Synchronization of heterogeneous oscillators under network modifications: Perturbation and optimization of the synchrony alignment function

Dane Taylor, Per Sebastian Skardal, Jie Sun SIAM Journal on Applied Dynamical Systems 76(5), 1984-2008 (2016)

presented at: SIAM Conference on Dynamical Systems May 25, 2017

DANE TAYLOR Department of Mathematics, UNC Chapel Hill Department of Mathematics, University at Buffalo, SUNY

Synchronization

Engineering applications:

- Power grids, smart grids
 - Josephson junctions
- Synthetic cell engineering

Examples in biology:

- Neuronal activity
- Cardiac pacemaker cells
 - Circadian rhythms

Kuramoto Phase-Oscillator Model

-Kuramoto, Chemical Oscillations, Waves, and Turbulence (1984)

$$\dot{\theta}_n = \omega_n + K \sum_m A_{nm} H(\theta_m - \theta_n)$$

Kuramoto Order Parameter

$$re^{i\psi} = N^{-1} \sum_{n} e^{i\theta_n}$$

Variance Order Parameter

$$R = 1 - \sigma_{\theta}^2 / 2$$
$$\sigma_{\theta} = N^{-1} \sum_{n} (\theta_n - \overline{\theta})^2$$

• Order parameters are similar for strong phase synchronization:

$$R \le r \le R + \frac{\sum_{n} (\theta_n - \psi)^4}{24N}$$

Strong Phase-Locked Synchronization

Focusing on the phase-locked state, we study the linear approximation

$$\dot{\theta}_n = \omega_n + K \sum_m A_{nm} H(\theta_m - \theta_n)$$

$$\approx \omega_n + K H(0) d_n - K H'(0) \sum_m L_{nm} \theta_n$$

$$= \hat{\omega}_n - \hat{K} \sum_m L_{nm} \theta_n$$

m

strong phase synchronization

where $L_{nm} = \delta_{nm} d_n - A_{nm}$ is the unnormalized Laplacian matrix

Strong Phase-Locked Synchronization

Focusing on the phase-locked state, we study the linear approximation

$$\dot{\theta}_n = \omega_n + K \sum_m A_{nm} H(\theta_m - \theta_n)$$
$$\approx \omega_n + K H(0) d_n - K H'(0) \sum_m L_{nm} \theta_n$$
$$= \hat{\omega}_n - \hat{K} \sum_m L_{nm} \theta_n$$

m

strong phase synchronization

where $L_{nm} = \delta_{nm} d_n - A_{nm}$ is the unnormalized Laplacian matrix

We call this system <u>heterogeneous Laplacian dynamics</u>, and it has the steady-state solution

$$\theta^* = \hat{K}^{-1} L^{\dagger} \hat{\omega} + \overline{\theta}$$

where $L^{\dagger} = \sum_{m=2}^{N} \lambda_m^{-1} v^{(m)} (v^{(m)})^T$ is the Moore-Penrose pseudoinverse

Synchrony Alignment Function (SAF)

-Skardal, Taylor, Sun. PRL 113, 144101 2014

Describes the phases' variance for heterogeneous Laplacian dynamics

$$J(\omega, L) = \frac{1}{N} ||L^{\dagger}\omega||^{2}$$
$$= \frac{1}{N} \sum_{n=2}^{N} \frac{\langle \omega, v^{(n)} \rangle^{2}}{\lambda_{n}^{2}}$$
$$= K^{2} \frac{||\theta^{*} - \overline{\theta}||^{2}}{N}$$

- Measures alignment of oscillator frequencies $\{\omega_n\}$ with the network structure
 - Uses full set of eigenvalues $\{\lambda_n\}$ and eigenvectors $\{v^{(n)}\}$ of the network Laplacian matrix L

Synchrony Alignment Function (SAF)

-Skardal, Taylor, Sun. PRL 113, 144101 2014

Describes the phases' variance for heterogeneous Laplacian dynamics

$$J(\omega, L) = \frac{1}{N} ||L^{\dagger}\omega||^{2}$$
$$= \frac{1}{N} \sum_{n=2}^{N} \frac{\langle \omega, v^{(n)} \rangle^{2}}{\lambda_{n}^{2}}$$
$$= K^{2} \frac{||\theta^{*} - \overline{\theta}||^{2}}{N}$$

- Measures alignment of oscillator frequencies $\{\omega_n\}$ with the network structure
 - Uses full set of eigenvalues $\{\lambda_n\}$ and eigenvectors $\{v^{(n)}\}$ of the network Laplacian matrix L
- The order parameters are given by: $R = 1 J(\omega, L)/2K^2 \approx r$
- These approximate the order parameters of the <u>Kuramoto system</u> in the regime of strong phase synchronization

Alignment of Frequencies with Network Dramatically Effects Synchronization

 Degree-frequency correlations can affect the very nature of phase locking, influencing whether high-degree or low-degree nodes first phase lock

 Effects of degree-frequency correlations on network synchronization: Universality and full phase-locking. Skardal, Sun, Taylor & Restrepo. EPL (Europhysics Letters) 101, 20001 (2013).

