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Inverse wave scattering problem

Generic setup: A collection (array) of sensors probes a medium

with signals (pulses, chirps) that generate waves which are scat-

tered by inhomogeneities. The sensors collect the scattered

waves and the goal of the inversion is to estimate the medium.

Numerous applications: medical ultrasound, nondestructive aval-

uation of structures, radar imaging, oil exploration, etc.
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Inverse problem for wave equations

• Sound waves: pressure p(t, ~x) and velocity ~v(t, ~x) satisfy

σ(~x)

c(~x)
∂t~v(t, ~x) +∇p(t, ~x) = ~F (t, ~x)

∂tp(t, ~x) + σ(~x)c(~x)∇ · ~v(t, ~x) = 0, t > 0, ~x ∈ R3.

Medium modeled by acoustic impedance σ(~x) & wave speed c(~x).

• Electromagnetics: electric field ~E(t, ~x) satisfies

∇×∇× ~E(t, ~x) +
1

c2(~x)
∂2
t
~E(t, ~x) = ~F (t, ~x), t > 0, ~x ∈ R3,

for constant magnetic permeability and wave speed c(~x).

• ~F (t, ~x) models the excitation (localized at support of sensors)
for t > 0. Homogeneous initial conditions.

Inversion data are measurements of p(t, ~xr) or ~E(t, ~xr) at the
locations ~xr of the receiving sensors.
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Inverse problem

• Inversion model uses separation of scales:

1

c2(~x)
=

1

c2o(~x)
[1 + ρ(~x) + µ(~x)]

co(~x) = smooth, determines kinematics of waves (travel times).

ρ(~x) = rough part, is the reflectivity that we wish to determine.

µ(~x) models small variations at small scale (clutter), that may
have a cumulative scattering effect on the wave.

• What can we estimate?

- Smooth co(~x) (velocity analysis) with travel time tomography
(many applied papers, theory of Uhlmann, Stefanov, Vasy) or
using differential semblance optimization (Symes).

- Reflectivity ρ (imaging problem).

- Clutter cannot be estimated  random model of uncertain µ.
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Basic imaging uses single scattering approximation

D(t, ~xr, ~xs) ≈
∫
d~y ρ(~y)α(~xs, ~y, ~xr)f

′′[t− τ(~xs, ~y, ~xr)]

for smooth α(~xs, ~y, ~xr) (geometrical spread), τ = travel time.
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Scattered wave∗ by point reflector plotted vs. time on abscissa
and receiver location on ordinate. Center sensor emits pulse f(t).
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Multiply scattered echos among point reflectors are ignored.

∗Numerical simulations by Chrysoula Tsogka. 5



Image formation - Reverse time (Kirchhoff) migration

• The imaging function

I(~y) =
Nr∑
r=1

Ns∑
s=1

D
(
τ(~xs, ~y, ~xr), ~xr, ~xs

)
is expected to peak at points ~y in support of the reflectivity.
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• Resolution in direction of propagation (range) depends on sup-
port of pulse (which is inverse proportional to the bandwdith).

• Resolution in cross-range is determined by typical wavelength,
the aperture of the array and the distance (range) of scatterers.
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Superresolution and uncertainty

• Improved resolution can be achieved by

- Use very broadand signals, like narrow pulses modulated at high

frequency, as well as large (possibly synthetic) apertures.

- If image is “sparse” use optimization methods like `1 (Candès,

Tao; Donoho, Elad; Fannjiang; Papanicolaou, Moscoso...) or

subspace projection methods like MUSIC (Devaney and many

engineering refs.). These are typically for single frequency waves.

• Uncertainty impedes imaging:

- Additive noise (easiest to mitigate).

- Multiple scattering (nonlinear) effects, specially those due to

numerous inhomogeneities (clutter) are harder to deal with (e.g.,

atmosphere effects on X-band radar systems).
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Noise vs. clutter effects in migration imaging∗
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Noise is averaged out by summation (over large aperture).

∗Simulations by Chrysoula Tsogka. 8



Super-resolution with time harmonic waves?

B., Josselin Garnier: Imaging P scatterers of diameter αλ, α� 1:

• Ammari: Electric field at ~xr due to point dipole source at ~xs,
with current ~eq, for 1 ≤ r, s ≤ N and 1 ≤ q ≤ 3,

~Eq(~xr; ~xs) =
P∑
p=1

G(~xr, ~yp)ρpG(~yp, ~xs)~eq +O(α4).

Scatterers at ~yp with polarization tensors ρp ∈ C3×3, P � N ,

k = 2π/λ and G(~x, ~y) =
(
I + ∇∇T

k2

)
eik|~x−~y|
4π|~x−~y|.

