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@ Why optimization?
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@ The and approaches
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Consider the polynomial optimization problem:

P: £ =min{f(x): g(x)>0,j=1,...,m} J

for some polynomials 7, g; € R[x].
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Consider the polynomial optimization problem:

P: £ =min{f(x): g(x)>0,j=1,...,m} J

for some polynomials 7, g; € R[x].

Why Polynomial Optimization?

After all ... P is just a particular case of Non Linear
Programming ( )!
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... if one is interested with a optimum only!!
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... if one is interested with a optimum only!!

When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools
from and
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... if one is interested with a optimum only!!

When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools
from and

5" The focus is on how to improve f by looking at a
of a nominal point x € K i.e.,
x € K, and in general,
no property of x € K can be inferred.
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... if one is interested with a optimum only!!

When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools
from and

5" The focus is on how to improve f by looking at a
of a nominal point x € K i.e.,
x € K, and in general,
no property of x € K can be inferred.

The fact that f and g; are does not help much!
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BUT for GLOBAL Optimization
... the picture is different!
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BUT for GLOBAL Optimization
... the picture is different!

Remember that for the minimum

f*=sup{A: f(x)— A >0 VxeK}

(Not true for a LOCAL minimum!)
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BUT for GLOBAL Optimization
... the picture is different!

Remember that for the minimum

f*=sup{A: f(x)— A >0 VxeK}

(Not true for a LOCAL minimum!)
and so to compute * ...
IS" one needs to handle EFFICIENTLY the difficult constraint
f(x)—XA >0 vxek,

i.e. one needs
on K

for the polynomial x — f(x) — A!
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REAL ALGEBRAIC GEOMETRY helps!!!!

Indeed, EXIST!

Jean B. Lasserre* semidefinite characterization



REAL ALGEBRAIC GEOMETRY helps!!!!

Indeed, EXIST!

Moreover .... and importantly,
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REAL ALGEBRAIC GEOMETRY helps!!!!

Indeed, EXIST!

Moreover .... and importantly,

Such certificates are amenable to

(= Stronger Positivstellensatzé exist for but
(so far) are useless from a computational viewpoint.)
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SOS-based certificate

LetK:={x: gi(x) >0, j=1,....m}
be compact (with g1(x) = M — ||x||?, so that K c B(0, M)).
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SOS-based certificate

LetK:={x: gi(x) >0, j=1,....m}
be compact (with g1(x) = M — ||x||?, so that K c B(0, M)).

Theorem (Putinar’s Positivstellensatz)
If f € R[x] is strictly positive (f > 0) on K then:

m
t o f(x (X)+ ) oj(x) gj(x vx € R”,
J=1

for some polynomials (o;) C R[x].
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However ... In Putinar’'s theorem

... nothing is said on the DEGREE of the SOS polynomials (o;)!
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However ... In Putinar’s theorem
... nothing is said on the DEGREE of the SOS polynomials (o;)!

BUT ... GOOD news ..!!

IS” Testing whether { holds
for some (07) C R[X] ,

is SOLVING an SDP!
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Dual side: The K-moment problem

Given a real sequence y = ().), « € N”, does there exist a
Borel measure ;. on K such that

T yuz/x1‘”---x,?"du, Ya e N" 7
K

If yes then y is said to have
a representing measure supported on K.
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LetK:={x: gi(x) >0, j=1,....m}
be compact (with g1(x) = M — ||x||?, so that K c B(0, M)).
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LetK:={x: gi(x) >0, j=1,....m}
be compact (with g¢(x) = M — ||x||?, so that K c B(0, M)).

Theorem (Dual side of Putinar's Theorem)

A sequencey = (¥.), « € N, has a representing measure
supported on K foreveryd =0,1,...

(*)  My(y) =0 and M,(gy) =0, j=1,....m
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LetK:={x: gi(x) >0, j=1,....m}
be compact (with g¢(x) = M — ||x||?, so that K c B(0, M)).

Theorem (Dual side of Putinar's Theorem)

A sequencey = (¥.), « € N, has a representing measure
supported on K foreveryd =0,1,...

(*)  My(y) =0 and M,(gy) =0, j=1,....m

¥ The real symmetric matrix M. (y) is called the MOMENT
MATRIX associated with the sequence y
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LetK:={x: gi(x) >0, j=1,....m}
be compact (with g1(x) = M — ||x||?, so that K c B(0, M)).

Theorem (Dual side of Putinar's Theorem)

A sequencey = (¥.), « € N, has a representing measure
supported on K foreveryd =0,1,...

