

Exploring the Risk of Desynchronization

Jeremie Fish Clarkson University Physics Seminar 04/07/17

Outline

Clarkson UNIVERSITY *defy* convention School of Arts & Sciences

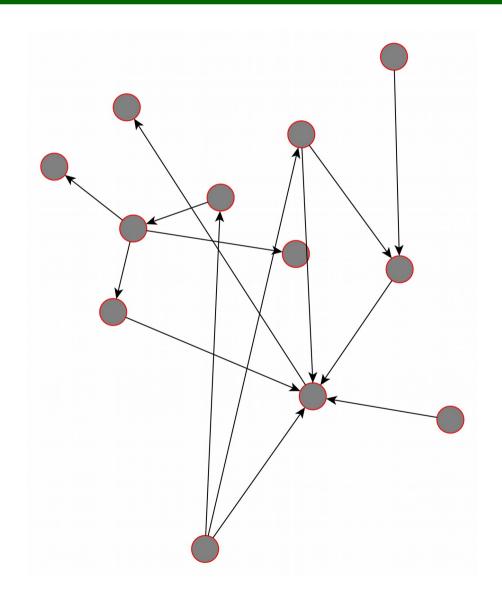
- I. Networks
 - i. Classification
 - ii. Network Types
- II. Synchronization
 - i. Linear Stability
 - ii. Basin Stability
- III. Lyapunov functions
- IV. The Risk of Desynchronization
 - i. Reduced Order Model (ROM)
 - ii.Risk Related Factors
- V. Applications
- VI.Future Work

What is a Network?

Clarkson UNIVERSITY *defy* convention School of Arts & Sciences

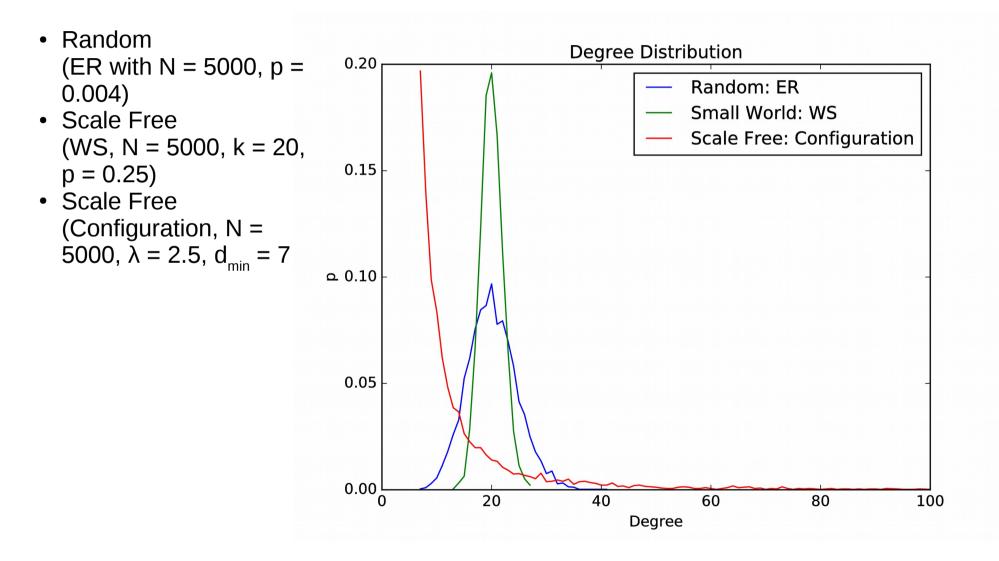
- Nodes
- Edges (Links)
- Directed
- Undirected
- Degree
- Degree Distribution

Real world examples of networks include the power grid, LASER networks, facebook and the brain