• Noisy data model DW = D +W ,

D =
P∑

p=1

G(~yp)ρpG
T (~yp), G(~yp) =

G(~x1; ~yp)
...

G(~xN ; ~yp)

 ∈ C3N×3

Complex Gaussian noise W with mean zero, independent entries
with std S. (Noise with known correlation can be handled.)

9



MUSIC imaging with noisy data

• The 3N × 3N matrix D =
P∑

p=1

G(~yp)ρpG
T (~yp) has generically

rank 3P � 3N , with left singular vectors u1, . . . ,u3P .

• MUSIC imaging: Leading left singular vector h1(~y) of 3N × 3

matrix G(~y) satisfies

h1(~y) ∈ rangeD = span{u1, . . . ,u3P} iff ~y ∈ {~y1, . . . , ~yP}.

• Noisy data matrix DW has r significant singular values σ̃j ≥ 2S

and left singular vectors ũj, where S can be estimated.

Random matrix theory asymptotic results∗:
∣∣∣ũ?juq∣∣∣2 ≈ δjq cos2 θj

cos2 θj = 1−
(
S

σj

)2
, σj ≈

1

2

[
σ̃j +

√
σ̃2
j − (2S)2

]
.

∗Benaych-Georges, Guionnet, Maida 10



MUSIC imaging with noisy data

• Scatterer locations are estimated by peaks of

I(~y) =

1−
r∑

j=1

|ũ?jh1(~y)|2

cos2 θj

−1

• Once we know the locations, can also estimate the reflectivity

(polarization) tensors ρp.

• Smaller size of the array aperture relative to range of scatterers

and incomplete measurements lower effective rank: r < 3P  

worse resolution and ρp estimates.
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Numerical simulations

Images with planar square array of aperture 10 wavelengths and

N = 441 antennas. Noise is stronger than signal (SNR = 0.03).
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Imaging of three scatterers

Large aperture Small aperture

SNR = 0.03

SNR = 0.1

Conclusion: noise can be mitigated.
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Clutter viewed as a realization of random process µ(~x)
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• Due to cumulative scattering neither p(t, ~x) nor its expectation

E[p(t, ~x)] are close to the model po(t, ~x) that neglects the clutter.

• The coherent field E[p(t, ~x)] decays with the distance of prop-

agation in the medium  random fluctuations gain strength.

• Coherent Interferometric Imaging (CINT) (B., Garnier, Papani-

colaou and Tsogka) uses cross-correlations of the measurements

to mitigate random effects. It images with energy resolved over

direction and time of arrival (Wigner transform).
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Illustration: Sonar with random geometrical optics model

• For weak inhomogeneities and wavelengths� correlation length
in random medium � distance of propagation,

D(t, ~xr, ~xs) ≈
∫
dω

2π
e−iωtf̂(ω)

P∑
p=1

ρp Ĝ(ω, ~xr, ~yp)Ĝ(ω, ~yp, ~xs)

with Ĝ(ω, ~x, ~yp) = eiω[τ(~x,~yp)+δτ(~x,~yp)]

4π|~x−~yp| .

• Random travel times δτ(~x, ~yp) are Gaussian distributed, with
large std  E[D(t, ~xr, ~xs)] ≈ 0.

• In cross-correlations for nearby receivers and sources∫
dt′D(t′, ~xr′, ~xs′)D(t′ − t, ~xr, ~xs) =

∫
dω

2π
e−iωtD̂(ω, ~xr′, ~xs′)D̂(ω, ~xr, ~xs)

random phases are reduced  coherence enhancement.

• Superposition of cross-correlations evaluated at the proper
travel time  robust CINT image with respect to realization
of random medium. But clutter manifests in blurrier images.
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Super-resolution in random media?

B. and Ilker Kocyigit: Deblur CINT image:

For sufficiently large planar aperture a and bandwidth B,

I(~y) ≈
P∑

p,q=1

ρpρq M(~y, ~yp, ~yq) e
−

∣∣∣y−yp+yq
2

∣∣∣2
2R2 −

∣∣∣z−zp+zq
2

∣∣∣2
2R2

z , ~y = (y, z).

• CINT resolution R = λoL/Xd and Rz = co/Ωd in terms of decor-

relation length Xd � a and frequency Ωd � B of waves at array.

• M(~y, ~yp, ~yq) decays very rapidly in ‖~yp− ~yq‖  basically a diag-

onal (convolution) kernel.

Unknown |ρp|2 and can be extracted with convex optimization∗.

