Stability of Periodic and Quasiperiodic Traveling Wave Solutions

Jared C. Bronski

Snowbird DS 2017

Joint work with
Vera Hur (Illinois)
Mathew Johnson (Indiana)
Todd Kapitula (Calvin College)
Robby Maragell (Sydney)
Zoi Rapti (Illinois)

Introduction

- The generalized Korteweg de-Vries (gKdV) equation is given by

$$
u_{t}=u_{x x x}+(f(u))_{x}
$$

for some "nice" nonlinearity f. Some examples:

- Surface Waves: $f(u)=u^{2}$
- Internal Waves: $f(u)=\alpha u^{3}+\beta u^{2}$
- Plasmas: $f(u)=u^{r+\frac{1}{2}} \quad r \geq 0$.
- Interested in the stability of traveling wave solutions of form $u(x, t)=u(x+c t)$ with wave-speed $c>0$.
- Describes stationary solutions in the traveling coordinate system $\xi=x+c t$.

Introduction

Profile of traveling wave satisfies

$$
u_{x x x}+f(u)_{x}-c u_{x}=0
$$

Integrating twice gives the nonlinear oscillator:

$$
\begin{aligned}
& \frac{1}{2} u_{x}^{2}=E+a u+c u^{2} / 2-F(u) \\
& \frac{d u}{\sqrt{2\left(E+a u+c u^{2} / 2-F(u)\right)}}=d x
\end{aligned}
$$

with a, E constants of integration, c wavespeed and F the antiderivative of f.

Alternative Point of View

Alternative Point of View Two conserved Quantities mass and momentum (M, P) plus spatial period (T)

$$
\begin{aligned}
T & =\int d x \\
M & =\int u d x \\
P & =\frac{1}{2} \int u^{2} d x
\end{aligned}
$$

Solitary wave equation equivalent to

$$
\partial_{u} H+a \partial_{u} M+c \partial_{u} P+E \partial_{u} T=0
$$

- c is a Lagrange multiplier enforcing constraint $P=$ constant.
- a is a Lagrange multiplier enforcing constraint $M=$ constant.
- Morally E is a Lagrange multiplier enforcing constraint $T=$ constant.

Introduction

Exists two classes of bounded solutions to traveling wave ODE:
(1) Asymptotically constant (solitary wave solutions):

(2) Periodic (periodic traveling wave solutions):

Example: (Critical) KdV-4 $\left(f(u)=u^{5}\right)$

The effective nonlinear oscillator is given by

$$
\frac{u_{x}^{2}}{2}=E+a u+c \frac{u^{2}}{2}-\frac{u^{6}}{6}
$$

The discriminant of this sixth degree polynomial is
$\Delta_{K d V-4}=-48 a^{2}-3125 a^{6}+11250 a^{4} E-10800 a^{2} E^{2}+1728 E^{3}+7776 E^{5}$
The zero set of which gives the familiar swallowtail cusp:

Identities

Define the classical action for the traveling wave

$$
K=\int p d q=\int \sqrt{2\left(E+a u+c u^{2} / 2+F(u)\right)} d x
$$

This is a generating function for the conserved quantities

$$
\begin{aligned}
T & =\frac{\partial K}{\partial E} \\
M & =\frac{\partial K}{\partial a} \\
P & =\frac{\partial K}{\partial c}
\end{aligned}
$$

These are the Maxwell relations from thermodynamics. They hold VERY generally.

Goals:

- Study stability of solutions to periodic as well as long wave-length perturbations
- Develop geometric criteria for understanding instability.
- As motivation, we briefly recall the stability theory of solitary wave solutions of gKdV.

Solitary Wave Stability

- Recall traveling wave solutions satisfy

$$
\frac{1}{2} u_{x}^{2}=E-F(u)+\frac{c}{2} u^{2}+a u
$$

Up to translation, gKdV admits a three parameter family of bounded solitary wave solutions of the form

$$
u(x, t)=u_{c}(x+c t), \quad c>0 .
$$

- gKdV admits three conserved quantities:

$$
\begin{aligned}
T & =\int d x \\
M & =\int u d x \\
P & =\int u^{2} d x
\end{aligned}
$$

Solitary wave one-parameter $(E=0, a=0)$ submanifold,

Solitary Wave Stability

Theorem (Benjamin, Bona, Grillakis-Shatah-Strauss, Bona-Souganidis-Strauss, Pego-Weinstein,...)