Network Types

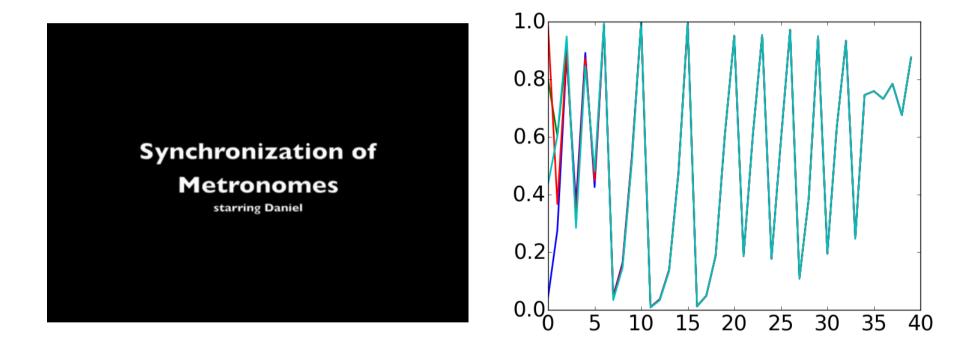
School of Arts & Sciences



Synchronization

Clarkson UNIVERSITY defy convention

School of Arts & Sciences



Master Stability Equations

School of Arts & Sciences

General Equation

$$\dot{x_i} = f_i(x_i) + \sigma \sum_{j=1}^N A_{i,j} h_i(x_i, x_j)$$

$$\sigma \in \mathbb{R}, x_i \in \mathbb{R}^m, A \in \mathbb{R}^{N \times N}$$

$$f : \mathbb{R}^m \mapsto \mathbb{R}^m, h : \mathbb{R}^{2m} \mapsto \mathbb{R}^m$$

Under Assumptions (Identical oscillators, with identical coupling functions) $\dot{x} = F(x) - \sigma L \otimes E \cdot x$ $\sigma \in \mathbb{R}, x \in \mathbb{R}^{mN},$ $L \in \mathbb{R}^{N \times N}, E \in \mathbb{R}^{m \times m}$

After linearization

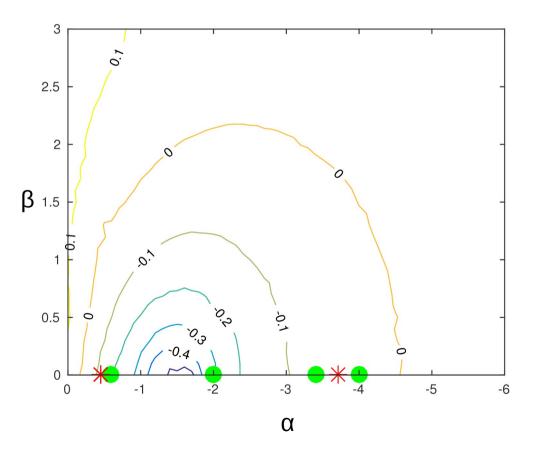
$$\dot{\zeta_k} = [DF + \sigma\lambda_k E] \cdot \zeta_k$$

Master Stability function

We can now define the Master Stability Function (MSF)

$$\dot{\zeta_k} = [DF + (\alpha + i\beta)E] \cdot \zeta_k$$

Now performing search over α and β , while calculating the largest Lyapunov exponent (in this case in a chaotic Rossler system)



Basin Stability

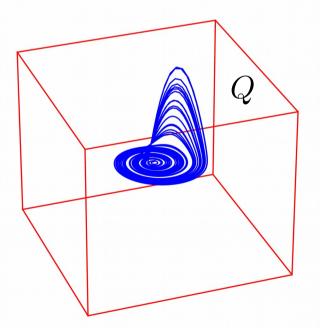
School of Arts & Sciences

$$M = x_1(0), \dots x_N(0) | x_1(t) = x_2(t) = \dots x_N(t) \in \mathcal{A}$$

$$\Omega(\mathcal{M}) = x_1(0), \dots x_N(0) | x_1(t) \dots x_N(t) \to \mathcal{M}, \text{ as } t \to \infty$$

$$S_{\Omega(\mathcal{M}) \cap Q} = \frac{Vol(\Omega \cap Q)}{Vol(Q)} \in [0, 1]$$

The Concept of Basin Stability: Draw initial conditions from a box and see how many synchronize.

