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VALID SEQUENCE

for every two rows, at least two coordinates increase
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IRASVAARD

VALID SEQUENCE

(1,1,1)

for every two rows, at least two coordinates increase

What's the length of longest valid sequence from {1,...,L}?

OBSERVATION

The length is at most 2.




MONOTONE SEQUENCES

THEOREM (ERDOS-SZEKERES 1935)

Every permutation of {1,...,n} has a monotone subsequence of
length at least v/n.
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MONOTONE SEQUENCES

THEOREM (ERDOS-SZEKERES 1935)

Every permutation of {1,...,n} has a monotone subsequence of
length at least v/n.

| A\

EXAMPLE
1 5 2 7 3 6 4

v

Proof. Under each number, write lengths of longest increasing and
decreasing subsequences ending there.
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ORDERED RAMSEY THEORY

Every 2-coloring of edges of Ky . .3 has a monochromatic forward
path of length at least \/n.
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PROPOSITION

Every 3-coloring of edges of K{; . .3 has a monochromatic forward
path of length at least /n.

Proof. Under each number, write lengths of longest
red/blue/green paths ending there.

1 2 3 4 5
1 1 2
1 2 3 4 5



ORDERED RAMSEY THEORY

PROPOSITION

Every 3-coloring of edges of K{; . .3 has a monochromatic forward
path of length at least /n.

Proof. Under each number, write lengths of longest
red/blue/green paths ending there.

1 2 3 4 5
1 1

1 2 3 4 5
1 1 2 1

Tight:
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3-1+#1

Every 3-coloring of edges of K{; ., has a not-all-colors forward
path of length at least /n.




3-1+#1

Every 3-coloring of edges of K{; ., has a not-all-colors forward
path of length at least /n.

Proof. Under each number, write lengths of longest
red-free/blue-free/green-free paths ending there.
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3-1+1

PROPOSITION

Every 3-coloring of edges of K{; ., has a not-all-colors forward
path of length at least /n.

Proof. Under each number, write lengths of longest
red-free/blue-free/green-free paths ending there.

1 2 3 4 5
1 2 3 4 5
1 1

1 2 3 4 5

Every 3-coloring of edges of K{; . ) has a not-all-colors forward
path of length at least y/n.
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Every 3-coloring of edges of K{; . ) has a not-all-colors forward
path of length at least \/n.

PROPOSITION
There is a 3-coloring of edges of K{1 .., where all not-all-colors

forward paths have length at most n?/3.
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CONSTRUCTION

ALREADY DEDUCED

Every 3-coloring of edges of K{; . has a not-all-colors forward
path of length at least \/n.

| \

PROPOSITION

There is a 3-coloring of edges of K{1 .., where all not-all-colors

forward paths have length at most n?/3.

There is a valid sequence of triples of length at least L3/2.

B e 1

OBSERVATION

Every valid sequence of triples has length at most L2.




k-MAJORITY TOURNAMENTS

Given n vertices, and 2k — 1 preference orderings on them

(permutations of 1,...,n), the k-majority tournament has jj
when majority of orderings prefer i over j.
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k-MAJORITY TOURNAMENTS

Given n vertices, and 2k — 1 preference orderings on them
(permutations of 1,...,n), the k-majority tournament has i
when majority of orderings prefer i over j.

Much research on these objects, from
@ social choice theory

@ extremal combinatorics

APPLICATION TO RAMSEY

Potential source of constructions: control size of largest transitive
subtournament.
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RAMSEY

THEOREM (ERDOS-SZEKERES ’35)

Every 2-coloring of edges of K, contains a monochromatic clique
of order at least % log, n.

THEOREM (ERDOS ’'47), PROBABILISTIC METHOD

There is a 2-coloring of the edges of K,, where all monochromatic
cliques have order at most 2 log, n.

CHALLENGE

| A\

Discover interesting new Ramsey constructions, esp. explicit.
@ Frankl-Wilson '81: < ecVlognloglogn

1—e
o Barak-Rao-Shaltiel-Wigderson '10, '12: gelse”
@ Cohen / Chattopadhyay-Zuckerman '15, : < elloglogn)®
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RAMSEY CONSTRUCTIONS

2k—1

Vertex set. n=r , write as (2k — 1)-tuples from 1,...,r.

