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Porous media combustion

T.— (11—~ 1P

€Tyr + YF(T)  [Sivashinsky 2002]
Py — T — Pyy
Y;: = eLe 'Yy, — Y F(T)

e < 1 -thermal diffusivity / pressure diffusivity (~ 104 — 10~7)

~ > 1 - specific heat ratio, Le - Lewis nhumber

F(T) of Arrhenius type /

with an ignition cut-off at T' = T, T

ign

Combustible gas or gas mixture: oxygen, methane-air, hydrogen-air, propane-air...
Porous medium: coal, ceramic fiber felt, polyurethane foam...

Applications: chemical technology, ecology, fire and explosion safety

Close relatives: convective burning of granular explosives, combustion in thin

rough tubes



Before Simplifications

Energy cpp(©r + uB®¢) — (I + ully) = gW + (cppDin®¢)e
Concentration  p(Cr + uC¢) = —W + (O 1 Dpy01 (pOC) ¢ )¢

Chemical kinetics W = Z,Cexp(—E/R®)

Continuity pr+ (pu)g =0
Momentum pu=—Kv—1II;
State p=P/(cp —c,)®

u - gas velocity, C - concentration of the deficient reactant, p, I'l, ® - density, pressure, temper-
ature of the gas-solid system, W - chemical reaction rate, v - kinematic viscosity, Z -frequency
factor, E - activation energy, R - universal gas constant, q - heat release, c,, /c,,/ - specific heat

at constant pressure /volume/, Dy}, /D, o1/ - thermal /molecular/ diffusivity



Derivation of Simplified Model

Small heat release approximation: variation of pressure, temperature, density

and gas velocity assumed small

Scaling:

® -0 II — 11 C
T= 0 ’ P: 0 ) Y:—
Occ — BOp IIoo — Ilo Co

®g, I1g, Co -temperature, pressure, concentration at - = 0,

O, Iloc at 7 — oo In case of homogeneous explosion

t = %,w: %,whereq‘-,éz const

Tt — (1 — ")/_ 1 )Pt eme —|— Y F (T) partially lin. egn for conservation of energy
Pt — Tt = P:c:n lin. continuity eqn with the eqn of state and Darcy law

Y: = e€Le™ 1 Yie —YY F (T) partially lin. eqn for conservation of reactant



The standard reduction of the system: ¢ = 0, Le = O(1)

e=0,Le=0(1) Ti—Q—-—~"YHP, = YF(T)
Py — T — Pyy
Y: = —YQ(T)

Time-conserved quantity: 7: — (1 — v )P +~+471Y; =0
Initial conditions: T'(x,0) = Tp(x), P(0,x) =0, Y(0,xz) =1

A unique front exists that connects the cold state (0, 0, 1) with the burnt state
(1,1, 0).

This front persists in the full systemwith0 < e < 1



For T; — (]_ — ’y_l)Pt

Py — Ty

transformation T

leads to U

Yr

Equivalent system

= €Ty +YQT)

= Py

= eLe 'Yee — Y Q(T)

= hu+ (1 —h)v

= Q—¢e)tlu—e(l—-—e)"tv, Y=y

— ey(1—pw)2, h=p/(1—¢) = pu/(1 — evy(1 — p)?)

VY2(e+1)2 —4ve+ (e — 1)
2ve

= 7t z=\/'7(1—u)w

= Uzz +yF(hu+ (1 — h)v)
= evzz + yF(hu+ (1 — h)v)

= e(v(1 — p)Le) tyzz — yF(hu + (1 — h)v)



Reduction, special initial conditions, Le = Le*

When Le™! = (1 — p)

ur = Uzz + yF(hu+ (1 — h)v)
vy = €Vzz +yF(hu+ (1 — h)v)
yr = e(v(1—p)Le) 'yzz — yF(hu + (1 — h)v)

reads
ut = uzz + yF(hu + (1 — h)v)
vt = evzz + yF(hu + (1 — h)v)
Yt = €Yzz — yF(hu + (1 — h)v)
If initially y(0,x) =1 — v(0,x), then y(t,z) =1 — v(t,x) fort > 0, x € R.
Therefore the system reduces [Gordon, 2007] to
ut = Uga +yF(hu+ (1 —h)(1—y))