Alignment of Frequencies with Network Dramatically Effects Synchronization

- Degree-frequency correlations can affect the very nature of phase locking, influencing whether high-degree or low-degree nodes first phase lock
- Alignment also influences level of synchronization
 - Frequencies are either aligned with dominant eigenvector, $\omega = \mathbf{v}^{(N)}$, or given by $\omega = \text{perm}(\mathbf{v}^{(N)})$

Example: SAF-Optimized Systems Exhibit Matched Heterogeneity

-Skardal, Taylor, Sun. PRL 113, 144101 2014

homogeneous network

⁻color indicates frequency

Example: SAF-Optimized Systems Exhibit Matched Heterogeneity

-Skardal, Taylor, Sun. PRL 113, 144101 2014

homogeneous network

-color indicates frequency

heterogeneous network

Motivation

- These network optimization experiments were based on Markov Chain Monte Carlo (MCMC) methods in which thousands of perturbations were proposed as possible improvements:
 - perturbations that decreased the SAF were implemented
 - perturbations that increased the SAF were rejected
- MCMC is inefficient since perturbations are <u>chosen at random</u>
- We will develop efficient algorithms by approximating how network modifications affect the SAF
 - Efficient in two ways:
 - (1) small number of rewires needed to enhance synchronization
 - (2) small computational complexity of rewiring algorithms

Outline

- We develop a first-order spectral perturbation analysis for how network modifications such as rewiring affect the SAF
- We use these perturbations to rank network edges (and potential new edges) according to their importance to synchronization
 - Rankings take into account the oscillators' heterogeneous frequencies!
- Based on these rankings, we develop rewiring algorithms to efficiency enhance a systems ability to synchronize

Synchronization of heterogeneous oscillators under network modifications: Perturbation and optimization of the synchrony alignment function

Dane Taylor, Per Sebastian Skardal, Jie Sun SIAM Journal on Applied Dynamical Systems 76(5), 1984-2008 (2016)

Perturbation Analysis of the SAF

- Let symmetric matrix $\epsilon \Delta L$ denote a change to the Laplacian matrix encoding a modification to an undirected network and consider the SAF

$$J(\omega, L) = \frac{1}{N} \sum_{n=2}^{N} \frac{\langle \omega, v^{(n)} \rangle^2}{\lambda_n^2}$$

• The perturbed SAF is given by

$$J(\omega, L + \epsilon \Delta L) = J(\omega, L) + \epsilon J'(0) + \mathcal{O}(\epsilon^2)$$

where

$$J'(0) = \frac{2}{N} \sum_{n=2}^{N} \left(\frac{\boldsymbol{\omega}^T \boldsymbol{v}^{(n)}}{\lambda_n^3} \right) \left(\sum_{m=2}^{N} \frac{[\boldsymbol{\omega}^T \boldsymbol{v}^{(m)}][(\boldsymbol{v}^{(m)})^T \Delta L \boldsymbol{v}^{(n)}]}{(1 - \lambda_m / \lambda_n) - \delta_{nm}} \right)$$

• This result uses the classical spectral perturbation results:

Perturbation Analysis of the SAF

- The addition (+) and removal (-) of an edge $\left(p,q\right)$ yields the perturbation matrix

$$\Delta L_{ij}^{(pq)} = \left\{ egin{array}{cc} \pm 1, & (i,j) \in \{(p,p),(q,q)\} \ \mp 1, & (i,j) \in \{(p,q),(q,p)\} \ 0, & otherwise, \end{array}
ight.$$