(*)  My(y) =0 and M,(gy) =0, j=1,....m

¥ The real symmetric matrix M. (y) is called the MOMENT
MATRIX associated with the sequence y

15" The real symmetric matrix M(g;y) is called the
LOCALIZING MATRIX associated with the sequence y and the
polynomial g;.
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Remarkably,

the Necessary & Sufficient conditions (x) for existence of a
representing measure are stated only in terms of

on the sequence y | (No mention of
the unknown representing measure in the conditions.)
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Remarkably,

the Necessary & Sufficient conditions (x) for existence of a
representing measure are stated only in terms of

on the sequence y | (No mention of
the unknown representing measure in the conditions.)

For instance with n = 2, d = 1, the moment matrix M.(y) reads

1 Xi X2 X2 XX X5
~ =~ N = N AN AN
Yoo | Yo Yo | Yoo Y11 Yoz

Yio | Yoo Yii | Yo Y1 Y2
M:(y) = Yor | Y11 Yoo | Yer Yi2 Yo3
Yoo | Yao Yer | Yao Y31 Yoo
yiir | Yi2 Yot | Ya1 Ye2 Vi3
Yoo | Yi2 Yoz | Yoo Y13 Yoa
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ALGEBRAIC SDE
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AlGEBRAIC SPE FuNcTonaL ANALYSIS

LosimiviTy oN K The K- MoMENT TroBEM

o

ChmACTER RE THoSE —_g—
Cunrpacret ze  ThoSe N
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There is also another
due to Krivine, Vasilescu, and Handelman.
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There is also another
due to Krivine, Vasilescu, and Handelman.

But unfortunately less powerful ... and with some drawbacks! J
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e In addition, polynomials KcR”
are ubiquitous. They also appear in many important
applications (outside optimization),

... modeled as

particular instances of the so called
Generalized Moment Problem, among which:
Probability, Optimal and Robust Control, Game theory, Signal
processing, multivariate integration, etc.
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GMP: The primal view

The GMP is the infinite-dimensional LP:

S s
GMP : inf / fidu; : / hii duj %b-, e d
wieM(K;) {; K,-I Hi ; K, ij AL i ] }

with M(K;) space of Borel measureson K; Cc R™, i =1,...,s.

4
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GMP: The dual view
The DUAL GMP* is the infinite-dimensional LP:

S
GMP*:  sup{> Nbj: fi=) MNhj >00nK;, i=1,...,s}
j jed jed
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GMP: The dual view
The DUAL GMP* is the infinite-dimensional LP:

S
GMP*:  sup{> Nbj: fi=) MNhj >00nK;, i=1,...,s}
j jed jed

And one can see that ...

the constraints of GMP* state that the functions

X = fi(X) = > A hy(x)

jed

must be NONNEGATIVE on certainsets K;, i=1,...,s.
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Several examples will follow .... and

Global OPTIM — /" = iQf {f(x): xeK}
is the SIMPLEST example of the GMP
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Several examples will follow .... and

Global OPTIM — /" = iQf {f(x): xeK}
is the SIMPLEST example of the GMP

because ..

f fd 1 =1
;lell\r/ll (K) {/ s / dM }
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Several examples will follow .... and

Global OPTIM — /" = iQf {f(x): xeK}
is the SIMPLEST example of the GMP

because ..

= f fd 1 =1
;lell\r/ll (K) {/ s / dM }

e Indeed if f(x) > 7 for all x € K and 1. is a probability measure
onK,then [ fdu> [ du=
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Several examples will follow .... and

Global OPTIM — /" = iQf {f(x): xeK}
is the SIMPLEST example of the GMP

because ..

= f fd 1 =1
;JGII\r/]I (K) {/ s / dM }

e Indeed if f(x) > 7 for all x € K and 1. is a probability measure
onK,then [ fdu> [ du=

e On the other hand, for every x € K the probability measure
(= Oy is such that [ f du = f(x).
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The moment-LP and moment-SOS approaches

consist of using a certain type of positivity certificate
(Krivine-Vasilescu-Handelman’s or Putinar’s certificate) in
potentially any application where such a characterization is
needed. (Global optimization is only one example.)
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The moment-LP and moment-SOS approaches

consist of using a certain type of positivity certificate
(Krivine-Vasilescu-Handelman’s or Putinar’s certificate) in
potentially any application where such a characterization is
needed. (Global optimization is only one example.)

