
Stability of Wavefronts in a Diffusive Model

for Porous Media Combustion

Anna Ghazaryan, Miami University

Stephane Lafortune, College of Charleston

Peter McLarnan, Miami University

Funded by the NSF Grants DMS-1311313 (A. G.) and DMS-0908074 (S. Lafortune)



Porous media combustion

Tt − (1 − γ−1)Pt = ǫTxx + Y F (T ) [Sivashinsky 2002]

Pt − Tt = Pxx

Yt = ǫLe−1Yxx − γY F (T )

ǫ ≪ 1 - thermal diffusivity / pressure diffusivity (∼ 10−4 − 10−7)

γ > 1 - specific heat ratio, Le - Lewis number

F (T ) of Arrhenius type

with an ignition cut-off at T = Tign T ign

Combustible gas or gas mixture: oxygen, methane-air, hydrogen-air, propane-air...

Porous medium: coal, ceramic fiber felt, polyurethane foam...

Applications: chemical technology, ecology, fire and explosion safety

Close relatives: convective burning of granular explosives, combustion in thin

rough tubes



Before Simplifications

Energy cpρ(Θτ + uΘξ) − (Πτ + uΠξ) = qW + (cpρDthΘξ)ξ

Concentration ρ(Cτ + uCξ) = −W + (Θ−1Dmol(ρΘC)ξ)ξ

Chemical kinetics W = ZρCexp(−E/RΘ)

Continuity ρτ + (ρu)ξ = 0

Momentum ρu = −Kν−1Πξ

State ρ = P/(cp − cν)Θ

u - gas velocity, C - concentration of the deficient reactant, ρ, Π, Θ - density, pressure, temper-

ature of the gas-solid system, W - chemical reaction rate, ν - kinematic viscosity, Z -frequency

factor, E - activation energy, R - universal gas constant, q - heat release, cp /cv / - specific heat

at constant pressure /volume/, Dth /Dmol/ - thermal /molecular/ diffusivity



Derivation of Simplified Model

• Small heat release approximation: variation of pressure, temperature, density

and gas velocity assumed small

nonlinear effects are ignored everywhere except in the reaction term

• Scaling:

T =
Θ − Θ0

Θ∞ − Θ0
, P =

Π − Π0

Π∞ − Π0
, Y =

C

C0

Θ0, Π0, C0 -temperature, pressure, concentration at τ = 0,

Θ∞, Π∞ at τ → ∞ in case of homogeneous explosion

• t = τ
τ̄

, x = ξ

ξ̄
, where τ̄ , ξ̄ = const

Tt − (1 − γ−1)Pt = ǫTxx + Y F (T ) partially lin. eqn for conservation of energy

Pt − Tt = Pxx lin. continuity eqn with the eqn of state and Darcy law

Yt = ǫLe−1Yxx − γY F (T ) partially lin. eqn for conservation of reactant



The standard reduction of the system: ε = 0, Le = O(1)

ǫ = 0, Le = O(1) Tt − (1 − γ−1)Pt = Y F (T )

Pt − Tt = Pxx

Yt = −γY Ω(T )

Time-conserved quantity: Tt − (1 − γ−1)Pt + γ−1Yt = 0

Initial conditions: T (x, 0) = T0(x), P (0, x) = 0, Y (0, x) = 1

A unique front exists that connects the cold state (0, 0, 1) with the burnt state

(1, 1, 0).

This front persists in the full system with 0 < ǫ ≪ 1



Equivalent system

For Tt − (1 − γ−1)Pt = ǫTxx + Y Ω(T )

Pt − Tt = Pxx

Yt = ǫLe−1Yxx − γY Ω(T )

transformation T = hu + (1 − h)v

P = (1 − ε)−1u − ε(1 − ε)−1v, Y = y

ε = ǫγ(1 − µ)2, h = µ/(1 − ε) = µ/(1 − ǫγ(1 − µ)2)

µ =

√
γ2(ǫ + 1)2 − 4γǫ + γ(ǫ − 1)

2γǫ

τ = γ t, z =
√

γ(1 − µ)x

leads to uτ = uzz + yF (hu + (1 − h)v)

vτ = εvzz + yF (hu + (1 − h)v)

yτ = ε(γ(1 − µ)Le)−1yzz − yF (hu + (1 − h)v)

√



Reduction, special initial conditions, Le = Le∗

When Le−1 = γ(1 − µ)

uτ = uzz + yF (hu + (1 − h)v)

vτ = εvzz + yF (hu + (1 − h)v)

yτ = ε(γ(1 − µ)Le)−1yzz − yF (hu + (1 − h)v)

reads

ut = uzz + yF (hu + (1 − h)v)

vt = εvzz + yF (hu + (1 − h)v)

yt = εyzz − yF (hu + (1 − h)v)

If initially y(0, x) = 1 − v(0, x), then y(t, x) = 1 − v(t, x) for t > 0, x ∈ R.

