A Stability Index for Traveling Waves in Activator-Inhibitor Systems

A Stability Index for Traveling Waves in Activator-Inhibitor Systems

> Paul Cornwell (Joint with Chris Jones)

University of North Carolina at Chapel Hill

SIAM Conference on Applications of Dynamical Systems Snowbird, UT May 25, 2017

イロト 不得 トイヨト イヨト

1/15

Motivation

A Stability Index for Traveling Waves in Activator-Inhibitor Systems

- The Maslov index is a topological invariant assigned to curves of Lagrangian subspaces. It has been used to analyze the spectra of self-adjoint operators.
- Our goal is to develop the theory of the Maslov index for traveling waves in activator-inhibitor systems.
- Our main result relates the parity of the Maslov index to the sign of the derivative of the Evans function at λ = 0.

2/15

A Stability Index for Traveling Waves in Activator-Inhibitor Systems Paul Cornwell UNC-CH

The Problem

Consider the reaction-diffusion system

$$u_t = u_{xx} + f(u) - \sigma v$$

$$v_t = v_{xx} + \alpha u + g(v),$$
(1)

where $\sigma, \alpha > 0$ and $u, v, x, t \in \mathbb{R}$.

- The signs of σ and α are chosen so that this system is of activator-inhibitor type. We assume that (0,0) is a stable steady state of the reaction equation.
- We assume that (1) possesses a transversely constructed traveling pulse and study its stability.

Traveling Wave Equation

A Stability Index for Traveling Waves in Activator-Inhibitor Systems Paul Cornwel

• A traveling pulse of (1) is a solution $\varphi = (\hat{u}, \hat{v})$ of one variable z = x - ct to the ODE

$$0 = u_{zz} + cu_z + f(u) - \sigma v$$

$$0 = v_{zz} + cv_z + \alpha u + g(v)$$
(2)

that decays exponentially to (0,0) as $z \to \pm \infty$.

Setting $u_z = \sigma w$ and $v_z = \alpha y$, we can write (2) as a first order system

$$\begin{pmatrix} u \\ v \\ w \\ y \end{pmatrix}' = \begin{pmatrix} \sigma w \\ \alpha y \\ -cw + v - f(u)/\sigma \\ -cy - u - g(v)/\alpha \end{pmatrix}.$$
 (3)

Stability Analysis

A Stability Index for Traveling Waves in Activator-Inhibitor Systems

UNC-CH

- The (nonlinear) stability of φ is determined by analyzing the spectrum of the linearization L of (2) about φ.
- \blacksquare Written as a first-order system, the eigenvalue problem $Lp=\lambda p$ becomes

$$\begin{pmatrix} p \\ q \\ r \\ s \end{pmatrix}' = \begin{pmatrix} 0 & 0 & \sigma & 0 \\ 0 & 0 & 0 & \alpha \\ \frac{\lambda - f'(\hat{u})}{\sigma} & 1 & -c & 0 \\ -1 & \frac{\lambda - g'(\hat{v})}{\alpha} & 0 & -c \end{pmatrix} \begin{pmatrix} p \\ q \\ r \\ s \end{pmatrix}$$
(4)

- For λ ∈ C to be an eigenvalue, there must exist a bounded solution to (4), which we write Y'(z) = A(λ, z)Y(z).
 - ・ロト ・ 一部 ト ・ 注 ト ・ 注 ・ う へ で
 5 / 15

The Evans Function

A Stability Index for Traveling Waves in Activator-Inhibitor Systems

■ Fact: $\sigma_{\text{ess}}(L) \subset \{z \in \mathbb{C} : \text{Re } z < 0\}$. For Re $\lambda \ge 0$, the asymptotic matrix $A(\lambda)$ has two-dimensional stable and unstable subspaces $W^s(\lambda)$ and $W^u(\lambda)$.

- From standard theory, we therefore have two-dimensional spaces of solutions of (4), $E^s(\lambda, z)$ and $E^u(\lambda, z)$, decaying to 0 as $z \to \infty$ and as $z \to -\infty$ respectively.
- Furthermore, $E^s(\lambda, z)$ (resp. $E^u(\lambda, z)$) is asymptotically tangent to $W^s(\lambda)$ (resp. $W^u(\lambda)$) as $z \to \infty$ (resp. $z \to -\infty$).
- The Evans function $D(\lambda) = e^{2cz}E^s(\lambda, z) \wedge E^u(\lambda, z)$ determines whether these subspaces intersect, and hence whether λ is an eigenvalue.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Symplectic Structure

A Stability Index for Traveling Waves in Activator-Inhibitor Systems

Paul Cornwell UNC-CH

- The evolution of two-planes can be tracked by using Plücker coordinates. A basis {e_i} yields a basis {e_i ∧ e_j} of ²(ℝ⁴), on which (4) induces an equation.
- Denoting p_{ij} the $e_i \wedge e_j$ component of a plane, one computes that $\frac{d}{dz}(p_{13} p_{24}) = -c(p_{13} p_{24}).$
- The two-form ω dual to $p_{13} p_{24}$ is symplectic, hence the set of ω -Lagrangian planes is invariant under the flow. Moreover, the form $\Omega(\cdot, \cdot) := e^{cz}\omega(\cdot, \cdot)$ is invariant on any two solutions of (4).
- Key fact: $E^{s/u}(\lambda, z)$ are ω -Lagrangian for all $\lambda \in \mathbb{C}$ and $z \in \mathbb{R}$.