In many situations this amounts to

solving a HIERARCHY of :
@ LINEAR PROGRAMS, or
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consist of using a certain type of positivity certificate
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needed. (Global optimization is only one example.)
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@ LINEAR PROGRAMS, or
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The moment-LP and moment-SOS approaches

consist of using a certain type of positivity certificate
(Krivine-Vasilescu-Handelman’s or Putinar’s certificate) in
potentially any application where such a characterization is
needed. (Global optimization is only one example.)

In many situations this amounts to

solving a HIERARCHY of :
@ LINEAR PROGRAMS, or

@ SEMIDEFINITE PROGRAMS

.. of l.
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LP- and SDP-hierarchies for optimization

Replace * =sup{\: f(x) — A > 0 Vx e K} with:
A

The SDP-hierarchy indexed by d € N:

m
fi =sup{A: f— A= o9 + o; g deg(o;g) <2d
d A,a?{ 70 Z\L/Q/ g(7;9)) }

sos =1 SOS
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LP- and SDP-hierarchies for optimization

Replace * =sup{\: f(x) — A > 0 Vx e K} with:
A

The SDP-hierarchy indexed by d € N:

m
fi=sup{\: f=A= o9 + o;j g deg(ojg)) <2d}
d N, . E_; J Y J Y

sos =' sos

or, the LP-hierarchy indexed by d € N:

m
Oy = sup {\: f—\= Z Cop ngaf(1 —-g)%;  |a+8| < 2d}

Avcuﬂ Oé,ﬂ >0 f:1
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Both sequence (f}), and (04), d € N, are
and when K is compact (and satisfies a
technical Archimedean assumption) then:

f = lim 5 = lim 6.
d—o0 d—o0
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Both sequence (f}), and (04), d € N, are
and when K is compact (and satisfies a
technical Archimedean assumption) then:

"= lim f; = lim 6,.
d—o0 @ d—o0 d

Moreover, and importantly,

e GENERICALLY, ... the hierarchy has
,thatis, 7 = f} for some d.

e A sufficient RANK-CONDITION on the moment matrix (which
also holds GENERICALLY) permits to test whether f* = 1}
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e What makes this approach exciting is that it is at the
crossroads of several disciplines/applications:

@ Commutative, Non-commutative, and Non-linear
ALGEBRA

@ Real algebraic geometry, and Functional Analysis

@ Optimization, Convex Analysis

@ Computational Complexity in Computer Science,
which from interactions!
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e What makes this approach exciting is that it is at the
crossroads of several disciplines/applications:

@ Commutative, Non-commutative, and Non-linear
ALGEBRA

@ Real algebraic geometry, and Functional Analysis

@ Optimization, Convex Analysis

@ Computational Complexity in Computer Science,
which from interactions!

e As mentioned ... potential applications are ENDLESS!
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e Has already been proved useful and successful in

applications with , hotably in optimization,
control, robust control, optimal control, estimation, computer
vision, etc. (If then problems of larger size can be
addressed)
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e Has already been proved useful and successful in

applications with , hotably in optimization,
control, robust control, optimal control, estimation, computer
vision, etc. (If then problems of larger size can be
addressed)

e HAS initiated and stimulated new research issues:

@ in Convex Algebraic Geometry (e.g. semidefinite
representation of convex sets, algebraic degree of
semidefinite programming and polynomial optimization)

@ in Computational algebra (e.g., for solving polynomial
equations via SDP and Border bases)

@ Computational Complexity where LP- and
SDP-HIERARCHIES have become an important tool to
analyze for 0/1 combinatorial
problems (— links with quantum computing)
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The moment-SOS approach can be applied to problems
defined with semi-algebraic functions via the introduction of

additional variables ( )
xeK; [f(x)] & xeK; f(x)®2-2"=0;
f(x)>0onK; \/f(x) & xekK f(x)—z2"=0;

Similarly to model the function x — g(x) := max|[f; (x), f2(x)],

(f(X) = H(x)? — 2" = 0; Sgx) =+ W
I (X)— (X))

etc.
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Recall that both LP- and SDP- hierarchies are
GENERAL PURPOSE METHOQODS .... J
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Recall that both LP- and SDP- hierarchies are

GENERAL PURPOSE METHODS ....
to solving specific hard problems!!