Let u be a solitary wave solution of $g K d V$ of wave speed $c_{0}>0$. Then u is orbitally stable if

$$
\left.\frac{\partial}{\partial c} P(c)\right|_{c=c_{0}}>0
$$

and spectrally unstable if

$$
\left.\frac{\partial}{\partial c} P(c)\right|_{c=c_{0}}<0
$$

a) $\mathrm{dP} / \mathrm{dc}>0$ Solitary Wave Stable.

Facts: Periodic Stability Problem

Linearized spectral problem takes the form

$$
\partial_{x} \mathcal{L} v=\mu v
$$

With the operator \mathcal{L} a periodic Schrödinger operator.

- Determining essential spectrum hard part of problem.
- Behavior near the origin (in spectral plane) can be computed analytically (Whitham Theory).
- Third order operator - Three parameter family of periodic waves.
- Basis to tangent space of manifold of traveling waves generates (generalized) kernel of $\partial_{x} \mathcal{L}$
- Spectral information near origin related to geometric information about underlying classical mechanics

Periodic (Spectral) Stability Theory

Recall traveling waves are reducible to quadrature:

$$
\frac{1}{2} u_{x}^{2}=E+a u+\frac{c}{2} u^{2}-F(u) .
$$

Thus, (up to translation) \exists three parameter family of periodic traveling wave solutions of gKdV

$$
u(x ; a, E, c), \text { period } T=T(a, E, c)
$$

Conserved quantities:

$$
\begin{aligned}
& T(a, E, c)=\int_{0}^{T} d x=\oint \frac{d u}{\sqrt{E+a u+c u^{2} / 2-F(u)}}, \\
& M(a, E, c)=\int_{0}^{T} u(x ; a, E, c) d x=\oint \frac{u d u}{\sqrt{E+a u+c u^{2} / 2-F(u)}}, \\
& P(a, E, c)=\int_{0}^{T} u(x ; a, E, c)^{2} d x=\oint \frac{u^{2} d u}{\sqrt{E+a u+c u^{2} / 2-F(u)}}
\end{aligned}
$$

Periodic Stability Theory: Some results

- Given the monodromy map $\mathbf{M}(\mu)$ define the periodic Evans function:

$$
D(\mu, \kappa)=\operatorname{det}\left(\mathbf{M}(\mu)-e^{i \kappa} \mathbf{I}\right)
$$

then $D(\mu, 0)$ detects periodic eigenvalues of $\partial_{x} \mathcal{L}[u]$ in $L_{\text {per }}^{2}([0, T])$.

- Notation: We use the following Poisson bracket style notation for Jacobian determinants:

$$
\begin{aligned}
& \{f, g\}_{x, y}=\left|\begin{array}{cc}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right| \\
& \{f, g, h\}_{x, y, z}=\left|\begin{array}{ccc}
f_{x} & f_{y} & f_{z} \\
g_{x} & g_{y} & g_{z} \\
h_{x} & h_{y} & h_{z}
\end{array}\right|
\end{aligned}
$$

Orientation Index

Theorem (J. C. B. \& Mathew Johnson 2008)

Let $u=u\left(\cdot ; a_{0}, E_{0}, c_{0}\right)$ be a periodic traveling wave solution of $g K d V$ such that $\{T, M, P\}_{a, E, c}$ is non-zero at $\left(a_{0}, E_{0}, c_{0}\right)$. The number of real positive periodic eigenvalues is even if $\{T, M, P\}_{a, E, c}>0$ and odd if $\{T, M, P\}_{a, E, c}<0$.

Orientation Index

Theorem (J. C. B. \& Mathew Johnson 2008)

Let $u=u\left(\cdot ; a_{0}, E_{0}, c_{0}\right)$ be a periodic traveling wave solution of $g K d V$ such that $\{T, M, P\}_{a, E, c}$ is non-zero at $\left(a_{0}, E_{0}, c_{0}\right)$. The number of real periodic eigenvalues is even if $\{T, M, P\}_{a, E, c}>0$ and odd if $\{T, M, P\}_{a, E, c}<0$.

Remarks:

- The quantity $\{T, M, P\}_{a, E, c}$ is the natural analog of the quantity studied in the solitary wave case.
- This quantity can be interpreted as the derivative of the momentum P along the curve defined by M and T constant.
- Can also be expressed in terms of Hamiltonian: $E\{T, M, P\}_{a, E, c}=-\{H, M, P\}_{a, E, c}$.
- Natural from point of view of Whitham theory: Think of conserved quantities as parameterizing manifold of solutions.

