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Nonlinearities in recommender systems
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e

Low-rank matrix models predict Roummel's rating as a weighted
sum of other users’ ratings.
Nonlinear models can yield more accurate predictions of human
preferences



General setup with missing data

» We have s points in R™:
X =z ... ] eRV

» We only observe m of the n entries in each x;; let € indicate
the locations of the observed entries and Pq(-) be the
projection onto this set.

» The incomplete version of X (with missing entries) is X
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General setup with missing data
» We have s points in R™:
X =z ... ] eRV

» We only observe m of the n entries in each x;; let € indicate
the locations of the observed entries and Pq(-) be the
projection onto this set.

» The incomplete version of X (with missing entries) is X

> With low-rank matrix completion, we might set

X =arg minrank(X) subject to Pa(X) = Pa(Xo)
X

X =argmin | X ||« subject to Pa(X) = Pa(Xo)
X
or
(U,V)=  argmin | X0 — Pa(UV||%

UeR™":|U||p<1,
VeRs*T
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Nonlinear representations of images

f ]

ugpumxe 1R0UH

39

Wrisl rofafion



Nonlinearities abound

Computer Vision

Subnet
Subnet

Subnet Subnet

Passive Monitors

Network Topology Inference

Genomics
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Can we extend the successes of low-rank matrix

completion to non-linear structures?

We currently lack a unified, systematic framework for learning
nonlinear models with missing data
How much missing data can be tolerated?
Efficient optimization algorithms?

Today: Three nonlinear models

> ¥

Single Index Models Unions of Algebraic Varieties
Subspaces
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Matrix
completion via
single index

models

Ravi Ganti

Laura Balzano
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Single index models!

Z € R™® is a latent low-rank matrix
X =g(Z) e R™* is a monotonic nonlinear transformation
Xij=9(Z;;) of each element of Z

(§,2) = argmin |[Pa(Xo - 9(2))[F
(g monotonic,
Z rank—r)

1[Ichimura. 1993, Horowitz and Hardle, 1996, Kalai and Sastry, 2009, Kakade et al., 2011, Ganti et al., 2015]

/39



Monotonic matrix completion in action (synthetic data)

RMSE on Test Data

0.20

. Low-rank Matrix
Completion
(LRMC)

[l Monotonic
Matrix Completion
(MMCQ)

0.30 0.45 0.65 0.80

m/n (fraction of entries observed)

n=30, s=20,r=5 g(z)=(1+e*)"!
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Monotonic matrix completion in action (real data)

Dataset Dimensions | Effective rank | Low- Mono-
rank tonic
matrix matrix
comple- | comple-
tion tion

PaperReco 3426 x 50 47 0.4026 | 0.2965

Jester-3 24938 x 100 66 6.8728 | 5.2348

ML-100k 1682 x 943 391 3.3101 1.1533

Cameraman | 1536 x 512 393 0.0754 | 0.06885

RMSE of different methods on real datasets.
Roughly 10% of the entries were observed in each case.
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Monotonic matrix completion theory?

We can bound the MSE of the output of the

MMC algorithm (Z, §) as a function of

» how much data is missing,

v

the data dimension,

v

the number of samples, and
» the underlying subspace rank
as long as
IX = Z|| = v/n

i.e., as long as the true g is not “too nonlinear”.

Q[Gant\ et al., 2015]
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Monotonic matrix completion theory?

We can bound the MSE of the output of the

MMC algorithm (Z, §) as a function of
» how much data is missing,
» the data dimension,
» the number of samples, and
» the underlying subspace rank
as long as

IX = Z|| = vn

i.e., as long as the true g is not “too nonlinear”.