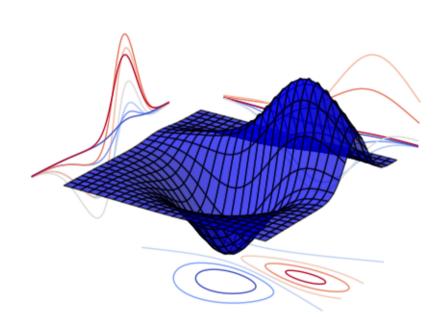


Lyapunov Functions

Clarkson UNIVERSITY *defy* convention School of Arts & Sciences

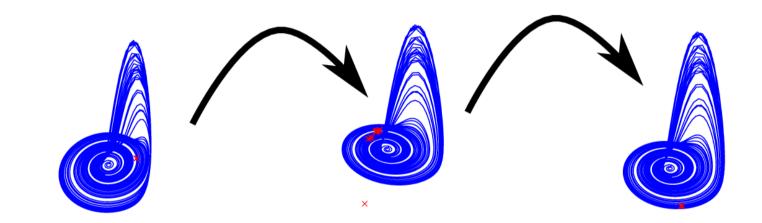
 $V: D \mapsto \mathbb{R}$ $V \in C^{1}$ V(0) = 0 $V(x) > 0 \in D - 0$ $\dot{V} < 0 \in D - 0$ $\dot{V} = 0 \text{ at } x = 0$

If the above conditions are met, then x = 0 is asymptotically stable



Single Node Perturbations

A single node perturbation: The system starts on a synchronous trajectory, but a single node is perturbed away from the synchronous trajectory.

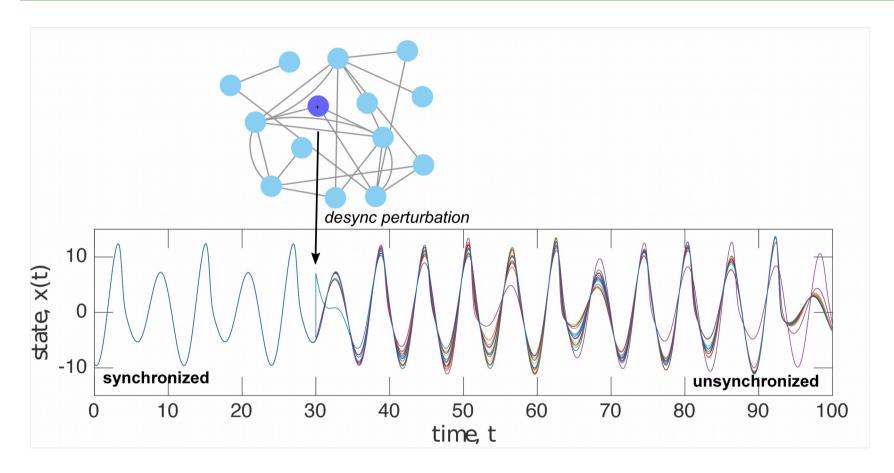


$$\Omega^{(i)}(s) = x_i(0) | x_j(0) = s \forall j \neq i, x_1(0) \dots x_N(0) \in \Omega(\mathcal{M})$$

Desynchronization

Clarkson UNIVERSITY defy convention

School of Arts & Sciences



Reduced Order Model I.

Clarkson UNIVERSITY *defy* convention School of Arts & Sciences

Assuming a Lyapunov function exists, we can map the system equations to a lower dimensional system

β

$$\dot{x}_i = f(x_i) + \sigma \sum_{j=1}^N A_{i,j} h(x_i, x_j) \approx$$
$$[\dot{y}_1, \dot{y}_2] = [f(y_1) + \alpha_i h(y_1, y_2), f(y_2) + \beta_i h(y_2, y_1)]$$
$$\alpha_i = \sigma \sum_{j=1}^N A_{i,j}, \ \beta_j = \sigma A_{j,i}$$

Reduced Order Model II.