• Using $(\boldsymbol{v}^{(m)})^T \Delta L^{(pq)} \boldsymbol{v}^{(n)} = (\boldsymbol{v}_p^{(m)} - \boldsymbol{v}_q^{(m)})(\boldsymbol{v}_p^{(n)} - \boldsymbol{v}_q^{(n)})$, we obtain the following first-order approximation for adding a set $\mathcal{E}^{(+)}$ of edges and removing a set $\mathcal{E}^{(-)}$ of edges

$$J(oldsymbol{\omega},L(\epsilon)) = J(oldsymbol{\omega},L) + \sum_{(p,q)\in\mathcal{E}^{(+)}} \epsilon Q_{pq} - \sum_{(p,q)\in\mathcal{E}^{(-)}} \epsilon Q_{pq} + \mathcal{O}(\epsilon^2)$$

where

$$Q_{pq} = rac{2}{N} \sum_{n=2}^{N} \left(rac{oldsymbol{\omega}^T oldsymbol{v}^{(n)}}{\lambda_n^3}
ight) \left(\sum_{m=1}^{N} rac{[oldsymbol{\omega}^T oldsymbol{v}^{(m)}][(oldsymbol{v}_p^{(m)} - oldsymbol{v}_q^{(m)})(oldsymbol{v}_p^{(n)} - oldsymbol{v}_q^{(n)})]}{(1 - \lambda_m / \lambda_n) - \delta_{nm}}
ight)$$

Ranking Edges for SAF Optimization

- The value Q_{pq} indicates the importance of edge (p,q) to the SAF and strongly-synchronized phase-locked oscillators
- Let $\mathcal{E} \subseteq \{1, \dots, N\} \times \{1, \dots, N\}$ denote the set of network edges
- We rank edges \mathcal{E} so that the top-ranked edge (p,q) has the smallest (most negative) value Q_{pq} so that its removal most increases $J(\omega,L)$
- We also rank potential <u>new edges</u> $\{1, \ldots, N\} \times \{1, \ldots, N\} \setminus \mathcal{E}$ so that the top-ranked <u>new edge</u> (p, q) corresponds to the smallest value Q_{pq}

Edge rankings allow us to efficiently modify networks to tune their synchronization properties. Importantly, these rankings reflect the oscillators' heterogeneous dynamics!

Example Illustrating Importance of Oscillator Frequencies for Edge Ranking

We add edges to a chain network

• In one case, the oscillator frequencies are nonidentical, but similar

homogeneous frequencies

Example Illustrating Importance of Oscillator Frequencies for Edge Ranking

- We add edges to a chain network
 - In one case, the oscillator frequencies are nonidentical, but similar
 - In the other, case we make oscillator 5 very fast

Example Illustrating Importance of Oscillator Frequencies for Edge Ranking

We add edges to a chain network

- In one case, the oscillator frequencies are nonidentical, but similar
- In the other, case we make oscillator 5 very fast
- We observe two regimes:
 - When the network is the limiting factor, the edge additions aim to improve the network's general (i.e., agnostic of frequencies) synchronizability
 - When oscillator heterogeneity is the limiting factor, the edge additions aim to counter balance the oscillators' frequencies

Connection to Dynamical Importance

-Restrepo, Ott, Hunt. PRL 97, 094102 (2006)

• We rank edges according to strong-synchronization regime

Connection to Dynamical Importance

-Restrepo, Ott, Hunt. PRL 97, 094102 (2006)

• We rank edges according to strong-synchronization regime

• Our work complements <u>Dynamical Importance</u>, $\hat{I}_k = \frac{v_k u_k}{v^T u}$, which ranks edges according their effect on the critical value where the incoherent state becomes unstable

Algorithms for Tuning Synchronization of Phase-Oscillator Systems

- We introduce two "gradient descent" algorithms to tune synchronization
 - One that updates Q_{pq} after modifications
 - One that does not update Q_{pq}
- We compare these algorithms to two other methods
 - Modifications made at random
 - Modifications chosen to maximize λ_2

Algorithms for Tuning Synchronization of Phase-Oscillator Systems

- We introduce two "gradient descent" algorithms to tune synchronization
 - One that updates Q_{pq} after modifications
 - One that does not update Q_{pq}
- We compare these algorithms to two other methods
 - Modifications made at random
 - Modifications chosen to maximize λ_2

Algorithms Performance for Non-ideal Scenarios

• We consider edge additions under 3 scenarios

(a) A fraction of potential new edges are "off limits" for addition

Algorithms Performance for Non-ideal Scenarios

- We consider edge additions under 3 scenarios
 - (a) A fraction of potential new edges are "off limits" for addition
 - (b) We introduce misinformation about the network by rewiring a fraction of the edges before computing

Algorithms Performance for Non-ideal Scenarios

- We consider edge additions under 3 scenarios
 - (a) A fraction of potential new edges are "off limits" for addition
 - (b) We introduce misinformation about the network by rewiring a fraction of the edges before computing
 - (c) We introduce misinformation about the frequenting by adding Gaussian noise to them