Challenge: need more flexibility than single index models
provide

2 .
[Ganti et al., 2015]
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Matrix
completion for
unions of

subspaces

Daniel Roummel Laura Balzano Robert Nowak
Pimentel Marcia
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Unions of subspaces

high rank matrix

Ill
clustering
/ l \

complete complete complete
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Clustering followed by low-rank matrix completion 3

» Sparse subspace clustering (SSC):

c; = argmin e[y + A|Pq, (z; — Xoi0)ll3
c:{c,e;)=0

sorted ¢;'s

3[[\harmfav and Vidal, 2013, Yang et al., 2015]
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Clustering followed by low-rank matrix completion 3

» Sparse subspace clustering (SSC):

c; = argmin e[y + A|Pq, (z; — Xoi0)ll3
c:{c,e;)=0

sorted ¢;'s

» spectral clustering on the ¢;'s
» low-rank matrix completion on each cluster

Does not allow improved clustering based on completed
estimate

3[[Iham\far and Vidal, 2013, Yang et al., 2015]
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Group sparse matrix factorization®

U V'
— N

4[PimenteIfAIarcon et al., 2016]
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Group sparse matrix factorization®

U V'
— - ~

Uk Vik

4[Pimente|fA|arcon et al., 2016]
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Group sparse matrix factorization®

U V'
— ~

\

U, Vik

s K
(lj, V) = argmin || Xo—Po(UVD|%Z + ) l|lvi k2
s 2.2

Lemma 2: Accumulation point exists and is a critical point of

the objective function.

4 .
[Pimentel-Alarcon et al., 2016]
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GSSC Results

LRMC + SSC GSSC

s/K

Proportion of correctly classified points as a function of s/K (number of
columns per subspace) and m (number of observed entries per column). White
represents 100% accuracy. n = 25.
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GSSC Results

SSC-EWZF LRMC + SSC GSSC

L

Proportion of correctly classified points as a function of s/K (number of
columns per subspace) and m (number of observed entries per column). White
represents 100% accuracy. n = 25.

Challenge: accuracy depends heavily on quality of initial

clustering
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Matrix
completion for

algebraic varieties

o®

Greg Ongie Laura Balzano Robert Nowak
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Algebraic Varieties

An algebraic variety is the solution set of a system of polynomial
equations:

V={xecR":pi(z) = =pr(x) =0}

for some polynomials p1, ..., px in variables © = (1, ..., zy).

18 /39
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A union of subspaces is a variety®

Example: Union of line and plane

x=y=0 xz=0 yz=10

U :{Z = 0}’
UUuV = {zz=0,yz =0} _

system of quadratic eqns

Lemma 3: If Uy, ..., Uk are subspaces, then

UK Uy ={z: li(x) - lx(x) =0,
—_—————

product of linear forms

(. linear, ¢y, vanishes on Uy}

5A|gcbraic Subspace Clustering/Generalized PCA [Vidal et al., 2016]
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Matrix completion under a union of subspaces model®

high—rank matrix

subspace
clustering

/ l \
complete complete complete

Clustering is difficult with missing data.

6[Eril«sson et al., 2012, Yang et al., 2015, Pimentel-Alarcén et al., 2016] 20/39




Matrix completion under a union of subspaces model®

high-rank matrix

Variety formulations bypass clustering.

6[Eriksson et al., 2012, Yang et al., 2015, Pimentel-Alarcén et al., 2016]
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Veronese mappings
Key observation: Data belonging to a variety are rank deficient
under a Veronese embedding.

» Consider matrix of points in R? draw from a quadratic curve:

X — 1 T12 16) < R2x6
To1 X22 - T26

with cg +c1 21 + ca w2 + ¢3 SC%Z + 471,72, +C5 l“gl =0

(Xl.ia XZ,E)

21/39



Veronese mappings

Key observation: Data belonging to a variety are rank deficient
under a Veronese embedding.

» Consider matrix of points in R? draw from a quadratic curve:

l’ x PR x
x — [Tl 712 16) o g2x6
Ta1 X22 - T26

with ¢g + 1 T4+ Ccax2; + C3 :E%,i + a1 5%2, + C5 l‘%ﬂ- =0
» Map each point to all monomials with degree < 2:

1 1 1

1,1 x1,2 x1,6

2.1 T22 v T2.6

6x6
— 2 2 2
Y x? z7 5 z7 g eR
T1,1T2,1 T1,222,2 ** T1,622,6

2 2 2

T3 Ta2 0 Tag

» X is full rank, but Y is rank deficient:
c'Y =0 with ¢ = (cg, ...,c5)7 = rank(Y) < 5.

21/39



Veronese embeddings

» For x = [x1,...,2,]T € R" define

ga(x) = (27" 27" )aj<a €RY

(.