Clarkson UNIVERSITY *defy* convention School of Arts & Sciences

For Chaotic systems, specifically the Rossler system, we have discovered that in the high coupling region, the ROM must be expanded

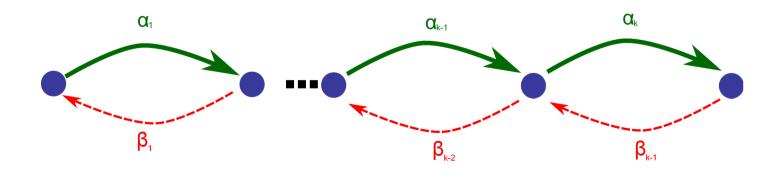
$$\dot{y_1} = f(y_1) + \alpha_1 h(y_1, y_2)$$

$$\dot{y_2} = f(y_2) + \beta_1 h(y_2, y_1) + \alpha_2 h(y_2, y_3)$$

$$\dot{y_3} = f(y_3) + \beta_2 h(y_3, y_2) + \alpha_3 h(y_3, y_4)$$

k is determined by the breadth first search from the perturbed node

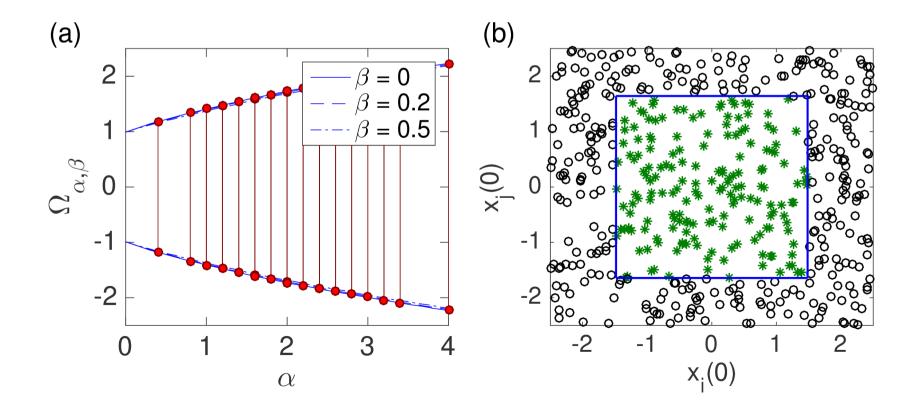
$$\dot{y}_k = f(y_k) + \beta_{k-1}h(y_k, y_{k-1})$$



Confirming the ROM Fixed Point system

The Cubic oscillator system has a stable fixed point at x = 0 (for a single oscillator).