Jean B. Lasserre* semidefinite characterization



A remarkable property of the SOS hierarchy: |

When solving the optimization problem
P: M =min{f(x): gi(x)>0,j=1,...,m}

one does NOT distinguish between CONVEX, CONTINUOUS
NON CONVEX, and 0/1 (and DISCRETE) problems! A boolean
variable x; is modelled via the equality constraint x,2 —x;=0".
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A remarkable property of the SOS hierarchy: |

When solving the optimization problem
P: M =min{f(x): gi(x)>0,j=1,...,m}

one does NOT distinguish between CONVEX, CONTINUOUS
NON CONVEX, and 0/1 (and DISCRETE) problems! A boolean
variable x; is modelled via the equality constraint x,2 —x;=0".

In Non Linear Programming (NLP),

modeling a 0/1 variable with the polynomial equality constraint
“Xl'z . X, _ Oll
and applying a standard descent algorithm would be
considered “stupid"!
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A remarkable property of the SOS hierarchy: |

When solving the optimization problem
P: M =min{f(x): gi(x)>0,j=1,...,m}

one does NOT distinguish between CONVEX, CONTINUOUS
NON CONVEX, and 0/1 (and DISCRETE) problems! A boolean
variable x; is modelled via the equality constraint x,2 —x;=0".

In Non Linear Programming (NLP),

modeling a 0/1 variable with the polynomial equality constraint
“Xl'z . X, _ Oll
and applying a standard descent algorithm would be
considered “stupid"!

Each class of problems has its own tailored algorithms.
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Even though the moment-SOS approach
to each class of problems: }
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Even though the moment-SOS approach
to each class of problems: }

o It the class of (easy) as
FINITE CONVERGENCE occurs at the FIRST relaxation in
the hierarchy.
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Even though the moment-SOS approach
to each class of problems: }

o It the class of (easy) as
FINITE CONVERGENCE occurs at the FIRST relaxation in
the hierarchy.

@ FINITE CONVERGENCE also occurs for general convex
problems and for non convex problems

@ — (NOT true for the LP-hierarchy.)
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Even though the moment-SOS approach
to each class of problems: }

o It the class of (easy) as
FINITE CONVERGENCE occurs at the FIRST relaxation in
the hierarchy.

@ FINITE CONVERGENCE also occurs for general convex
problems and for non convex problems

@ — (NOT true for the LP-hierarchy.)

@ The SOS-hierarchy dominates other lift-and-project
hierarchies (i.e. provides the best lower bounds) for hard
0/1 combinatorial optimization problems! The Computer
Science community talks about a
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A remarkable property: Il

FINITE CONVERGENCE of the SOS-hierarchy is GENERIC! |

... and provides a GLOBAL OPTIMALITY CERTIFICATE,

the analogue for the NON CONVEX CASE of the
KKT-OPTIMALITY conditions in the CONVEX CASE!
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How to handle sparsity

The no-free lunch rule ...

The size of SDP-relaxations grows rapidly with the original
problem size ... In particular:
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How to handle sparsity

The no-free lunch rule ...

The size of SDP-relaxations grows rapidly with the original
problem size ... In particular:

e O(n?9) variables for the d SDP-relaxation in the hierarchy
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How to handle sparsity

The no-free lunch rule ...

The size of SDP-relaxations grows rapidly with the original
problem size ... In particular:

e O(n?9) variables for the d SDP-relaxation in the hierarchy
e O(nY) matrix size for the LMIs
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How to handle sparsity

The no-free lunch rule ...

The size of SDP-relaxations grows rapidly with the original
problem size ... In particular:

e O(n?9) variables for the d SDP-relaxation in the hierarchy
e O(nY) matrix size for the LMIs

— In view of the present status of SDP-solvers ... only small to
medium size problems can be solved by "standard"
SDP-relaxations ...
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How to handle sparsity

The no-free lunch rule ...

The size of SDP-relaxations grows rapidly with the original
problem size ... In particular:

e O(n?9) variables for the d SDP-relaxation in the hierarchy
e O(nY) matrix size for the LMIs

— In view of the present status of SDP-solvers ... only small to
medium size problems can be solved by "standard"
SDP-relaxations ...

— .... How to handle larger size problems ?
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How to handle sparsity

¢ develop more efficient general purpose SDP-solvers ...
(limited impact) ... or perhaps dedicated solvers ....?
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How to handle sparsity

¢ develop more efficient general purpose SDP-solvers ...
(limited impact) ... or perhaps dedicated solvers ....?

e exploit symmetries when present ... Recent promising works
by De Klerk, Gaterman, Gvozdenovic, Laurent, Pasechnick,
Parrilo, Schrijver .. in particular for combinatorial optimization
problems. Algebraic techniques permit to define an equivalent
SDP of much smaller size.

