffusion conjecture

K-Roldan Fix mass ratio z, small Jupiter eccentr ey, Asteroid’s as""VZ(O) =1,
ea(0) = e*. Pick 10* initial angles. Run T; = . Plot histogram for ea(T;).

400
€=0.100 mmm=m 350
300
250
200
150
100
50
o]

450
400
350
300
250
200
150
100
50
0

e=0.150 ===

Frequency
Frequency

0.48 0.64 0.8 0.64 0.8
400 400
350 e=0.125 o 350
2 25 2 25
2 2
$ 200 $ 200
g 150 g 150
& 100 & 100
50 50
0 0
0.48 0.64 0.8

Diffusion conjecture Inside Kirkwood gaps as 1 — 0 distributions of
eccentricity ea(T:) in a certain time scale Weakly converge to
distributions of a diffusion process e; = eg + fo (es)dws, where dws is
the white noise and o(e) is a smooth function.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 49/ 66



Numerics and Chirikov’s diffusion conjecture

K-Roldan Fix mass ratio z, small Jupiter eccentr ey, Asteroid’s as""VZ(O) =1,
ea(0) = e*. Pick 10* initial angles. Run T; = . Plot histogram for ea(T;).

400
€=0.100 mmm=m 350
300
250
200
150
100
50
o]

450
400
350
300
250
200
150
100
50
0

e=0.150 ===

Frequency
Frequency

0.48 0.64 0.8 0.64 0.8
400 400
350 e=0.125 o 350
2 25 2 25
2 2
$ 200 $ 200
g 150 g 150
& 100 & 100
50 50
0 0
0.48 0.64 0.8

Diffusion conjecture Inside Kirkwood gaps as 1 — 0 distributions of
eccentricity ea(T:) in a certain time scale Weakly converge to
distributions of a diffusion process e; = eg + fo (es)dws, where dws is
the white noise and o(e) is a smooth function.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 49/ 66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

Rotor Mathematical Pendulum

m
M
polar (r$) — T——l —

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 50 /66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 p2
HO(P,q7r7<P,t): P +?+(COSQ*1),
—_—— —
rotor pendulum

where q, ¢, t € T are angles, p,r € R.
Rotor Mathematical Pendulum

W—\
M
polar (r$) — T——l —

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 50 /66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 p2
HO(P,q7r7<P,t): P +?+(COSQ*1),
—_—— —
rotor pendulum

where q, ¢, t € T are angles, p,r € R.
Rotor Mathematical Pendulum

W—\
M
polar (r$) — T——l —

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 50 /66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
(P7q7 » P )_ E+%+(Cosq71)+€H1(paq7r7(p7t) = HO(')+€H1(')a

where q, ¢, t € T are angles, p,r € R.
Rotor Mathematical Pendulum

polar (r$) — ——l—

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 51/66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
(P7q7 » P )_ E+%+(Cosq71)+€H1(paq7r7(p7t) = HO(')+€H1(')a

where q, ¢, t € T are angles, p,r € R.
Rotor Mathematical Pendulum

polar (r$) — ——l—

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 51/66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
HE(p7q7r750a t) = E + % +C0sqg — 1 +6H1(p7q7r730a t) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.
Rotor Mathematical Pendulum

M
M
polar (r$) — ——l —

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 52 /66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
HE(p7q7r750a t) = E + % +C0sqg — 1 +6H1(p7q7r730a t) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.
Rotor Mathematical Pendulum

M
M
polar (r$) — ——l —

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 52 /66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
HE(p7q7r750a t) = E + % +C0sqg — 1 +6H1(p7q7r730a t) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.
Rotor Mathematical Pendulum

polar (r,¥)

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 53 /66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
HE(p7q7r750a t) = E + % +C0sqg — 1 +6H1(p7q7r730a t) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.
Rotor Mathematical Pendulum

polar (r,¥)

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 53 /66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
HE(p7q7r750a t) = E + % +C0sqg — 1 +6H1(p7q7r730a t) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.

)

~——ag————— polar (r,})

I\/Iathematlijcal Pendulum

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 54 /66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
HE(p7q7r750a t) = E + % +C0sqg — 1 +6H1(p7q7r730a t) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.