∗Candès, Fernandez-Granda; Castro, Gamboa; Demanet; Peyré, ... 16



Numerical results. Typical cross-range localization.
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Abscissa is in R = λoL/Xd units. Direct `1 means minimize ‖ρ‖1
constrained by fitting array data within a tolerance.
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Filters of multiple scattering effects

• For imaging small reflectors in strong random media (B., Cueto,
Papanicolaou, Tsogka; Aubry, Derode) using signal processing,
computational harmonic analysis and random matrix theory.

• Reverberations between sought reflectors may also be strong∗

c(~x) Migration image

B. and Druskin, Mamonov, Zaslavsky: use data-driven reduced
order models to transform the measurements to those corre-
sponding to single scattering.

∗Results by Druskin, Mamonov, Zaslavsky. 18



Setup for data-driven reduced order model

• Assume known co. Unknown is acoustic impedance σ(~x).

Explanation in 1-D for x ∈ (0, X). Sound hard boundary at x = 0
i.e., v(t,0) = 0 and sound soft at x = X i.e., p(t,X) = 0.

• After some manipulations and for pulse f(t) with non-negative
Fourier transform, can restate acoustic wave system as

∂t

(
P (t, x)
V (t, x)

)
=

(
0 −Lq
LTq 0

)(
P (t, x)
V (t, x)

)
, t > 0, 0 < x < X,

where

P (t, x) = p(t, x)/
√
σ(x), V (t, x) = −

√
σ(x)v(t, x).

• Excitation in initial condition P (0, x) = b(x), V (0, x) = 0, with
b(x) supported on sensor at x = 0+.

• Operator∗ Lq = −co∂x + co
2 ∂xq(x) is linear in q(x) = lnσ(x).

∗Discretization on very fine grid with N points, Lq is bidiagonal matrix. 19



Data-driven reduced order model (ROM)

• Pressure field at time∗ jτ

P j = cos
(
jτ

√
LqLTq

)
b = Tj(P)b, P = cos

(
τ

√
LqLTq

)
,

where Tj = Chebyshev polynomial of first kind.

• Data are: Dj = bTP j = bTTj(P)b.

• ROM n× n matrix P̃ satisfying

Dj = b̃TTj(P̃)b̃, j = 0, . . . ,2n− 1, b̃ = D
1/2
0 e1,

is the projection of P on span {P0, . . . ,Pn−1} ,

P̃ = QTPQ, P = (P0, . . . ,Pn−1) = QR.

∗Time sampling consistent with Nyquist rate. 20



Causal construction: P = (P0, . . . ,Pn−1) = QR

Causality  Q is concentrated near the diagonal and is almost
independent of q. Moreover, P̃ is tridiagonal.

Columns of P on left and of Q on right.
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From data to ROM

• Start with P = (P0, . . . ,Pn−1) = QR and use P j = Tj(P)b

(PTP)jk = bTTj(P)Tk(P)b

=
1

2
bT
[
Tj+k(P) + T|j−k|(P)

]
b

=
1

2

(
Dj+k +D|j−k|

)
= (RTR)jk, 0 ≤ j, k ≤ n− 1.

Thus, R can be computed by Cholesky decomposition.

• ROM P̃ = QTPQ = R−T
(
PTPP

)
R−1 can be computed from

(
PTPP

)
j,k

= bTTj(P)PTk(P)b

=
1

4

(
Dj+k+1 +D|k−j+1|+D|k−j−1|+D|k+j−1|

)
.
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Propagator factorization

• We show that

P̃ = QTPQ = QT cos
(
τ

√
LqLTq

)
Q = In−

τ2

2
L̃qL̃Tq , L̃q = QTLqQV

where QV is the projection matrix on space spanned by the ve-

locity snapshots Vj, for j = 0, . . . , n− 1.

• P̃ is n × n tridiagonal, so Cholesky factor L̃q is bidiagonal. It

is the projection of N ×N matrix Lq = fine grid discretization of

−co∂x + co
2 ∂xq(x).

• Projection matrices Q and QV are approx. independent of q.

 L̃q is approximately linear in q.
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Data to Born (single scattering) mapping

• The single scattering (Born) approximation applies to small

qε = εq, where ε� 1.

• Because L̃q is approximately linear in q, we can calculate

L̃qε = L̃0 + ε
(
L̃q − L̃0

)
,

and obtain the transformed data

Dε
j = b̃TTj(P̃

ε
)b̃, j = 0, . . . ,2n− 1,

where

P̃
ε

:= In −
τ2

2
L̃qεL̃Tqε.

• Everything generalizes to higher dimensions, where the basic

difference is that we work with block tridiagonal P̃.
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Numerical results in 1-D
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Numerical results in 2-D

σ(x) co(x)

Scattered data Born approximation DtB
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