Preference orderings. 2k — 1 in total

© Lexicographic.

@ Lexicographic, coordinates prioritized 2, 3, ..., r, 1.
© Lexicographic, coordinates prioritized 3, 4, ..., r, 1, 2.
Q etc.

Other orderings of less-significant coordinates should be used.

SPECIAL TRANSITIVE SUBTOURNAMENTS

If no tiebreaks necessary, for every two tuples, the later one is
greater in at least half the coordinates.
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RESuULT

There is a valid sequence of triples of length at least L3/2. l
Every valid sequence of triples has length at most L2, \

There is a valid sequence of triples of length at most L2/ log* L. \

2

Tower function T(n) = 22° . Inverse function is log* n.




AUXILIARY GRAPH

(1,3,1) —— 2 |
(3, 3, 3) —Yy
(6,1, 4) 6
(X, Y, 2) N
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MATCHING

Same-labeled edges form a matching. I
Proof.

Y

Y

(x,y, 2)

Y
(x,y' 2)




NON-CROSSING MATCHING

Proof.

Same-labeled edges form a non-crossing matching.

(x,y", 2)

(x Yy, z)

z
X"




INDUCED MATCHING

Same-labeled edges form an induced matching. I
Proof.

N N
X'—| z
\ ]
(x,y,2) =Y
(X, yl' ZI) /
z2<72' <z x<]
z\\ y
—/
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For every € > 0, there is an integer N so that every subset of
{1,..., N} with density > € contains a 3-term arithmetic
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COMBINATORIAL NUMBER THEORY

THEOREM (ROTH ’53)

For every € > 0, there is an integer N so that every subset of
{1,..., N} with density > € contains a 3-term arithmetic
progression.

Also true for k-term arithmetic progressions.

SZEMEREDI REGULARITY LEMMA

For every € > 0, there is an integer N so that every graph is
approximately an e-pseudorandom structure with less than N parts.




PrOOF OF ROTH’S THEOREM
@ Suppose A C {1,...,n} has no 3-term arithmetic
progressions.

@ For every x € {1,...,n} and a € A, create an x-edge between
top x 4+ a and bottom x + 2a.
12 x+a x+b 2n
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PROOF OF ROTH’S THEOREM
@ Suppose A C {1,...,n} has no 3-term arithmetic
progressions.

@ For every x € {1,...,n} and a € A, create an x-edge between
top x 4+ a and bottom x + 2a.
12 x+a x+b 2n
X
X
12

X+2a X+2b 3n

o Show that n|A|, the number of edges, is o(n?).
x+b=y+c

xX+2a=y+2c
22a—b=c

— x-edges induced matching

[m]

=
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Given a graph with n vertices, where edges can be decomposed
into n induced matchings. What is maximum possible number of
edges?
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Maximum < n?/el°8" " edges. l




RUZSA-SZEMEREDI

Given a graph with n vertices, where edges can be decomposed
into n induced matchings. What is maximum possible number of
edges?

THEOREM (RUZSA-SZEMEREDI)

Maximum < n?/log* n edges.

Maximum < n?/e!°8" " edges.

THEOREM (RUZSA-SZEMEREDI)

It is possible to achieve n?/eV'°8" edges, using 3-term arithmetic
progression free set.




Y -FREE MATCHING

Same-labeled edges form a ¥-free matching. I
Proof.

Y

Y

z2<72'<7"<z

/
—
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RUZSA-SZEMEREDI GENERALIZATIONS

Given a graph with 2n vertices, where edges can be decomposed
into n matchings that are X-free. What is maximum possible
number of edges?
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RUZSA-SZEMEREDI GENERALIZATIONS

Given a graph with 2n vertices, where edges can be decomposed
into n matchings that are X-free. What is maximum possible
number of edges?

If also forbid “floppy” ¥, max number of edges is at most n>/2.

QUESTION

Given a graph with 2n vertices, where edges can be decomposed
into n matchings that are {-free. What is maximum possible
number of edges?

Any improved bound transfers to triples problem.
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