¥ See e.g. works in and problems
(Bachoc, de Laat, Oliveira de Filho, Vallentin)
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How to handle sparsity

e exploit sparsity in the data. In general, each constraint
involves a small number of variables «, and the cost criterion is
a sum of polynomials involving also a small number of
variables. Recent works by Kim, Kojima, Lasserre, Maramatsu

and Waki
5" Yields a of the SOS-hierarchy where
° to the global optimum is preserved.
° for the class of problems.
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How to handle sparsity

e exploit sparsity in the data. In general, each constraint
involves a small number of variables «, and the cost criterion is
a sum of polynomials involving also a small number of
variables. Recent works by Kim, Kojima, Lasserre, Maramatsu

and Waki
5" Yields a of the SOS-hierarchy where

° to the global optimum is preserved.

° for the class of problems.
I¥" Can solve with

more than 2000 variables.
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How to handle sparsity

There has been also recent attempts to use other types of
algebraic certificates of positivity that try to avoid the
due to the associated with the
in Putinar’s positivity certificate

Recent work by :
@ Ahmadi et al. ¥ Hierarchy of LP or programs.
@ Lasserre, Toh and Zhang ™~ Hierarchy of with
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EXAMPLES
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How to handle sparsity
|. Optimal Control

Consider the ( ) problem:

)= inf /Th(x(t),u(t))dt
u 0

st x(t) = f(x(t),u(t)), tel0,T]
x(0) = xo

X() e XCR™ u(t)e UCR™,

that is, the goal is now to compute a function v : [0, T] — R (in
a suitable space).

In general

problems are hard to solve, and particularly
when

X(t) € X are present !
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How to handle sparsity

By introducing the concept of OCCUPATION MEASURE, there
exists a so-called of the which is
an infinite-dimensional on a suitable
space of measures, and in fact an instance of the Generalized

Problem of Moments.

Jean B. Lasserre™ semidefinite characterization



How to handle sparsity

By introducing the concept of OCCUPATION MEASURE, there
exists a so-called of the which is
an infinite-dimensional on a suitable
space of measures, and in fact an instance of the Generalized
Problem of Moments.

" Under some conditions the optimal values of and
are the same.
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How to handle sparsity

By introducing the concept of OCCUPATION MEASURE, there
exists a so-called of the which is
an infinite-dimensional on a suitable
space of measures, and in fact an instance of the Generalized
Problem of Moments.

" Under some conditions the optimal values of and
are the same.

5" When the vector field f is a polynomial and the sets X and
U are compact then the MOMENT-SOS

approach can be applied p
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How to handle sparsity

" |t yields a
of increasing size whose associated monotone sequence of
optimal values CONVERGES to the optimal value p of the

" |ass. J.B., Henrion D., Prieur C., Trelat E. (2008),
Nonlinear optimal control via occupation measures and
LMI-relaxations, , pp. 1649—-1666.
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How to handle sparsity

Extensions & Related works

5" Compute polynomial
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How to handle sparsity

Extensions & Related works

5" Compute polynomial

IS Approximate (ROA) by sets of the
form {x : g(x) > 0} for some polynomial g.
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How to handle sparsity

Extensions & Related works

5" Compute polynomial

IS Approximate (ROA) by sets of the
form {x : g(x) > 0} for some polynomial g.

" Convex Optimization of
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How to handle sparsity

Extensions & Related works

5" Compute polynomial

IS Approximate (ROA) by sets of the
form {x : g(x) > 0} for some polynomial g.

" Convex Optimization of

By several authors ... Ahmadi, Henrion, Korda, Lass.,
Majumdar, Parrilo, Tedrake, Tobenkin, etc.

Jean B. Lasserre™ semidefinite characterization



How to handle sparsity

... and SDP-relaxations are also used:

K& for (seen as Min-max optimization)
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... and SDP-relaxations are also used:

K& for (seen as Min-max optimization)

L~ for and
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... and SDP-relaxations are also used:

K& for (seen as Min-max optimization)
K& for and

K& for in
video sequences (Big data ...)

by several authors ... Benavoli, Lagoa, Lass., Piga, Regruto,
Sznaier, ...
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ll. Inverse Optimal Control

@ ¥ adynamical system x(t) = f(x(t), u(t)), t € [0, T]

Jean B. Lasserre™ semidefinite characterization



How to handle sparsity

ll. Inverse Optimal Control

@ ¥ adynamical system x(t) = f(x(t), u(t)), t € [0, T]
@ ¥ State and/or Control constraints x(t) € X, u(t) € U,
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ll. Inverse Optimal Control

@ ¥ adynamical system x(t) = f(x(t), u(t)), t € [0, T]
@ ¥ State and/or Control constraints x(t) € X, u(t) € U,

@ ¥ g database of recorded feasible trajectories
{x(t; x;), u(t; x;)} for several initial states x, € X,

Jean B. Lasserre™ semidefinite characterization



How to handle sparsity

compute a Lagrangian

h: X x U — R for which those trajectories are optimal.
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How to handle sparsity

compute a Lagrangian
h: X x U — R for which those trajectories are optimal.