Yyt = €Yzax — yF(hu+ (1 —h)(1—1y))



Reduction, no restrictions on initial conditions, Le = Le™

In

ut = Uzz + yF(hu + (1 — h)v)
vt = €vzz + yF(hu + (1 — h)(1 — y))

Yt = €Yz=z — yF(hu + (1 - h)(l —v))
take g = v + y, to obtain
Ut = Uzz + yF(hu + (1 - h’)(]- - y))

Yt = €Yzz — yF(hu + (1 — h)(1 — y))
gt — €gzz
Plan:

1) Study stability of fronts in the system obtained y(0,z) = 1 — v(0, x)

2) Extend the stability result for fronts in that system to the general case.



Traveling fronts

In the moving with the front frame £ = « — ct
Ut = Ugx + YF(hu + (1 — h)(1 — y))
Yt = €Yz — YyF(hu + (1 — h)(1 — y))
where h € (0,1),
ut = uge + cug + yF(hu+ (1 — h)(1 — y))
Yyt = eyge + cye + yF(hu+ (1 — h)(1 — y))

For small ¢, there exists a unique c such that there is (u (&), y(£)) that solves
([Gordon, Kamin, Sivashinksi, 2002], [G., Gordon, Jones, 2008] for the full system)

uge +cug +yF(hu+ (1—h)(1—y)) =0

eyee +cye —yF(hu+ (1 —h)(1—y)) =0

and (u,y) — (1,0)as § —» —oo, (u,y) — (0,1) as & — +oo.



F(w) = Fjump(w) =

Reaction rate

exp (Z { a+'zul—_i;)w ) y W > Wign,

0, w < Wign-

However, for the stability analysis, we consider a smooth F

;

\

w—h
exp (Z { oct+(l—0o)w ) ’ w Z Wign + 257
Fjump(w) H5 (w — Wign — 5)’ Wign S w < Wign + 25’

o, w < Wign,

where H s is a smooth approximation of the Heaviside function H such that

Hs(x) =

14a;5 , for |z| <6
1—|—e‘”2_52

A front (a, 0) exists (c = O(1)) that connects (1,1) at —oo to (0, 0) at co



Traveling front: numerics

e =0.1,h = 0.3, 0 = 0.25, = 0.0005, T’;,,, = 0.01, and Z = 6, which results
in c = 1.8588. § is chosen so that the speed cis close to the speed in the

discontinuous system.




Linearization about (u, y)

Ap = pge + cpg + Fuw(w) y (hp — (1 — h)q) + F(w)gq,
Aq = eqge + cq¢ — Fy(w) y (hp — (1 — h)q) — F(w)gq,
where w = hu + (1 — h)(1 — y) and w = w(u, y).
Essential Spectrum of the linearization L about the front:

Essential spectrum in L2 (R) is bounded by a parabola touching the imaginary

axis at the origin from the right

Consider L2 (R): || f|IZ = 23, |pa(€) £ (€)% d&, with weight po = e°=.
Essential spectrum in L2 (R) U L2 (R) has the right most boundary to the left

of the imaginary axis and it is a parabola

Energy-like estimates allow to obtain a bound on the unstable point spectrum.