The Symplectic Evans Function

A Stability Index for Traveling Waves in Activator-Inhibitor Systems

Paul Cornwel UNC-CH

- Assume that we have spanning solutions $u_i(\lambda, z)$ such that $E^s(\lambda, z) = sp\{u_1, u_2\}$ and $E^u(\lambda, z) = sp\{u_3, u_4\}$.
- Using the standard volume form, we can rewrite the Evans function as

$$D(\lambda) = e^{2cz} E^s(\lambda, z) \wedge E^u(\lambda, z)$$

= $e^{2cz} \det [u_1, u_2, u_3, u_4]$ vol. (5)

The following formula due to Chardard and Bridges ('14) allows us to exploit the symplectic structure:

$$D(\lambda) = -e^{2cz} \begin{bmatrix} \omega(u_1, u_3) & \omega(u_1, u_4) \\ \omega(u_2, u_3) & \omega(u_2, u_4) \end{bmatrix}$$
vol. (6)

D'(0) Calculation

A Stability Index for Traveling Waves in Activator-Inhibitor Systems Paul Cornwe

- $\lambda = 0$ is an eigenvalue due to translation invariance. Generically, we have $\varphi'(z) = u_2(0, z) = u_3(0, z)$.
- Using Jacobi's formula, we calculate:

$$D'(0) = \Omega(u_1, u_4) \partial_\lambda \Omega(u_2, u_3)|_{\lambda=0}$$

= $\Omega(u_1, u_4) \int_{-\infty}^{\infty} e^{cz} \left(\frac{(\hat{u}')^2}{\sigma} - \frac{(\hat{v}')^2}{\alpha}\right) dz.$ (7)

◆□> ◆□> ◆注> ◆注> □ 注

9/15

Ω(u₁, u₄) is called the *Lazutkin-Treschev* invariant. Its sign is not obvious.

The Maslov Index

A Stability Index for Traveling Waves in Activator-Inhibitor Systems

Paul Cornwell UNC-CH

- A plane $V \in \operatorname{Gr}_2(\mathbb{R}^4)$ is called Lagrangian if $\omega|_V = 0$. The set of Lagrangian planes is a compact 3-manifold $\Lambda(2)$ with $\pi_1(\Lambda(2)) = \mathbb{Z}$.
- For fixed $V \in \Lambda(2)$ and curve $\gamma : [a, b] \to \Lambda(2)$, the *Maslov* index $\mu(\gamma, V)$ counts how many times $\gamma(t) \cap V \neq \{0\}$.
- We consider the curve $z \mapsto E^u(0, z)$ and count intersections with the plane $E^s(0, \tau)$, $\tau \gg 1$. The domain of the curve is $(-\infty, \tau]$, which forces a crossing at $z = \tau$.
- Chen and Hu ('07) showed that this definition is independent of τ , provided that $E^s(\tau', 0) \cap W^u(0) = \{0\}$ for all $\tau' \geq \tau$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

10 / 15

The Maslov Index

A Stability Index for Traveling Waves in Activator-Inhibitor Systems

Paul Cornwe UNC-CH A conjugate point is a value z = z* such that E^u(0, z*) ∩ E^s(0, τ) ≠ {0}. At such a point, the crossing form defined on the intersection is given by

$$\Gamma(z^*)(\zeta) = \omega(\zeta, A(0, z^*)\zeta).$$
(8)

11/15

The Maslov index of the homoclinic orbit is then given by

$$\operatorname{Maslov}(\varphi) := \frac{1}{2} + \sum_{z^* \in (-\infty, \tau)} \operatorname{sign} \Gamma(z^*) + \frac{1}{2} \operatorname{sign} \Gamma(\tau), \quad (9)$$

where the sum is taken over all interior conjugate points.

Bridging the Gap

A Stability Index for Traveling Waves in Activator-Inhibitor Systems

• We relate the Evans function and Maslov index through the Lazutkin-Treschev invariant. The two-form

$$\pi(\cdot, \cdot) = \det\left[e^{-\mu_1(0)}u_1, e^{-\mu_2(0)}u_2, \cdot, \cdot\right]$$
(10)

detects crossings with the train of $E^s(0,\tau)$. In particular,

$$\beta(z) := \pi \left(E^u(0, z) \right)$$
 (11)

vanishes precisely at conjugate points.

 Furthermore, the multiplicity of z* as a root of β has the same parity as the signature of Γ(z*).

Stability Index

A Stability Index for Traveling Waves in Activator-Inhibitor Systems Paul Cornwell UNC-CH

A simple calculation shows that

$$\beta'(\tau) = \Omega(u_1, u_4) \Omega(\varphi'(\tau), \varphi''(\tau)).$$
(12)

Also, $\beta < 0$ for large z < 0.

Intuitively, the sign of $\beta'(\tau)$ is determined by the number of zeros of β prior to τ .

This allows us to prove

$$(-1)^{\operatorname{Maslov}(\varphi)+1} = \operatorname{sign} \Omega(u_1, u_4).$$
(13)

Stability Index

$$\beta'(\tau) = \Omega(u_1, u_4) \Omega(\varphi'(\tau), \varphi''(\tau))$$

Maslov(arphi)	$\beta'(\tau)$	$\Gamma(\tau)$	$\Omega(u_1, u_4)$	
е	+	—	_	
е	—	+	—	
0	+	+	+	
0	—	—	+	1

≡ •>< 14 / 15

Application: a FitzHugh-Nagumo System

A Stability Index for Traveling Waves in Activator-Inhibitor Systems Paul Cornwell UNC-CH

It can be shown that the FitzHugh-Nagumo system

$$u_t = u_{xx} + f(u) - v$$

$$v_t = v_{xx} + \epsilon (u - \gamma v)$$
(14)

has fast traveling wave solutions for $0 < \epsilon \ll 1$.

- The same waves with no diffusion on v were shown to be stable by Jones ('84) using a D'(0) calculation.
- The stability question reduces to finding D'(0) in this case as well, so our result applies. Techniques from geometric singular perturbation theory should allow us to calculate the Maslov index.