~
all degree < d monomials

_ (nt+d
for N = ("79)
> For a matrix
X =[x1,...,xs] € R™™2,

(bd(X) = [¢d($1), ...7¢d(;cs)] c RNXS

22/39



Veronese embeddings

» For x = [x1,...,2,]T € R" define

ga(x) = (27" 27" )aj<a €RY

all degree < d monomials

_ +d
for N = ("d )
» For a matrix
X =[x1,...,xs] € R™™2,

¢d(X) = [¢d($1), ...7¢d(g1;5)] c RNXS

Lemma 4: ¢,(X) is rank deficient if and only if columns of X

lie on a variety generated by polynomials of degree < d:
CTpy(X)=0




Restatement of Main Objective

Main objective:

Complete a partially observed matrix X under the assumption that
the columns of X lie on a variety?
Complete a partially observed matrix X under the assumption that
¢a(X) is low-rank
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Restatement of Main Objective

Main objective:

Complete a partially observed matrix X under the assumption that
the columns of X lie on a variety?

)

Complete a partially observed matrix X under the assumption that
¢a(X) is low-rank

Optimization formulation:

rr;‘i’n rank ¢4(X) subject to Po(X) = Pa(Xo)

23 /39



When could this work?

m samples/col

-1
": -|l-i.|l |5"i":
'lf.'.-"lh o 'l..IlI o

M = (m:{d) amples/col

24 /39



When could this work?
Degrees of freedom (DoF):

of a N x s rank-R matrix = R(N + s — R)

m samples/col
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of a N x s rank-R matrix = R(N + s — R)
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When could this work?
Degrees of freedom (DoF):

of a N x s rank-R matrix = R(N + s — R)
of a N x s rank-R Veronese embedding matrix = R(n + s — R)

m samples/col

Lemma 5: (Predicted minimal
sampling rate)

Ms>R(n+s—R)

1
d
m>n <f]> , fors >R

24 /39



Phase transitions - Parametric Curves/Surfaces

Example Datasets:

d=2,R=60
VMC, d=2 VMC, d=3

k-] 0.9

<

g 0.8
S
o 9o c 0.7},
7\’\ E E 0.6

£ .

=}

°

o

05 05

60 80 100 120 140
R

ambient dimension
datapoints
embedding space rank
samples per column

0.5
0.4

100 120 140 160 180

R
n = 20
s =300
R
m/n
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Unions of Subspaces

Recall that a union of subspaces is a variety.

Lemma 6: If the columns of X & R"*® belong to a
union of K subspaces, each with dimension at most 7, then
R =rank ¢4(X) < K(TJ(;d).

Then the minimal number of observed entries per column

is

m2>n (%)ll ~ Kl/dp

» To perform low-rank matrix completion in X, we'd need
m=~ Kr

» Bigger d isn't always better, as we need s = O(K7r?)

26 /39



Phase transitions - Union of Subspaces

Predicted sampling rate: m/n = O(K'/r)

3 LRMC LRMC-NCVX VMC, d=2 VMC, d=3
o & 09 0.9
b §co7 c07
(=] ; I E
Al E 0.5 0.5
2 o3 03
° 15 10 15 20 15 10 15 20 15 10 15 20 15 10 15 20

k k k k
Randomly generate UoS data:
ambient dimension n =15
subspace dimension r =3
number of subspaces K =1,...,20
samples per column m/n

27 /39



Schatten-p quasi-norm minimization

» Relaxed formulation:

rr}%n H(bd(X)ng subject to Pa(X) = Pa(Xo)

where || - ||s, is the Schatten-p quasi-norm defined as

p

1Y]ls, = <Z O'i(Y)p> , 0<p<1

with o;(Y") denoting the i*" singular value of Y.

» For p =1 we recover the nuclear norm; for p < 1 penalty is
non-convex.

» We call this optimization formulation variety-based matrix
completion (VMC).