An Index Theorem

Theorem (J. C. B. \& Mathew Johnson \& Todd Kapitula 2009)

Consider the operator $\partial_{x} \mathcal{L}$ acting on $L^{2}(\mathbb{R} /(k T \mathbb{Z}))$-In other words look at perturbations of period k times the fundamental period. Define $n_{\mathbb{R}}$ to be the number of real eigenvalues in open positive half-line, $n_{\mathbb{C}}$ to be the number of complex (not purely real) eigenvalues in open right half-plane, and $n_{\mathbb{I}}^{-}$to be the number of purely imaginary eigenvalues of negative Krein signature, and $P\left(\partial^{2} K\right)$ to be the number of positive eigenvalues of the Hessian of the classical action K of the traveling wave. Then one has the following count:

$$
n_{\mathbb{R}}+n_{\mathbb{C}}+n_{\mathbb{I}}^{-}=2 k-1-P\left(\partial^{2} K\right)
$$

Index Theorem: Ideas of Proof

Use a formula of Hǎrǎguș and Kapitula

$$
\left.n_{\mathbb{R}}+n_{\mathbb{C}}+n_{\mathbb{I}}^{-}=\mathbf{N}\left(\left.\mathcal{L}\right|_{\operatorname{Ran}\left(\partial_{x}\right)}\right)-\mathbf{N}\left(\left.\mathcal{L}\right|_{g-\operatorname{Ker}\left(\partial_{x} \mathcal{L}\right.}\right)\right)
$$

Both of these things can be computed in terms of geometric quantities (determinants/Jacobians of maps).

- $\mathbf{N}(\mathcal{L})=2 k-1+\left\{\begin{array}{ll}0 & T_{E}>0 \\ 1 & T_{E}<0\end{array}\right\}$ follows from Sturm Oscillation theorem
- $\mathbf{N}\left(\left.\mathcal{L}\right|_{\operatorname{Ran}\left(\partial_{x}\right)}\right)$ can only differ from $\mathbf{N}(\mathcal{L})$ by at most one - Courant minimax principle.
- $\left.\mathbf{N}\left(\left.\mathcal{L}\right|_{g-\operatorname{Ker}\left(\partial_{x} \mathcal{L}\right.}\right)\right)$ amounts to determining sign of particular inner product.

Additional Modes of Instability in Periodic Case

- It is well understood that periodic waves admit additional instability mechanisms.
- A periodic wave can be stable to perturbations of the same period, but unstable to perturbations of a multiple of the period modulational or Benjamin-Feir instability mechanism.
- Hǎrǎguș and Kapitula showed that small amplitude periodic waves to KdV-p go unstable at $p=2$ (Modified KdV).
- Want to find a way to distinguish $n_{\mathbb{I}}^{-}$and $n_{\mathbb{C}}$ in index formula.

Modulational Instability Index

Theorem (J. C. Bronski \& M.J. 2008)

Define the following quantity

$$
\Delta=\frac{1}{2}\left(\{T, P\}_{E, c}+2\{M, P\}_{a, E}\right)^{3}-\frac{27}{4}\left(\{T, M, P\}_{a, E, c}\right)^{2}
$$

- If $\Delta>0$ then in the neighborhood of the origin the spectrum of $\partial_{x} \mathcal{L}$ considered on $L^{2}(\mathbb{R})$ consists of the imaginary axis with multiplicity three.
- If $\Delta<0$ then in the neighborhood of the origin the spectrum of $\partial_{x} \mathcal{L}$ considered on $L^{2}(\mathbb{R})$ consists of the imaginary axis together with two curves intersecting the origin transversely to the imaginary axis, all with multiplicity one.

Modulational Instability Index

Modulationally Stable Case : $\Delta>0$

Modulationally Unstable Case: $\Delta<0$

Ideas of Proof:

- Explicit Computation: Compute $\mathbf{M}(0)$ in terms of tangent plane.
- Local Normal form calculation (Weierstrauss preparation theorem): Compute

$$
\operatorname{det}\left(\mathbf{M}(\mu)-e^{i \kappa} \mathbf{I}\right)=D(\mu, \kappa)
$$

for κ, μ small.

- Normal form homogeneous cubic in κ, μ. Discriminant of cubic tells the story.
- Note: symmetries force non-generic bfiurcation. $\mathbf{M}(0)$ has a non-trivial Jordan block but eigenvalues bifurcate analytically!