)

~——ag————— polar (r,})

I\/Iathematlijcal Pendulum

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 54 /66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
(P7q7 y P ): E+%+Cosq71+6H1(paq7r730at) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.

Mathematical Pendulum

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 55/66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
(P7q7 y P ): E+%+Cosq71+6H1(paq7r730at) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.

Mathematical Pendulum

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 55/66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
(P7q7 y P ): E+%+Cosq71+6H1(paq7r730at) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.

I\/Iathematlgcal Pendulum

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 56 / 66



Arnold’s example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. 1. ARNOL'D

r2 2
(P7q7 y P ): E+%+Cosq71+6H1(paq7r730at) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.

I\/Iathematlgcal Pendulum

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 56/ 66



Arnold’s example
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V. 1. ARNOL'D

r2 2
H.(p.q,r o, t) = >+ % +cosqg—1+cHi(p,q,r,o,t) = Ho(-) +eHi (),

where g, p, t € T are angles, p, r € R.

Matherhétri)é:al Pendulum

| R ———T
(e Je é
~=-Arnold's Conjecture
N = Diffusing” orbi
L~ T g" orbits

~——=g—— polar (1Y) T Ir(t)-r(0)|>1 exist.
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V. I ARNOL'D

r2 2
Hs(p7q7r7§07 t) = E + % +Cosq_1 +EH1(P7C7,”7807 t) = HO(')+5H1(')7

where q, ¢, t € T are angles, p,r € R.

Matherﬁé%cal Pendulum

7z z
@rnold's Conjecture

— “Diffusing" orbits
T (t)r(0)]>1 exist.

Chirikov’s conjecture: Inside stochastic layer r(te=2In1/<) behaves
as a stochastic diffusion process x(t).
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Numerics for Arnold’s example

(K-Roldan) Fix r = r*. Pick 108 initial conditions: (p;, g;) near 0,
@i € T.Run T; = te=?log 1/¢, € = 0.01.
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Numerics for Arnold’s example
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Main Result

r2 p2
He(p’QarﬁOvt):E_‘_?—i_(cosq_‘l)_'—gpN(qﬂo?t)a

where Py is a trigonometric polynomial, N > 2.
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Main Result

2

2
r
He(p)qarasovt)zé_‘_p

2

where Py is a trigonometric polynomial, N > 2. Let ry € R, §(ry) be the
§-measure at ry, M, be the projection on r, T; = te=?log 1/e.

+ (COSQ— 1) +5PN(q’SO? t)a

Main Result For an open set Uy of Py’s the Hamiltonian H. has a
probability measure v. supported in a stochastic layer such that
Myve. = 6(ry) for some rp € R and the distribution of the push forward
(ﬁﬂ';'Ve =v*
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where Py is a trigonometric polynomial, N > 2. Let ry € R, §(ry) be the
§-measure at ry, M, be the projection on r, T; = te=?log 1/e.

+ (COSQ— 1) +5PN(q’SO? t)a

Main Result For an open set Uy of Py’s the Hamiltonian H. has a
probability measure v. supported in a stochastic layer such that

Myve. = 6(ry) for some rp € R and the distribution of the push forward
¢7v. = v* projected to r, i.e. MN,v*, weakly converges, as ¢ — 0, to the
distribution of a diffusion process
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where Py is a trigonometric polynomial, N > 2. Let ry € R, §(ry) be the

§-measure at ry, M, be the projection on r, T; = te=?log 1/e.

Main Result For an open set Uy of Py’s the Hamiltonian H. has a
probability measure v. supported in a stochastic layer such that
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¢7v. = v* projected to r, i.e. MN,v*, weakly converges, as ¢ — 0, to the
distribution of a diffusion process
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where o(r) is a smooth computable function, depending only on Py.
Castejon-Guardia-K'17,
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Concluding remarks
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Concluding remarks

e Conjecturally mixed behavior is present in the Kirkwood
gaps of the Asteroid belt.

e Conijecturally a typical nearly integrable system exhibits
mixed behavior with both quasi-periodic and stochastic
behaviors having positive measure.

@ For Arnold’s example a form of mixed behavior is
established!
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The end

Thanks!
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