Point spectrum: there are parameter regimes, where
0 is a simple eigenvalue

the rest of the point spectrum C {A € C: Re X < 0}



Evans function

Ap = peg + cpe + V' (@) § (hp — (1 — h)q) + Q(d)g <= X' = A(§,N) X

Ag = cqe — Q' (W) § (hp — (1 — h)q) — Q()q

where
( 0 1 0 0 \
A—hFy(w)y -—c (1 —h) Fy(w)y — F(w) 0
A(Ea >‘) —
0 0 0 1

\ hFu(@)y/e 0 A+ @1 —h)Fu(®)y+F(@))/e —c/e |



Asymptotic matrix, oo

A (A) = limg_, o0 A(E, A) =

\0

For Re A > 0, .A°° has two eigenvalues with negative real part:

0

1 1
pry = —5-(c+ Ve? +4eX), paq = —(c+ Ve + 4N,

and their corresponding eigenvectors are

V14 = (Oa 0,1, N1+)T ’

0 0
0 1
e —c/s/

V24 = (17 M2+, 0, O)



Asymptotic matrix, —oo

(O 1 0 O\

A —cC e(l—h)Z 0
AT (A) = limg oo A, N) =

0 0 0 1

Ko 0 (A+el@MZ)/e —c/e)

For Re A > 0, A~ °° has two eigenvalues with positive real part:

ti_ = 1 <c— c2 —|—4s)\—|—4sez(1_h)) , Mo = 1 (c— \/ c2 —|—4)\)

2¢e 2

and the corresponding eigenvectors are

V11— =

— T
<1aH1—, (1—e)(A—cpq_) 41 ((c2+>\s)(1—s)+s eZ(l—h))Ml__c(A_I_eZ(l h)>(1_e)>

ceZ(1—h) e? c2cZ(1—h)

V2 = (13 p2—, 0, O)T



Definition of Evans Function

So X’ = A(&, ) X has two linearly independent solutions X;  and X5
converging to zero as £ — oo and two solutions X, _ and X5_ converging to
zero as £ — —oo, satisfying

g_ljinoo X;,re Hité = op,1, i=1,2.

A is an eigenvalue if and only if the space of solutions spanned by { X, X241},
and the space of solutions spanned by { X, _, X,_}, have a non-empty
intersection.

Those values of \ can be located with the help of the Evans function. The Evans
function is a function of the spectral parameter \; it is analytic, real for X real, and
it vanishes on the point spectrum.

We define the Evans function using exterior algebra.



Evans function using exterior algebra

The dimension of the eigen-value system is n — 4 and the dimensions of the
stable and unstable manifolds are ns = n,, = 2.
We consider the wedge-space A\?(C*), the space of all two forms on C%. The

induced dynamics of X’ = A(&, \) X on A?(C%) can be written as

U’ =A@ (g, \U.

Here the matrix A(?) is matrix generated by A = {a;;} on A\?(C*%). Using the
standard basis of /\2 (C4): wil = ej1 Neg,w2 =—ej1 Ne3g,w3z = e1 N\ ey,

wqg — ez Ne3,ws = ez A eg,we = e3 A eq, ({e1,e2,e3,es} is the standard
basis of C%) the matrix A(?) is given by

ajlta22 a23 a24 —aj13 —aig 0
ag2 aj1+ags a3q a2 0 —ajgq
A2 _ aq2 @43 a11+aaq 0 a1z @13
—agy az1 0 a22+agg agq —a2q
—agy 0 a1 aas3 a22+agq az3

0 —ag1 agl —ag2 a32 ag3zt+agq




Evans function

In our case, the asymptotic matrices are given by

(2)
1 A2) = Too
clm ATEA) (“‘1 )

The eigenvalue of (.A°>°)(?) with the smallest real part is 111 + po with
eigenvector vy ¢ A va. The solution of U’ = A(2) (¢, A\)U given by
Ui = X14 A X24 then behaves as

lim U+€_(“1++“1+)€ = w4 = V14 N\ V24,

£E—o0
Similarly, the solution U_ = X;_ A X5_ behaves as
lim U_e M1—FtH)E — oy =1 Awvg_.
E——oo

We define the Evans function as
E()\) =U_ AN U_|_,

where U are evaluated at, say, £ = 0.