28 /39



lterative Reweighted Least Squares (IRLS) Algorithm’

» Example: Low-rank matrix completion via nuclear norm
minimization

min [ Y] subject to Pa(Y) = Pa(¥;),
» Basic IRLS approach

1Y, =tr (YTY)2 =tr (YTY) (YTY) 2
———
w

7
[Fornasier et al., 2011, Mohan and Fazel, 2012]

29
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lterative Reweighted Least Squares (IRLS) Algorithm’

» Example: Low-rank matrix completion via nuclear norm
minimization

min [ Y] subject to Pa(Y) = Pa(¥;),
» Basic IRLS approach

1Y, =tr (YTY)2 =tr (YTY) (YTY) 2

—_——
w
while not converged do
W« (YTY) 2
Y < argminy tr (Y'Y )W subject to Po(Y) = Pa(Yo)
end while

7
[Fornasier et al., 2011, Mohan and Fazel, 2012]
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IRLS for Variety Completion

IRLS for low-rank matrix completion

while not converged do

W« (YTy):!

Y < argminy tr (Y7Y)W subject to Pa(Y) = Pa(Y))
end while

IRLS for variety-based matrix completion

while not converged do
p_
W (0a(X) 0a(X))> "
X « argminx tr ¢g(X)” ¢4( X)W subject to Po(X) =
Pa(Xo)
end while

Challenge: embedding space dimension N = (";d) = O(n%) is large.

30/39



The Kernel Trick®

Efficiently compute inner-products with polynomial kernel:
ka(@,y) = (¢a(@), da(y)) = (zTy +1)7.
For matrices X,Y:
ka(X,Y) = ¢a(X) ¢a(Y) = (XTY +1)%7

where 1 € R**¢ is the matrix of all ones and (-)®? denotes the
entrywise d-th power of a matrix.

Substantially reduces working dimension:

kg(X,Y) € R®*% vs. X € RV*s,

8[!\/\uller et al., 2001]
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IRLS for variety-based matrix completion

while not converged do
p_
W (6a(X)"¢a(X))2 7"
X <+ argminx tr¢g(X )T ¢q( X)W subject to Po(X) =
Pa(Xo)
end while

32/39



Kernelized IRLS for variety-based matrix completion

while not converged do
W o kg(X,X)271
X + argminx trkg(X, X)W subject to Pa(X) =
Pa(Xo)

end while

32/39



Kernelized IRLS for variety-based matrix completion

while not converged do
W o kg(X, X)57!
X + argminx trkg(X, X)W subject to Pa(X) =
Pa(Xo)

end while

Lemma 7: Every limit point of the iterates generated by
the kernelized IRLS algorithm is a stationary point of the e-
smoothed Schatten-p norm objective function

min tr(kq(X, X) + el)? s.t. Pa(X) = Pa(Xo)

32/39



Subspace clustering with missing data

Bootstrap into a subspace clustering algorithm with missing data
(VMC+SSCQ)

1. Fill in missing data with VMC
2. Sparse Subspace Clustering (SSC)°

o
3
o
o

all frames 6 frames 3 frames

—&— SSC-EWZF .o
5 0.4 [-o--LRMC+SSC 504 &
5 —&—VMC+SSCd=2| &
03[ |+A-VMC+SSCd=3| 0-3
£ £
802 802
12} [%]
=} p=}
S 0.1 s0t1t/ _® B0l A

0 0
0 0.1 0.2 0.3 0.4 05 0 0.1 02030405 0 0.1 0.2 0.3 04 05
missing rate missing rate missing rate

Motion segmentation on Hopkins 155 dataset

g[EIham\'far and Vidal, 2009]
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Nonlinear models for matrix completion

N
N

> Nonlinearities appear throughout in real-world data but are
ignored by low-rank matrix completion — SAD!

» Leveraging nonlinear models improves missing data inference
— TERRIFIC!

» Variety-based models offer TREMENDOUS flexibility without
clustering
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Nonlinear models for matrix completion

.
N g

> Nonlinearities appear throughout in real-world data but are
ignored by low-rank matrix completion — SAD!

» Leveraging nonlinear models improves missing data inference
— TERRIFIC!

» Variety-based models offer TREMENDOUS flexibility without
clustering

» Open questions: Are convex formulations possible? Or
stronger guarantees for non-convex formulations? Will
Roummel like Wonder Woman?

34 /39



Thank you

More details:
https://arxiv.org/abs/1703.09631
https://arxiv.org/abs/1512.08787

http://ieeexplore.ieee.org/document/7551734/

Big Data to
Knowledge(BD2K)

35/39
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