Conclusion

- The Synchrony Alignment Function (SAF) describes the variance of phases for strongly-coupled phase-locked oscillators
- We developed a first-order spectral perturbation analysis for how network modifications affect the SAF
- These perturbations rank network edges (and potential new edges) according to their importance to synchronization
 - Rankings take into account the oscillators' heterogeneous frequencies!
 - Observed network-dominated and oscillator-dominated regimes
- Based on these rankings, we develop rewiring algorithms to efficiency enhance a systems ability to synchronize

Main Reference

Synchronization of heterogeneous oscillators under network modifications: Perturbation and optimization of the synchrony alignment function. Taylor, Skardal & Sun. SIAM Journal of Applied Dynamical Systems 76(5), 1984-2008 (2016).

Other SAF-Related Work

- Optimal synchronization of complex networks. Skardal, Taylor & Sun, *PRL* 113, 144101 (2014).
- Erosion of synchronization in networks of coupled oscillators. Skardal, Taylor, Sun & Arenas. *PRE* 91, 010802R (2015).
- Optimal synchronization of directed complex networks. Skardal, Taylor & J Sun. *Chaos* 26, 094807 (2016).
- Collective frequency variation in network synchronization and reverse PageRank. Skardal, Taylor, Sun & Arenas. *PRE* 93, 042314 (2016).

dane.r.taylor@gmail.com

٠

https://sites.google.com/site/danetaylorresearch

Accuracy of First-Order Approximation

• The error vanishes as $\epsilon \to 0$

Accuracy of First-Order Approximation

Approximation error for edge additions

$$\Delta J = J(\omega, L(0)) - J(\omega, L(\epsilon))$$

$$\approx \epsilon Q_{pq}$$

- The error vanishes as $\epsilon \to 0$
- The error also vanishes with fixed ϵ and increasing network size N and number of edges

Power-Grid Synchronization

- T Nishikawa & AE Motter (2015) Comparative analysis of existing models for power-grid synchronization. New Journal of Physics, 17(1), 015012.
- M Rohden, A Sorge, M Timme & D Witthaut (2012) Self-organized synchronization in decentralized power grids. Physical Review Letters, 109(6), 064101.
- F Dorfler & F Bullo (2012) Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM Journal on Control and Optimization, 50(3), 1616-1642.

Spectral Perturbation Analysis

Classical perturbation analysis of eigenvalues and eigenvectors
 [4] KE Atkinson, "An introduction to numerical analysis," John Wiley & Sons, 2008.

THEOREM 4.1 (Perturbation of Simple Eigenvalues and their Eigenvectors [4]). Let L be a symmetric matrix with simple eigenvalues $\{\lambda_n\}$ and normalized eigenvectors $\{v^{(n)}\}$. Consider a fixed symmetric perturbation matrix ΔL , and let $L(\epsilon) = L + \epsilon \Delta L$. Denote the eigenvalues and eigenvectors of $L(\epsilon)$ by $\lambda_n(\epsilon)$ and $v^{(n)}(\epsilon)$, respectively, for n = 1, 2, ..., N. It follows that

$$\lambda_n(\epsilon) = \lambda_n + \epsilon \lambda'(0) + \mathcal{O}(\epsilon^2),$$

$$\boldsymbol{v}^{(n)}(\epsilon) = \boldsymbol{v}^{(n)} + \epsilon \boldsymbol{v}^{(n)'}(0) + \mathcal{O}(\epsilon^2),$$
 (4.1)

and the derivatives with respect to ϵ at $\epsilon = 0$ are given by

$$\lambda'_{n}(0) = (\boldsymbol{v}^{(n)})^{T} \Delta L \boldsymbol{v}^{(n)}$$
$$\boldsymbol{v}^{(n)'}(0) = \sum_{m \neq n} \frac{(\boldsymbol{v}^{(m)})^{T} \Delta L \boldsymbol{v}^{(n)}}{\lambda_{n} - \lambda_{m}} \boldsymbol{v}^{(m)}.$$
(4.2)

General Network-Perturbation Result

• Perturbation result for SAF:
$$J(\omega,L)=rac{1}{N}\sum_{n=2}^{N}rac{\langle\omega,v^{(n)}
angle^2}{\lambda_n}$$