Quasiperiodic Waves (w. Johnson/Maragell)

Equations such as the Nonlinear Scrodinger equation

$$
i \phi_{t}=-\frac{1}{2} \phi_{x x}+v\left(|\phi|^{2}\right) \phi
$$

have quasi-periodic solutions

$$
\begin{aligned}
& \phi(x)=A(x) e^{i \theta(x)} \\
& A(x+T)=A(x) \\
& \theta(x+T)=\theta(x)+s
\end{aligned}
$$

where s is the quasi-momentum. Spectral theory for quasi-periodic potentials is difficult but modulational viewpoint goes through in a similar way.

Variational Structure

Generic NLS has three conserved quantities

$$
\begin{aligned}
M & =\int|\phi|^{2}(x) d x \\
P & =\int i\left(\phi_{x} \phi^{*}-\phi_{x}^{*} \phi\right) d x \\
H & =\int \frac{1}{2}\left|\phi_{x}\right|^{2}+V\left(|\phi|^{2}\right) d x
\end{aligned}
$$

Add to these two additional quantities, the period and the quasi-momentum

$$
\begin{aligned}
T & =\int d x \\
s & =\int i \frac{\phi_{x} \phi^{*}-\phi_{x}^{*} \phi}{|\phi|^{2}} d x
\end{aligned}
$$

Note that the last is well-defined since ϕ cannot vanish for quasiperiodic solutions due to angular momentum barrier.

Maxwell Relations

The quasi-periodic solutions are constrained minimizers of a free energy and thus satisfy Maxwell relations, Defining the action \mathcal{A} by a period integral

$$
\mathcal{A}=\oint \sqrt{2 E-2 A^{2} \omega-c^{2} A^{2}+2 V\left(A^{2}\right)-\frac{\kappa^{2}}{A^{2}}} d A
$$

we have the Maxwell relations

$$
\begin{aligned}
& \frac{\partial \mathcal{A}}{\partial E}=T \\
& \frac{\partial \mathcal{A}}{\partial \omega}=-M \\
& \frac{\partial \mathcal{A}}{\partial \kappa}=s
\end{aligned}
$$

The integration constants E, ω, κ are Lagrange multipliers enforcing the constraints of constant period, mass and quasi-momentum resepctively.

Kernel of the Linearized Operator

The linearized operator takes the form

$$
\mathcal{L}=\left(\begin{array}{cc}
S & L_{-} \\
-L_{+} & -S
\end{array}\right)
$$

where S is skew-adjoint. For generic quasi-periodic waves the structure of the kernel is as follows:

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{ker}(L))=2 \\
& \operatorname{dim}\left(\operatorname{ker}\left(L^{2}\right) / \operatorname{ker}(L)\right)=2
\end{aligned}
$$

so the Jordan form consists of two 2×2 Jordan blocks. This reflects the action-angle variables: the two elements of $\operatorname{ker}(L)$ correspond to the two angle variables, the two elements of $\operatorname{ker}\left(L^{2}\right)$ to the actions.

Breakup of Spectrum under Perturbation - Local Normal Form

- Under generic pertubations a 2×2 Jordan block does not break analytically
- However.. perturbation very non-generic.
- Normal form: eigenvalue $\lambda(\mu)$ with quasi-momentum $s+\mu$ leads to eigenvalue condition

$$
\lambda^{4}+A \lambda^{2} \mu^{2}+\mu^{4}=0
$$

- Quantity A completely expressible in terms of period integrals.

Lessons from NLS

- In some ways structure is simpler than KdV. Structure of kernel related to Hamiltonian structure of traveling wave equation.
- Stability can be related to information on the structure of the set of traveling waves: Classical mechanics.
- Maxwell relations hold very generally - don't require quadrature, etc. (Nonlocal equations, etc.)