 $f(x_i) = x_i(x_i^2 - 1)$



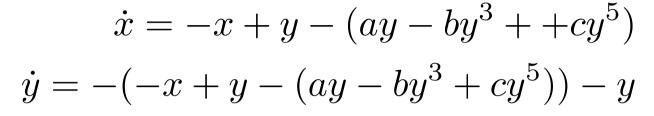
Defining Risk

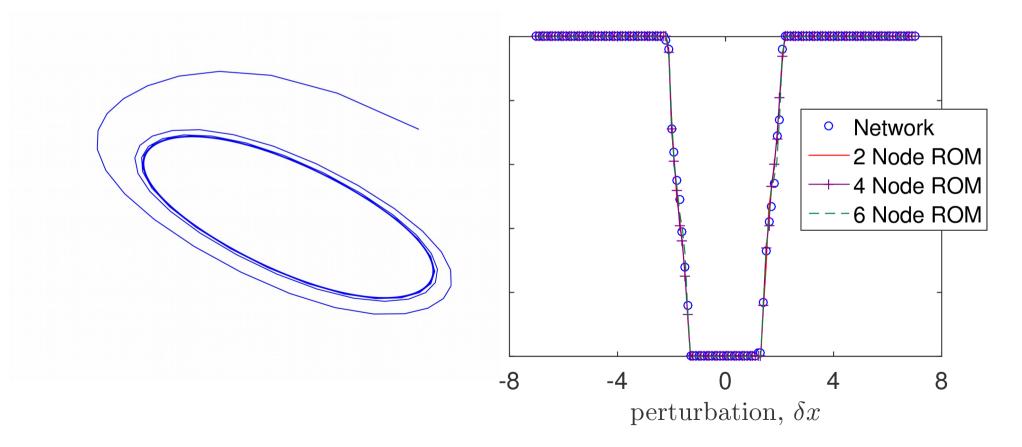
$$\mathcal{R} = \frac{|\Omega(\mathcal{M}) \cap P|}{|P|} \in [0, 1]$$

 $\mathcal{R}-Risk,$

 $\mathcal{P}-Set of perturbations away from synchrony$

Confirming the ROM Limit Cycle system

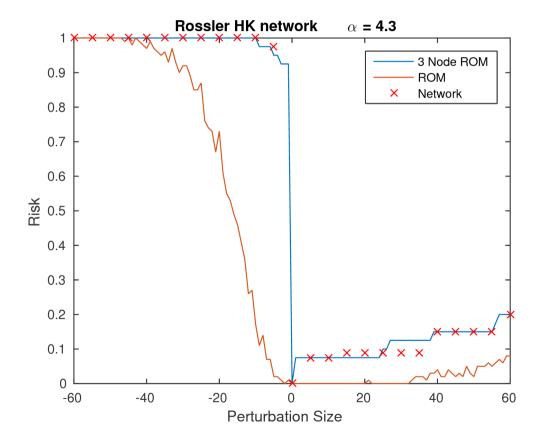




Confirming the ROM Rossler system

Clarkson UNIVERSITY *defy* convention School of Arts & Sciences

The higher order ROM become necessary in the chaotic system



Utilizing the ROM

Rossler ROM 1.0 0.8 We can now utilize the ROM to determine how much 0.6 risk is associated Risk with a particular node being perturbed 0.4 0.2 0.0 23 0 1 4 5