THEOREM 4.2 (Perturbation of the SAF under a Network Modification). Let $J(\omega, L)$ denote the SAF given by Eq. (3.3) for natural frequencies ω and symmetric network Laplacian L, and let $J(\omega, L(\epsilon))$ denote the SAF for the network after it undergoes a symmetric modification $\epsilon \Delta L$. Assume the eigenvalues of L and $L(\epsilon) = L + \epsilon \Delta L$ are simple, and that the original and perturbed networks are both connected. Then the first-order expansion in ϵ for the perturbed SAF is given by

$$J(\boldsymbol{\omega}, L(\epsilon)) = J(\boldsymbol{\omega}, L) + \epsilon J'(\epsilon) + \mathcal{O}(\epsilon^2), \qquad (4.3)$$

where

$$J'(\epsilon) = \frac{2}{N} \sum_{n=2}^{N} \left(\frac{\boldsymbol{\omega}^T \boldsymbol{v}^{(n)}}{\lambda_n^3} \right) \left(\sum_{m=2}^{N} \frac{[\boldsymbol{\omega}^T \boldsymbol{v}^{(m)}][(\boldsymbol{v}^{(m)})^T \Delta L \boldsymbol{v}^{(n)}]}{(1 - \lambda_m / \lambda_n) - \delta_{nm}} \right).$$
(4.4)

Observation 2: SAF-Optimized Systems Exhibit Correlations

Positive correlation between a node's frequency and degree

⁻color indicates frequency

Observation 2: SAF-Optimized Systems Exhibit Correlations

Synchrony Alignment Function (SAF)

 The SAF estimates the variance of phases for phase-locked oscillators

$$J(\omega, L) \approx \frac{||\theta^*||^2}{K^2 H'^2(0)}$$

and approximates the Kuramoto order parameter

 $r \simeq 1 - J(\omega, L) / 2K^2 H^{\prime 2}(0)$

• We develop methodology to optimize the SAF, thereby optimizing r

- **Problem:** Given a network, allocate a set of oscillator frequencies with unit variance to maximize the order parameter $r = 1 1/2\lambda_N^2 K^2$
- Solution: If one can choose <u>any frequencies</u>, the optimal frequency vector is , which gives $\omega \propto v^N$

- **Problem:** Given a network, allocate a set of oscillator frequencies with unit variance to maximize the order parameter $r = 1 1/2\lambda_N^2 K^2$
- Solution: If one can choose <u>any frequencies</u>, the optimal frequency vector is , which gives $\omega \propto v^N$

Results shown for allocating frequencies to a scale-free network with N=1000 nodes, exponent 3, and minimum degree 2

- **Problem:** Given a network, allocate a set of oscillator frequencies with unit variance to maximize the order parameter
- Solution: If one must use <u>a given set of frequencies</u>, then we approximately minimize $J(\boldsymbol{\omega}, L)$ using an accept/reject algorithm

- **Problem:** Given a network, allocate a set of oscillator frequencies with unit variance to maximize the order parameter
- Solution: If one must use <u>a given set of frequencies</u>, then we approximately minimize $J(\boldsymbol{\omega}, L)$ using an accept/reject algorithm

Results shown for allocating frequencies drawn from a normal distribution to a scalefree network

- **Problem:** Given a network, allocate a set of oscillator frequencies with unit variance to maximize the order parameter
- Solution: If one must use <u>a given set of frequencies</u>, then we approximately minimize $J(\boldsymbol{\omega}, L)$ using an accept/reject algorithm

Results shown for allocating frequencies drawn from a normal distribution to a scalefree network

As a fast approximation, one can shuffle the frequencies to best align with v^N

For small *K*, one must choose particular frequencies to achieve strong synchronization.

MAIN INSIGHT

For moderate *K*, strong synchronization can be achieved just by rearranging the oscillators.

**observed for our experiments

Optimization Experiment II: design network for given frequencies

- **Problem:** Given a set of oscillator frequencies, design a network with a fixed number of edges to maximize the order parameter $J(\omega, L)$
- Solution: We use an accept/reject algorithm to iteratively rewire an initial network so as to always decrease

Optimization Experiment II: design network for given frequencies

- **Problem:** Given a set of oscillator frequencies, design a network with a fixed number of edges to maximize the order parameter $J(\omega, L)$
- **Solution:** We use an accept/reject algorithm to iteratively rewire an initial network so as to always decrease

Results shown for frequencies drawn from a normal distribution.

The initial network is scale free with N=1000 nodes, exponent 3, and minimum degree 2

Optimization Requires Network Heterogeneity to Match Oscillator Heterogeneity

homogeneous network

heterogeneous network

0

Further Observations for Synchrony-Optimized Systems

Beyond Maximizing the Order Parameter

- One can tune the order parameter of a system by aligning the oscillator frequencies with other eigenvectors
 - For a given scale-free network with N=1000 nodes, we consider setting the frequencies as $\omega \propto v^{100}, v^{200}, ..., v^{1000}$