Evans function

The Evans function is

E\) =UTxUy,

where X is the matrix

The function E()\) will be analytic in the any region of the complex plane where the
eigenvalues 1114 4+ pu24 and pu_— 4 po_ are, respectively, the eigenvalues with
smallest and largest real part of (.4>°)(2) and (A—°) (2)_ To define such a region,

).

it suffices to implement the condition Re A > — % min (1,

M =



Numerical calculation of Evans function

To find zeroes of E()\), compute the integral of the logarithmic derivative of E()\)

on a closed curve and obtain the winding humber of E£(\) along that curve.

In our case, the contour of integration is chosen so that it lies in the region

defined by energy-like estimates.

Numerical winding humber computation then that the Evans function has no

zeroes other than the one at the origin.

There is a regime in which the front is spectrally stable, with the exception of es-

sential spectrum touching the imaginary axis.



Nonlinear Stability

[G, Latushkin, Schecter, 2011] —> convective nature of the instability due to the

marginal essential spectrum

1. If the initial perturbations are small in the regular and the weighted norms, then
y component decays exponentially in the regular norm (therefore Y does)
u component stays bounded, so T' and P do too

in the weighted norm all components decay exponentially

2. If the initial perturbation in addition are small in L'-norm, then the perturbation

to the u-component decays diffusively in L ..-norm, so T' and P do so too.



1

Full system, Le™" = (1 — u), no restriction on initial conditions.

ut = Uzz + yF(hu + (1 — h)v), Yt = €Yzz — yF(hu + (1 — h)v)

gt — €gz=z

Spectral stability: g: = g.. does not produce point spectrum. The lin operator
then has only marginally unstable essential spectrum —> The spectral results
extend to the full system.

Nonlinear stability: [G, Latushkin, Schecter, 2011] — The time evolution of
perturbations to « and y are the same as in reduced system. If initial
perturbations to the front are small in both regular and weighted norm, g stays
bounded in the norm without the weight and decays exponentially in the weighted
norm. Since perturbation to y decays exponentially in all norms, perturbations to
the v behave the same way as perturbationsto g = y + v.

If, in addition, initial perturbations are also small in L!-norm, then the
perturbations to g, and therefore v not only stay bounded but decay algebraically

in L.-norm.



Nonlinear convective stability: assumptions

Traveling wave: Y. (£),§ =z —ct,c >0Y_ =0
Assume that Y. (&) is spectrally stable in £, and Y/ € &,.
Assume that in appropriate variables Y = (U, V) and R(U, 0) = 0 such that

U; = D1Uggz + cUyx + R1(U, V)
Vi = D2Vgy + cVz + R2(U, V)
D; and D> nonneg. diag. matrices, and R;(U,0) = 0andat Y_ = (0,0)
Ut = D1Uge + cUg + D2R1(0,0)V = LOU + D2R1(0,0)V
Vi = D2Vie + cVe + D2R2(0,0)V = LAV

Assume that in £, o(L(®) € {ReX < —p, p > 0}, and sp(L(V)) touches or

crosses the imaginary axis, but L(1) generates a bounded semigroup



Nonlinear convective stability: theorems

Theorem. With the given assumptions, perturbations of the traveling wave that are
initially small in £o N £, decay exponentially in £, to some shift of the wave.

These solutions can be written

(U, V)(&,t) = Ui (€ + &) + U(&,t), Vi (€ + E(t)) + V (&, 1))

with, for each t, (U (&,t), V (&, t)) in a fixed subspace of £, N £, complementary
to Y. U(¢&,t) stays small in £y, and V (&, t) decays exponentially £o.
So in the unweighted norm, the U-component of a perturbation stays small, and

the V-component decays.

Theorem. In addition to the given assumptions, suppose the linear equation
U; = LU is parabolic, i .e., the diagonal entries of D; are all positive. If the
perturbation of the traveling wave is also small in L1, then U (¢, t) stays small in

the L!-norm and decays like t—2 in the L°-norm.

[G, Latushkin, Schecter, 2011]
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