IS~ Key idea: I: Hamilton-Jacobi-Bellman (HJB) is the perfect
tool to certify of the given trajectories in
the database.
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Indeed suppose that two functions ¢ : [0, T] x X — R and
h: X x U — R satisfy:

0p 0¢

a9 T 9y >
(9) 5p + 5, [0 W) +h(x.u) >0, ¥(x,u1) € Xx Ux[0,T]

(xx) o(T,x) <0 VxeXr.

v

(ad) = %H h> (x(t; x:), u(t; %), 7) <0;  o(T,x(T;x:)) >0,

ot  0x

for all (x(t; x), u(t; x;), 7) in the database
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Then

(t,z) = mf/ s))ds

st x(s) = f(x(s),u(s)), seltT]
x(s) e XCR" u(s) e UCR™
X(t) =z
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Then
(t,z) = |nf / s))ds
s.t. x(s) = f(x(s),u(s)), seltT]
x(s) e XCR" u(s) e UCR™
X(t) =z
I¥" and {x(t; x;), u(t; x;)} of the database
are
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Then
(t,z) = |nf / s))ds
s.t. x(s) = f(x(s),u(s)), seltT]
x(s) e XCR" u(s) e UCR™
X(t) =z
I¥" and {x(t; x;), u(t; x;)} of the database
are

I5" That is: The Lagrangian / solves the INVERSE OCP and
is the associated Optimal Value Function
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IE" Key idea Il: Look for POLYNOMIALS

¢ € R[x, t] and h € R[x, u]
@ that satisfy the relaxed HJB conditions (*) and (**)
@ and also satisfy

(1) <8£ + gfer h) (x(t x7), u(t; x-),7) < e

(1) (T, x(T:x:)) = —e,
for all (x(t; x.), u(t; x;), 7) in the database
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How to handle sparsity

I~ . and SOLVE:

:r27if§1{e+||h||1 sst (%), (%), (1), (11); deg(0), deg(h) <20}

where one replaces the ("), (), ()
and (ft) by appropriate
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I~ . and SOLVE:

:rgip{e+||hll1 sst (%), (%), (1), (11); deg(0), deg(h) <20}

where one replaces the ("), (), ()
and (ft) by appropriate

5" a HIERARCHY of SEMIDEFINITE PROGRAMS (whose
size increases with the degree d).

Pauwels E., Henrion D., Lasserre J.B. (2016) Linear Conic
Optimization for Inverse Optimal Control,
, pp. 1798-1825.

Jean B. Lasserre* semidefinite characterization



How to handle sparsity

lll. Approximation of sets with quantifiers

Let f € R[x, y] and let K C R"” x RP be the semi-algebraic set:
K:: {(X7.y):X€B; g/(X,y)ZO, j:17"‘7m}7

where B C R" is a box [—a, a]".

Approximate the set:

Ri:={xeB: f(x,y) < Oforall y such that (x,y) € K}

by a sequence of sets of the form:

Ok :={xeB: J(x) <0}

for some polynomials Jk.
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How to handle sparsity

" Use to build up a hierarchy of
semidefinite programs (Q)ken Of increasing size:
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How to handle sparsity

" Use to build up a hierarchy of
semidefinite programs (Q)ken Of increasing size:

@ An optimal solution of Q, provides the coefficients of the
polynomial Ji of degree 2k.
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How to handle sparsity

" Use to build up a hierarchy of
semidefinite programs (Q)ken Of increasing size:

@ An optimal solution of Q, provides the coefficients of the
polynomial Ji of degree 2k.

@ Forevery k:
O == {xeB: J(x) <0} R ( )
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How to handle sparsity

" Use to build up a hierarchy of
semidefinite programs (Q)ken Of increasing size:

@ An optimal solution of Q, provides the coefficients of the
polynomial Ji of degree 2k.
@ Forevery k:
O = {xeB: J(x) <0} C R ( )
@ vol(Rf\ ©) — 0as k — occ.