Therefore the system reduces [Gordon, 2007] to

ut = uxx + yF (hu + (1 − h)(1 − y))

yt = εyxx − yF (hu + (1 − h)(1 − y))



Reduction, no restrictions on initial conditions, Le = Le∗

In

ut = uzz + yF (hu + (1 − h)v)

vt = εvzz + yF (hu + (1 − h)(1 − y))

yt = εyzz − yF (hu + (1 − h)(1 − y))

take g = v + y, to obtain

ut = uzz + yF (hu + (1 − h)(1 − y))

yt = εyzz − yF (hu + (1 − h)(1 − y))

gt = εgzz

Plan:

1) Study stability of fronts in the system obtained y(0, x) = 1 − v(0, x)

2) Extend the stability result for fronts in that system to the general case.



Traveling fronts

In the moving with the front frame ξ = x − ct

ut = uxx + yF (hu + (1 − h)(1 − y))

yt = εyxx − yF (hu + (1 − h)(1 − y))

where h ∈ (0, 1),

ut = uξξ + cuξ + yF (hu + (1 − h)(1 − y))

yt = εyξξ + cyξ + yF (hu + (1 − h)(1 − y))

For small ε, there exists a unique c such that there is (û(ξ), ŷ(ξ)) that solves

([Gordon, Kamin, Sivashinksi, 2002], [G., Gordon, Jones, 2008] for the full system)

uξξ + cuξ + yF (hu + (1 − h)(1 − y)) = 0

εyξξ + cyξ − yF (hu + (1 − h)(1 − y)) = 0
(1)

and (u, y) → (1, 0) as ξ → −∞, (u, y) → (0, 1) as ξ → +∞.



Reaction rate

F (w) = Fjump(w) =






exp
(
Z
{

w−h
σ+(1−σ)w

})
, w ≥ wign,

0, w < wign.

However, for the stability analysis, we consider a smooth F̃

F̃ (w) =






exp
(
Z
{

w−h
σ+(1−σ)w

})
, w ≥ wign + 2δ,

Fjump(w)Hδ(w − wign − δ), wign ≤ w < wign + 2δ,

0, w < wign,

where Hδ is a smooth approximation of the Heaviside function H such that

Hδ(x) = 1

1+e

4xδ
x2−δ2

, for |x| < δ

A front (û, v̂) exists (c = O(1)) that connects (1, 1) at −∞ to (0, 0) at ∞



Traveling front: numerics

ε = 0.1, h = 0.3, σ = 0.25, δ = 0.0005, Tign = 0.01, and Z = 6, which results

in c = 1.8588. δ is chosen so that the speed c is close to the speed in the

discontinuous system.
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Linearization about (û, ŷ)

λp = pξξ + cpξ + Fw(ŵ) ŷ (hp − (1 − h)q) + F (ŵ)q,

λq = εqξξ + cqξ − Fw(ŵ) ŷ (hp − (1 − h)q) − F (ŵ)q,

where w = hu + (1 − h)(1 − y) and ŵ = w(û, ŷ).

Essential Spectrum of the linearization L about the front:

• Essential spectrum in L2(R) is bounded by a parabola touching the imaginary

axis at the origin from the right

• Consider L2
α(R): ‖f‖2

α =
∫∞

−∞
|ρα(ξ)f(ξ)|2 dξ, with weight ρα = eαξ.

Essential spectrum in L2(R) ∪ L2
α(R) has the right most boundary to the left

of the imaginary axis and it is a parabola

Energy-like estimates allow to obtain a bound on the unstable point spectrum.