Herglotz Eigenproblems:

In stability analysis for nonlinear systems stability often reduces to studying an eigenvalue pencil Consider a degenerate reaction-diffusion system where only one species diffuses

$$
\begin{aligned}
\mathbf{u}_{t} & =\mathbf{u}_{x x}+F_{1}(\mathbf{u}, \mathbf{v}, \mathbf{w}, \ldots) \\
\mathbf{v}_{t} & =F_{2}(\mathbf{u}, \mathbf{v}, \mathbf{w}, \ldots) \ldots
\end{aligned}
$$

The stability problem for a stationary solution takes the form

$$
\begin{aligned}
& \lambda \mathbf{p}_{1}=\mathbf{p}_{1 x x}+\sum \partial_{i} \mathbf{F} \mathbf{p}_{i} \\
& \lambda \mathbf{p}_{2}=\sum \partial_{i} F_{2} \mathbf{p}_{i} \ldots
\end{aligned}
$$

The equations for non-diffusing species can be algebraically eliminated.
Surprisingly there is a structure that occurs reasonable often in applications that guarantees that all of the eigenvalues are real and simple.

Reminder: Herglotz Functions

If \mathbb{C}^{+}denotes the open upper half-plane $\operatorname{Re}(\lambda)>0$ and similar \mathbf{C}^{-}a meromorphic function f is Herglotz (Nevanlinna, Nevanlinna-Pick, etc) if

$$
f\left(\mathbb{C}^{+}\right) \subseteq \mathbb{C}^{+} \quad f\left(\mathbb{C}^{-}\right) \subseteq \mathbb{C}^{-}
$$

An example of a Herglotz function is a function of the form

$$
f(z)=A z+B-\sum \frac{C_{i}}{z-z_{i}}
$$

with A real and positive, B real, C_{i} real and positive and z_{i} real. It is well-known (to those that well-know it) that a Herglotz function

- Has all zeroes and poles on the real axis.
- Zeroes and poles alternate on the real axis, and are simple.
- Is monotonically increasing between poles.

Herglotz Pencils:

If $\mathbf{H}(\lambda)$ is an operator pencil then λ^{*} is an eigenvalue if $\mathbf{H}^{-1}\left(\lambda^{*}\right)$ fails to exist as a bounded operator.
We say an operator pencil is Herglotz if the diagonal matrix elements are Herglotz functions - in other words

$$
f(\lambda)=\langle\mathbf{v} \mathbf{H}(\lambda) \mathbf{v}\rangle
$$

is a Herglotz function for all complex vectors $\mathbf{v} \in \operatorname{dom}(\mathbf{H})$. It is easy to prove the following theorem

Theorem

A Herglotz operator pencil has only real eigenvalues, and the Jordan block structure is trivial.

An Example:

Consider the linear operator pencil

$$
\mathbf{H}(\lambda)=\mathbf{A}-\lambda \mathbf{B}
$$

It is easy to see (via the polarization identity) that $\mathbf{H}(\lambda)$ is a Herglotz pencil if

- \mathbf{A} is self-adjoint.
- B is self-adjoint and positive semi-definite.

In this case it is well-known that the eigenvalues are real and semi-simple (trivial Jordan blocks).

A Rational Pencil Example

Consider the degenerate reaction-diffusion equation where one of the reactants does not diffuse:

$$
\begin{aligned}
& u_{t}=u_{x x}+F(u, v) \\
& v_{t}=G(u)-\alpha v
\end{aligned}
$$

Such examples are extremely common in biology: for instance spatial predator-prey models where one of the species cannot move (plant-herbivore)
The stability of a stationary solution is govern by a second order system

$$
\begin{array}{r}
\lambda p=p_{x x}+F_{1}(x) p+F_{2}(x) q \\
\lambda q=G_{1}(x) p-\alpha q
\end{array}
$$

with very minimal algebra this is equivalent to the rational Sturm-Liouville pencil

$$
p_{x x}+F_{1}(x) p=\lambda p-\frac{F_{2}(x) G_{1}(x)}{\lambda+\alpha} p
$$

This is a Herglotz Pencil!

A Sturm Theorem

Consider the Sturm-Liouville pencil

$$
p_{x x}+V(x) p=\lambda p-\sum \frac{\alpha_{i}(x)}{\lambda-\beta_{i}} \quad p(0)=0=p(L)
$$

with $\alpha_{i}(x) \geq 0$ and β_{i} real. Then

- The essential spectrum is $\left\{\beta_{i}\right\}_{i=1}^{N}$
- Let $\beta_{0}=-\infty$ and $\beta_{N+1}=\infty$. In each interval $\left(\beta_{i-1}, \beta_{i}\right)$ for $I \in(1 \ldots N+1)$ there are a (countably) infinite sequence of eigenvalues indexed by the number of roots of the eigenfunction in $(0, L)$.
- The eigenvalues are simple.

In other words there is a Sturm theorem for each image of the real line.