Lass. J.B. (2015) Tractable approximations of sets defined with
quantifiers, , pp. 507-527.
Henrion D., Lass. J.B. (2006), Convergent relaxations of
polynomial matrix inequalities and static output feedback,

, pp- 192-202
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How to handle sparsity

IV. Convex Underestimators of Polynomials

I¥" e.g., in the context of the most efficient
& popular strategy is to use BRANCH & BOUND combined with
efficient techniques used at each node of

the search tree.

e Typically, f is a sum ), fx where each f, “sees" only very few
variables (say 3, 4). The same observation is true for each g; in
the constraints:
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IV. Convex Underestimators of Polynomials

I¥" e.g., in the context of the most efficient
& popular strategy is to use BRANCH & BOUND combined with
efficient techniques used at each node of

the search tree.

e Typically, f is a sum ), fx where each f, “sees" only very few
variables (say 3, 4). The same observation is true for each g; in
the constraints:

Hence a very appealing idea is to pre-compute

fy < f and @ < g; for each non convex
fx and each non convex g;, independently and separately!
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IV. Convex Underestimators of Polynomials

I¥" e.g., in the context of the most efficient
& popular strategy is to use BRANCH & BOUND combined with
efficient techniques used at each node of

the search tree.

e Typically, f is a sum ), fx where each f, “sees" only very few
variables (say 3, 4). The same observation is true for each g; in
the constraints:

Hence a very appealing idea is to pre-compute

fy < f and @ < g; for each non convex
fx and each non convex g;, independently and separately!

— hence potentially many problems.
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How to handle sparsity

Hence one has to solve the generic problem

Compute a p<fofa
non convex polynomial f on a box B C R".
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How to handle sparsity

Hence one has to solve the generic problem

Compute a p<fofa
non convex polynomial f on a box B C R".

Message:

CONVEX POLYNOMIAL UNDER-ESTIMATORS can be
computed efficiently!
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How to handle sparsity

I: Characterizing convex polynomial under-estimators

@ p(x) < f(x) for every x € B.
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How to handle sparsity

I: Characterizing convex polynomial under-estimators

@ p(x) < f(x) for every x € B.
@ pconvex on B — V2p(x) = 0 for all x € B,

— u'V?p(x)u > 0, V(x,u) e Bx U,

where U := {u: |[u|]?2 < 1}.
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I: Characterizing convex polynomial under-estimators

@ p(x) < f(x) for every x € B.
@ pconvex on B — V2p(x) = 0 for all x € B,

— u'V?p(x)u > 0, V(x,u) e Bx U,

where U := {u: |[u|]?2 < 1}.

Hence we have the two

f(x) — p(x

) 0, YxeB
u’v2p(x)u

0, Vv(x,u)eBxU.

AVARIY
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How to handle sparsity

[I: Characterizing "tightness"

One possibility is to evaluate the L{-norm / [f(x) — p(x)| dx
B
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How to handle sparsity

[I: Characterizing "tightness"

One possibility is to evaluate the L{-norm / [f(x) — p(x)| dx
B

_>/B(f(x)_p(x) ax = /Bf(x)dx—/Bp(x) ax

constant linear in p!
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[I: Characterizing "tightness"

One possibility is to evaluate the L{-norm / [f(x) — p(x)| dx
B

_>/B(f(x)_p(x) ax = /Bf(x)dx—/Bp(x) ax

constant linear in p!
Indeed, writing p(X) = )~ p. X%,
aeN?
/p dx_an/x ax,
aeN" —
Yo

where 7, is known (and easy to compute)!
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How to handle sparsity

Hence computing the

of f reduces to solve the optimization
problem:
P: = inf
st > @
a€eN]

st f(x)—p(x) >0,VxeB

u’Vv2p(x)u > 0, ¥(x,u) € B x U.

¥ which has an optimal solution p* € R[x]q

Jean B. Lasserre™ semidefinite characterization



How to handle sparsity

Replacing the positivity constraints with

" yields a ,
each with an optimal solution p; € R[X]4, and:

Theorem (Lass & T. Phan Thanh (JOGO 2013))
p; = pP* € R[X]g, @as ¢ — oo
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Replacing the positivity constraints with

" yields a ;
each with an optimal solution p; € R[X]4, and:

Theorem (Lass & T. Phan Thanh (JOGO 2013))
p; = pP* € R[X]g, @as ¢ — oo

— Provides the best results in the comparison:

Guzman, Y. A; Hasan, M. M. F; Floudas, C. A: Computational
Comparison of Convex Underestimators for Use in a
Branch-and-Bound Global Optimization Framework,
Optimization in Science and Engineering; Springer, 2014; pp
229-246.
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V. Super-Resolution

Suppose that an unknown SIGNED measure ¢* (signal) is
supported on finitely many (few) atoms (x(k))r_; C K, i.e.,

Mn

Yk Ox(k), for some real numbers (k).
k=1

The goal is to find

the (x(k))r_; c Kand (7k)e_4 from only
(moments)

Oy, = /x“dgb*(x), acl.
K
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How to handle sparsity

Solve the infinite-dimensional LP

P inf{]lolmv: /K X*do(X) = qu, acl.