Point spectrum: there are parameter regimes, where

• 0 is a simple eigenvalue

• the rest of the point spectrum ⊂ {λ ∈ C : Reλ < 0}



Evans function

λp = pξξ + cpξ + Ω̃′(ŵ) ŷ (hp − (1 − h)q) + Ω̃(ŵ)q ⇐⇒ X′ = A(ξ, λ)X

λq = cqξ − Ω̃′(ŵ) ŷ (hp − (1 − h)q) − Ω̃(ŵ)q

where

A(ξ, λ) =





0 1 0 0

λ − hFw(ŵ) ŷ −c (1 − h)Fw(ŵ) ŷ − F (ŵ) 0

0 0 0 1

hFw(ŵ) ŷ/ε 0 (λ + (1 − h)Fw(ŵ)ŷ + F (ŵ)) /ε −c/ε







Asymptotic matrix, +∞

A∞(λ) = limξ→∞ A(ξ, λ) =





0 1 0 0

λ −c 0 0

0 0 0 1

0 0 λ/ε −c/ε





For Reλ > 0, A∞ has two eigenvalues with negative real part:

µ1+ = −
1

2ε
(c +

√
c2 + 4ελ), µ2+ = −

1

2
(c +

√
c2 + 4λ),

and their corresponding eigenvectors are

v1+ =
(
0, 0, 1, µ1+

)T
, v2+ =

(
1, µ2+, 0, 0

)T
.



Asymptotic matrix, −∞

A−∞(λ) = limξ→−∞ A(ξ, λ) =





0 1 0 0

λ −c e(1−h)Z 0

0 0 0 1

0 0 (λ + e(1−h)Z)/ε −c/ε





For Reλ > 0, A−∞ has two eigenvalues with positive real part:

µ1− = −
1

2ε

(
c −

√
c2 + 4ελ + 4εeZ(1−h)

)
, µ2− = −

1

2

(
c −

√
c2 + 4λ

)

and the corresponding eigenvectors are

v1− =
(

1, µ1−,
(1−ε)(λ−c µ1−)

ε eZ(1−h) + 1
ε
,

(

(c2+λ ε)(1−ε)+ε eZ(1−h)
)

µ1−−c
(

λ+eZ(1−h)
)

(1−ε)

ε2eZ(1−h)

)T

v2− =
(
1, µ2−, 0, 0

)T



Definition of Evans Function

So X′ = A(ξ, λ)X has two linearly independent solutions X1+ and X2+

converging to zero as ξ → ∞ and two solutions X1− and X2− converging to

zero as ξ → −∞, satisfying

lim
ξ→±∞

Xi±e−µi±ξ = vi±, i = 1, 2.

λ is an eigenvalue if and only if the space of solutions spanned by {X1+, X2+},

and the space of solutions spanned by {X1−, X2−}, have a non-empty

intersection.

Those values of λ can be located with the help of the Evans function. The Evans

function is a function of the spectral parameter λ; it is analytic, real for λ real, and

it vanishes on the point spectrum.

We define the Evans function using exterior algebra.



Evans function using exterior algebra

The dimension of the eigen-value system is n = 4 and the dimensions of the

stable and unstable manifolds are ns = nu = 2.

We consider the wedge-space
∧2(C4), the space of all two forms on C4. The

induced dynamics of X′ = A(ξ, λ)X on
∧2(C4) can be written as

U ′ = A(2)(ξ, λ)U.

Here the matrix A(2) is matrix generated by A = {aij} on
∧2(C4). Using the

standard basis of
∧2(C4): ω1 = e1 ∧ e2, ω2 = e1 ∧ e3, ω3 = e1 ∧ e4,

ω4 = e2 ∧ e3, ω5 = e2 ∧ e4, ω6 = e3 ∧ e4, ({e1, e2, e3, e4} is the standard

basis of C4) the matrix A(2) is given by

A
(2) =





































a11+a22 a23 a24 −a13 −a14 0

a32 a11+a33 a34 a12 0 −a14

a42 a43 a11+a44 0 a12 a13

−a31 a21 0 a22+a33 a34 −a24

−a41 0 a21 a43 a22+a44 a23

0 −a41 a31 −a42 a32 a33+a44







































Evans function

In our case, the asymptotic matrices are given by

lim
ξ→±∞

A(2)(ξ, λ) =
(
A±∞

)(2)

The eigenvalue of (A∞)(2) with the smallest real part is µ1+ + µ2+ with

eigenvector v1+ ∧ v2+. The solution of U ′ = A(2)(ξ, λ)U given by

U+ = X1+ ∧ X2+ then behaves as

lim
ξ→∞

U+e−(µ1++µ1+)ξ = w+ ≡ v1+ ∧ v2+.

Similarly, the solution U− = X1− ∧ X2− behaves as

lim
ξ→−∞

U−e−(µ1−+µ−)ξ = w− ≡ v1− ∧ v2−.

We define the Evans function as

E(λ) ≡ U− ∧ U+,

where U± are evaluated at, say, ξ = 0.