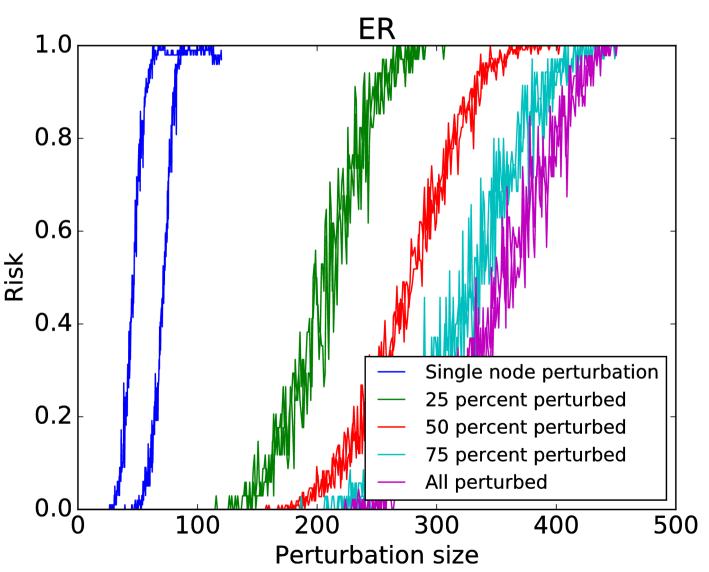
 α

Risk of Desynchronization

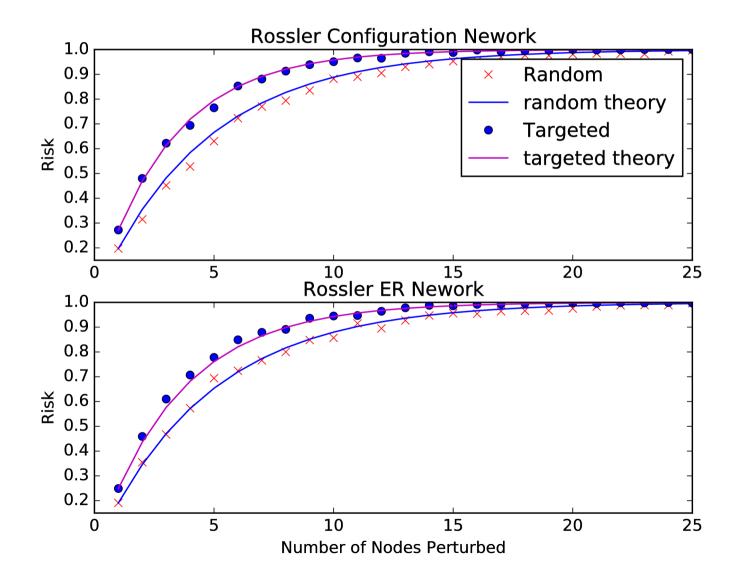
- Given a perturbation size, how likely is a desynchronizing perturbation to occur?
- How does increasing the number of nodes perturb relate to the risk of desynchronization?
- How does the degree of the node relate to the risk of desynchronization?

Risk and the size of the perturbation

The magnitude of the perturbation is an important factor in if the system desynchronizes. A large magnitude perturbation almost certainly desynchronizes the system, while a small magnitude perturbation almost certainly allows resynchronization



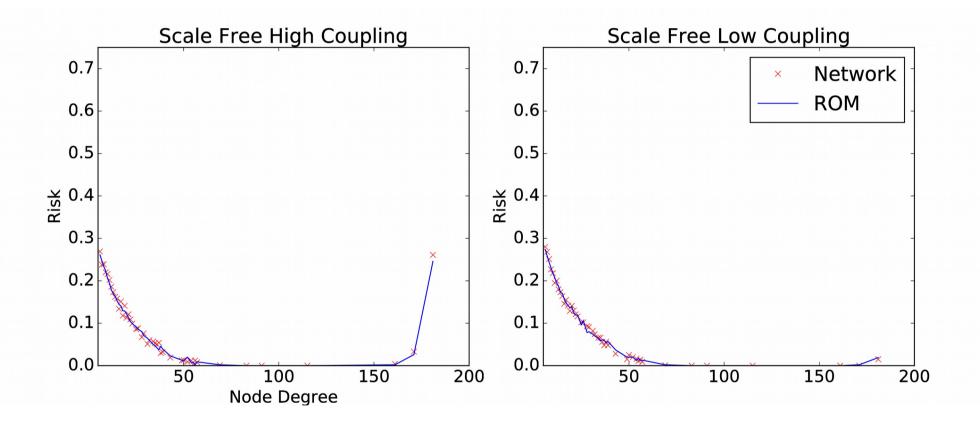
Risk and the number of nodes perturbed Clarkson UNIVERSITY Clarkson UNIVERSITY Clarkson UNIVERSITY School of Arts & Sciences



Our assumption about the basin size being the intersection of individual basins works quite well

Risk and Degree

School of Arts & Sciences



High degree nodes are not necessarily at the least risk of desynchronization!

Potential Applications

Deep brain stimulation (Treatment for Parkinson's disease)

In the power grid, synchronization is desirable and thus decisions on where power lines are added (or perhaps even removed) could be aided

Future Work

- Expanding proof of the ROM to limit cycle and chaotic dynamics
- Applying the ROM to more real-world systems, such as the Hodgkin-Huxley model
- Implement the ROM to systems with non-identical oscillators, such as the Kuromoto model.

Questions

Clarkson UNIVERSITY *defy* convention School of Arts & Sciences

I wish to thank my advisor Professor Jie Sun Thank you for you time!