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Motivation

The Maslov index is a topological invariant assigned to
curves of Lagrangian subspaces. It has been used to
analyze the spectra of self-adjoint operators.

Our goal is to develop the theory of the Maslov index for
traveling waves in activator-inhibitor systems.

Our main result relates the parity of the Maslov index to
the sign of the derivative of the Evans function at λ = 0.

2 / 15



A Stability
Index for
Traveling
Waves in
Activator-
Inhibitor
Systems

Paul Cornwell
UNC-CH

The Problem

Consider the reaction-diffusion system

ut = uxx + f(u)− σv
vt = vxx + αu+ g(v),

(1)

where σ, α > 0 and u, v, x, t ∈ R.

The signs of σ and α are chosen so that this system is of
activator-inhibitor type. We assume that (0, 0) is a stable
steady state of the reaction equation.

We assume that (1) possesses a transversely constructed
traveling pulse and study its stability.
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Traveling Wave Equation

A traveling pulse of (1) is a solution ϕ = (û, v̂) of one
variable z = x− ct to the ODE

0 = uzz + cuz + f(u)− σv
0 = vzz + cvz + αu+ g(v)

(2)

that decays exponentially to (0, 0) as z → ±∞.

Setting uz = σw and vz = αy, we can write (2) as a first
order system

u
v
w
y


′

=


σw
αy

−cw + v − f(u)/σ
−cy − u− g(v)/α

 . (3)
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Stability Analysis

The (nonlinear) stability of ϕ is determined by analyzing
the spectrum of the linearization L of (2) about ϕ.

Written as a first-order system, the eigenvalue problem
Lp = λp becomes

p
q
r
s


′

=


0 0 σ 0
0 0 0 α

λ−f ′(û)
σ 1 −c 0

−1 λ−g′(v̂)
α 0 −c




p
q
r
s

 (4)

For λ ∈ C to be an eigenvalue, there must exist a bounded
solution to (4), which we write Y ′(z) = A(λ, z)Y (z).
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The Evans Function

Fact: σess(L) ⊂ {z ∈ C : Re z < 0}. For Re λ ≥ 0, the
asymptotic matrix A(λ) has two-dimensional stable and
unstable subspaces W s(λ) and W u(λ).

From standard theory, we therefore have two-dimensional
spaces of solutions of (4), Es(λ, z) and Eu(λ, z), decaying
to 0 as z →∞ and as z → −∞ respectively.

Furthermore, Es(λ, z) (resp. Eu(λ, z)) is asymptotically
tangent to W s(λ) (resp. W u(λ)) as z →∞ (resp.
z → −∞).

The Evans function D(λ) = e2czEs(λ, z) ∧ Eu(λ, z)
determines whether these subspaces intersect, and hence
whether λ is an eigenvalue.
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Symplectic Structure

The evolution of two-planes can be tracked by using
Plücker coordinates. A basis {ei} yields a basis {ei ∧ ej}
of
∧2(R4), on which (4) induces an equation.

Denoting pij the ei ∧ ej component of a plane, one
computes that d

dz (p13 − p24) = −c(p13 − p24).

The two-form ω dual to p13 − p24 is symplectic, hence the
set of ω-Lagrangian planes is invariant under the flow.
Moreover, the form Ω(·, ·) := eczω(·, ·) is invariant on any
two solutions of (4).

Key fact: Es/u(λ, z) are ω-Lagrangian for all λ ∈ C and
z ∈ R.
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The Symplectic Evans Function

Assume that we have spanning solutions ui(λ, z) such that
Es(λ, z) = sp{u1, u2} and Eu(λ, z) = sp{u3, u4}.

Using the standard volume form, we can rewrite the Evans
function as

D(λ) = e2czEs(λ, z) ∧ Eu(λ, z)

= e2cz det [u1, u2, u3, u4] vol.
(5)

The following formula due to Chardard and Bridges (’14)
allows us to exploit the symplectic structure:

D(λ) = −e2cz
[
ω(u1, u3) ω(u1, u4)
ω(u2, u3) ω(u2, u4)

]
vol. (6)
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D′(0) Calculation

λ = 0 is an eigenvalue due to translation invariance.
Generically, we have ϕ′(z) = u2(0, z) = u3(0, z).

Using Jacobi’s formula, we calculate:

D′(0) = Ω(u1, u4)∂λΩ(u2, u3)|λ=0

= Ω(u1, u4)

∞∫
−∞

ecz
(

(û′)2

σ
− (v̂′)2

α

)
dz.

(7)

Ω(u1, u4) is called the Lazutkin-Treschev invariant. Its
sign is not obvious.
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The Maslov Index

A plane V ∈ Gr2(R4) is called Lagrangian if ω|V = 0.
The set of Lagrangian planes is a compact 3−manifold
Λ(2) with π1(Λ(2)) = Z.

For fixed V ∈ Λ(2) and curve γ : [a, b]→ Λ(2), the Maslov
index µ(γ, V ) counts how many times γ(t) ∩ V 6= {0}.

We consider the curve z 7→ Eu(0, z) and count
intersections with the plane Es(0, τ), τ � 1. The domain
of the curve is (−∞, τ ], which forces a crossing at z = τ .

Chen and Hu (’07) showed that this definition is
independent of τ , provided that Es(τ ′, 0) ∩W u(0) = {0}
for all τ ′ ≥ τ .
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The Maslov Index

A conjugate point is a value z = z∗ such that
Eu(0, z∗) ∩ Es(0, τ) 6= {0}. At such a point, the crossing
form defined on the intersection is given by

Γ(z∗)(ζ) = ω(ζ,A(0, z∗)ζ). (8)

The Maslov index of the homoclinic orbit is then given by

Maslov(ϕ) :=
1

2
+

∑
z∗∈(−∞,τ)

signΓ(z∗) +
1

2
signΓ(τ), (9)

where the sum is taken over all interior conjugate points.
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Bridging the Gap

We relate the Evans function and Maslov index through
the Lazutkin-Treschev invariant. The two-form

π(·, ·) = det
[
e−µ1(0)u1, e

−µ2(0)u2, ·, ·
]

(10)

detects crossings with the train of Es(0, τ). In particular,

β(z) := π (Eu(0, z)) (11)

vanishes precisely at conjugate points.

Furthermore, the multiplicity of z∗ as a root of β has the
same parity as the signature of Γ(z∗).
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Stability Index

A simple calculation shows that

β′(τ) = Ω(u1, u4)Ω(ϕ′(τ), ϕ′′(τ)). (12)

Also, β < 0 for large z < 0.

Intuitively, the sign of β′(τ) is determined by the number
of zeros of β prior to τ .

This allows us to prove

(−1)Maslov(ϕ)+1 = sign Ω(u1, u4). (13)
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Stability Index

β′(τ) = Ω(u1, u4)Ω(ϕ′(τ), ϕ′′(τ))

Maslov(ϕ) β′(τ) Γ(τ) Ω(u1, u4)

e + − −
e − + −
o + + +

o − − +
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Application: a FitzHugh-Nagumo System

It can be shown that the FitzHugh-Nagumo system

ut = uxx + f(u)− v
vt = vxx + ε (u− γv)

(14)

has fast traveling wave solutions for 0 < ε� 1.

The same waves with no diffusion on v were shown to be
stable by Jones (’84) using a D′(0) calculation.

The stability question reduces to finding D′(0) in this case
as well, so our result applies. Techniques from geometric
singular perturbation theory should allow us to calculate
the Maslov index.
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