Evans function

The Evans function is

E(λ) = UT
− ΣU+,

where Σ is the matrix

Σ =





0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0





The function E(λ) will be analytic in the any region of the complex plane where the

eigenvalues µ1+ + µ2+ and µ1− + µ2− are, respectively, the eigenvalues with

smallest and largest real part of (A∞)(2) and
(
A−∞

)(2)
. To define such a region,

it suffices to implement the condition Reλ > −1
4
min

(
1, 1

ε

)
.



Numerical calculation of Evans function

To find zeroes of E(λ), compute the integral of the logarithmic derivative of E(λ)

on a closed curve and obtain the winding number of E(λ) along that curve.

In our case, the contour of integration is chosen so that it lies in the region

defined by energy-like estimates.

Numerical winding number computation then that the Evans function has no

zeroes other than the one at the origin.

There is a regime in which the front is spectrally stable, with the exception of es-

sential spectrum touching the imaginary axis.



Nonlinear Stability

[G, Latushkin, Schecter, 2011] =⇒ convective nature of the instability due to the

marginal essential spectrum

1. If the initial perturbations are small in the regular and the weighted norms, then

• y component decays exponentially in the regular norm (therefore Y does)

• u component stays bounded, so T and P do too

• in the weighted norm all components decay exponentially

2. If the initial perturbation in addition are small in L1-norm, then the perturbation

to the u-component decays diffusively in L∞-norm, so T and P do so too.



Full system, Le−1 = γ(1 − µ), no restriction on initial conditions.

ut = uzz + yF (hu + (1 − h)v), yt = εyzz − yF (hu + (1 − h)v)

gt = εgzz

Spectral stability: gt = εgzz does not produce point spectrum. The lin operator

then has only marginally unstable essential spectrum =⇒ The spectral results

extend to the full system.

Nonlinear stability: [G, Latushkin, Schecter, 2011] =⇒ The time evolution of

perturbations to u and y are the same as in reduced system. If initial

perturbations to the front are small in both regular and weighted norm, g stays

bounded in the norm without the weight and decays exponentially in the weighted

norm. Since perturbation to y decays exponentially in all norms, perturbations to

the v behave the same way as perturbations to g = y + v.

If, in addition, initial perturbations are also small in L1-norm, then the

perturbations to g, and therefore v not only stay bounded but decay algebraically

in L∞-norm.



Nonlinear convective stability: assumptions

Yt = DYxx + R(Y )

Traveling wave: Y∗(ξ), ξ = x − ct, c > 0 Y− = 0

Assume that Y∗(ξ) is spectrally stable in Eα and Y ′
∗ ∈ Eα.

Assume that in appropriate variables Y = (U, V ) and R(U, 0) = 0 such that

Ut = D1Uxx + cUx + R1(U, V )

Vt = D2Vxx + cVx + R2(U, V )

D1 and D2 nonneg. diag. matrices, and Ri(U, 0) = 0 and at Y− = (0, 0)

Ut = D1Uξξ + cUξ + D2R1(0, 0)V = L(1)U + D2R1(0, 0)V

Vt = D2Vξξ + cVξ + D2R2(0, 0)V = L(2)V

Assume that in E0, σ(L(2)) ∈ {Reλ ≤ −ρ, ρ > 0}, and sp(L(1)) touches or

crosses the imaginary axis, but L(1) generates a bounded semigroup



Nonlinear convective stability: theorems

Theorem. With the given assumptions, perturbations of the traveling wave that are

initially small in E0 ∩ Eα decay exponentially in Eα to some shift of the wave.

These solutions can be written

(U, V )(ξ, t) = U∗(ξ + c̃(t)) + Ũ(ξ, t), V∗(ξ + c̃(t)) + Ṽ (ξ, t))

with, for each t, (Ũ(ξ, t), Ṽ (ξ, t)) in a fixed subspace of E0 ∩ Eα complementary

to Y ′
∗ . Ũ(ξ, t) stays small in E0, and Ṽ (ξ, t) decays exponentially E0.

So in the unweighted norm, the U -component of a perturbation stays small, and

the V -component decays.

Theorem. In addition to the given assumptions, suppose the linear equation

Ũt = L(1)Ũ is parabolic, i .e., the diagonal entries of D1 are all positive. If the

perturbation of the traveling wave is also small in L1, then Ũ(ξ, t) stays small in

the L1-norm and decays like t−
1
2 in the L∞-norm.

[G, Latushkin, Schecter, 2011]
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