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Motivation — myxobacteria

Myxobacteria: interesting collective behavior!

Formation of fruiting bodies

high density, low nutrient

Rippling motion for “efficient

depletion” of food source

[Berleman, YouTube]


myxo_fruiting.mp4
Media File (video/mp4)
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Motivation — building blocks

Here: explain rippling!

Phenomena: explain wavenumber selection, apparent “standing

waves”!

Modeling: what are the “simplest” mechanisms that explain

wavenumber selection here (compare Turing!)?

O.A. Igoshin, R. Welch, D. Kaiser, and G. Oster. Waves and aggregation patterns in

myxobacteria. Proc. Nat. Acad. Sci. 101 (2004), 4256–4261.
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Modeling: minimal ingredients “run” and “tumble”

Run: Populations of bacteria moving left and right, respectively:

ut = ux , vt = −vx

Tumble: Left-running agents turn with rate depending on overall

concentration r(u, v); reflection symmetry gives

ut = −r(u, v) + r(v , u), vt = r(u, v)− r(v , u)

Experiments:

• self-propelled motion

• ripples ⊥ motion

• “C-signal” transmitted upon

contact ⇒ reversal

Models:

• internal clocks, delays

• struct’ population models
[Bonilla PRE 93(2016), 012412]

[Börner Phys. Biol. 3(2006), 138]

[Igoshin PNAS 101(2004) 4256]

[Sliusarenko PNAS 103(2006), 1534]
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What can we explain and what not?

Main results: our model explains

• X rippling patterns

• × wavenumber selection from white noise

• X wavenumber selection from shot noise or growth

What’s missing

• test hypotheses

• two-dimensional versions

• nonlinear analysis, stability,. . .
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Analysis in three chapters

I) equilibria and stablity

II) coherent structures

III) pointwise instability



Kinetics — nonlinear tumbling

Example: Turning rate increases with collisions in sigmoidal fashion

r(u, v) = u ·
(

1 +
v2

1 + γv2

)
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Linear stability

Stability depends on normal vector (n1, n2) of equilibrium curve:
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Coherent structures

Many questions. . . Here: “standing” waves!

ut = +ux − r(u, v) + r(v , u)

vt = −vx + r(u, v)− r(v , u)

Look for sol’s u0(x + t), v0(x − t)

⇐⇒ r(u0, v0) = r(v0, u0)

E.g. u ∈ {u−, u+}, v ∈ {v−, v+},

r(u±, v±) = r(v±, u±)

Plethora of waves with jumps! Stability. . .



Pointwise instabilities

• linearization at constant state can be solved “explicitly”

Ut = LU⇒U(t, x) =
1

2πi

∫
Γ

eλt
∫
y
Gλ(x − y)U(0, y)d yd λ

• deform Γ such thatRe λ→ min , but Gλ(·) analytic

⇒ “pointwise” singularities of Gλ(x) ∼ exp’ growth rates

• pointwise singularities generically from pinched double roots:

Ansatz U(t, x) = U0eλt+νx gives dispersion relation d(λ, ν)

• pinched double roots (λ, ν) solve

d(λ, ν) = 0, ∂νd(λ, ν) = 0, ν±(λ)→ ±∞

[Holzer & S., Criteria for pointwise growth and their role in invasion processes, JNLS 2014]
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Spreading speeds and wavenumber selection

Ptwise instabilities/pinched dble roots depend on coordinate frame!

U(t, x)→ U(t, x − ct) ⇒ d(λ, ν)→ dc(λ, ν) = d(λ− cν, ν)

• Spreading speed: sup{c |Re λ > 0, λ pinched dble root}

• λ = iω gives frequency, c spreading speed

⇒ wavenumber from nonlinear dispersion relation. . .
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Finding pinched double roots

A calculation with n1/2 = ∂u/v (−r(u, v) + r(v , u)), gives

dc(λ, ν) = (λ− cν)2 − (λ− cν)(n1 − n2)− (n1 + n2)ν − ν2,

∂νdc(λ, ν) = −2cλ− (n1 + n2) + c(n1 − n2)− 2ν + 2c2ν,

and

λ∗ =
1

2

(
n1 − n2 − c(n1 + n2)± 2

√
−n1n2(1− c2)

)
,

ν∗ =
1

2(1− c2)

(
(n1 + n2)(c2 − 1)∓ 2c

√
−n1n2(1− c2)

)
.

Pinching implies |c | < 1, ω∗ = 2 n1n2
n1+n2

,

k∗ = n2 when n1, n2 > 0, k∗ = −n1 when n1, n2 < 0.



Perturbing asymmetric states locally
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Perturbing asymmetric states — shot vs white noise
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Perturbing symmetric states
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Spikes and blowup

Include small diffusive term

ut = εuxx + ux − r(u, v) + r(v , u)

vt = εvxx − ux + r(u, v)− r(v , u)

Bifurcation of family stationary spikes from u = v = u∗!

• unstable at small amplitude

• ε→ 0 ⇒ Dirac-δ singularities

• stability for certain r(u, v) for large amplitude ⇒ blowup,

cluster formation, fruiting?



Diffusion and conversion

Very, very similar phenomena in reaction-diffusion

ut = uxx − f (u, v)

vt = f (u, v)

white noise: shot noise:
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Kotzagiannidis et al., Stable pattern selection through invasion fronts in closed two-species

reaction-diffusion systems, RIMS Kokyuroku Bessatsu B31 (2012)



Summary and open questions

• wavenumber selection — shot noise vs white noise

• perturbation from symmetric states — how do we get to

asymmetric states?

• validation — compare experiments with mutants!

• blowup!? transition to fruiting?

Thank you!

[Stevens,S., JMB, online first]
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