/ (or equivalently on
the torus T C C):

If the distance between any two atoms is sufficiently large and
sufficiently many (few) moments are available then :
e ¢* is the unique solution of P, and
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Solve the infinite-dimensional LP

P inf{]lolmv: /K X*do(X) = qu, acl.

/ (or equivalently on
the torus T C C):

If the distance between any two atoms is sufficiently large and
sufficiently many (few) moments are available then :

e ¢* is the unique solution of P, and

o is obtained by solving a

5" Candés & Fernandez-Granda: Comm. Pure & Appl. Math.
(2013)
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How to handle sparsity

Writing the signed measure ¢pon las ¢ — ¢,

P reads

+ + +
¢|nf d(¢p"+¢7) /dqﬁ(x / dop™(X) = Qu, a€Tl}

.. again an instance of the GMP!
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How to handle sparsity

Writing the signed measure ¢pon las ¢ — ¢,

P reads

+ + +
¢|nf d(¢p"+¢7) /d¢(x / dop™(X) = Qu, a€Tl}

.. again an instance of the GMP!

The dual P* reads: sup {{(p,q) : sup |p(x)| < 1}.
pER[X] xel
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How to handle sparsity

Writing the signed measure ¢pon las ¢ — ¢,

P reads

+ + +
¢|nf d(¢p"+¢7) /d¢(x / dop™(X) = Qu, a€Tl}

.. again an instance of the GMP!

The dual P* reads: sup {{(p,q) : sup |p(x)| < 1}.
pER[X] xel

K c R" via the
moment-SOS approach: is also possible.

¥ De Castro, Gamboa, Henrion & Lasserre: IEEE Trans. Info.
Theory (2016).
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VI. LP on spaces of measures: a rich framework

Consider the infinite dimensional LP:

m(ﬁin{/degb: o < u; /Kgdgb:b,VQeG}

where :
@ K c R" is a basic semi-algebraic set,
@ The unknown ¢ is a K

@ The functions f, and g € G are
@ All moments of the measure p are available.
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How to handle sparsity

For instance this framework can be used :

@ To compute Sharp Upper Bounds on p(K) some
moments of .
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How to handle sparsity

For instance this framework can be used :

@ To compute Sharp Upper Bounds on p(K) some
moments of .

@ To approximate as closely as desired,
, the Lebesgue volume of K, or the Gaussian
measure of K (for possibly non-compact K)
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How to handle sparsity

For instance this framework can be used :

@ To compute Sharp Upper Bounds on p(K) some
moments of .

@ To approximate as closely as desired,
, the Lebesgue volume of K, or the Gaussian
measure of K (for possibly non-compact K)

@ CHANCE-CONSTRAINTS: Given ¢ > 0 and a prob.
distribution ., approximate

Q. = {x: Proby(f(X,w) <0) >1—¢}

by sets of form : Q¢ := {x: hy(x) < 0} for some
polynomial hy of degree d.

and more !
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For instance this framework can be used :

@ To compute Sharp Upper Bounds on p(K) some
moments of .

@ To approximate as closely as desired,
, the Lebesgue volume of K, or the Gaussian
measure of K (for possibly non-compact K)

@ CHANCE-CONSTRAINTS: Given ¢ > 0 and a prob.
distribution ., approximate

Q. = {x: Proby(f(X,w) <0) >1—¢}

by sets of form : Q¢ := {x: hy(x) < 0} for some
polynomial hy of degree d.

and more ! ¥~ Henrion et al. (SIREV 2009), Lass. (Adv. Appl.
Math. (2017)), Lass. (Adv. Comput. Math. (2016)), Lass.
(2017) (IEEE Control Systems Letters), ...
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In fact .... the list of potential applications of the is almost
ENDLESS!
&

Moments

in Mathematics

Volume 37

PROCEEDINGS OF

SYMPOSIA IN
APPLIED MATHEMATICS

b AMERICAN MATHEMATICAL SOCIETY
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