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Point Processes

Interested in studying cascading series of events in networks. Examples

include:

• Biological neural networks: neuron firings can inhibit or stimulate

other neurons (Smith & Brown (2004))

• Social networks: users share their friends’ content (Zhou et al.

(2013))

• Crime: violence from one gang can lead to retaliatory violence from

another gang (Bertozzi et al. (2011))
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• Goal: estimate network structure from event data

• Network is possibly large relative to number of events we observe,

but we assume it is sparse.
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Related Work

Multi-Variate Poisson Autoregressive Model1:

Xt+1 ∼ Poisson(λt+1)

log(λt+1) = ν + A∗Xt

• ν = background rate

• Xt,m = number of events from node m during time period t

• A∗ = influence matrix to be estimated

1cf., Hall et al. (2016)
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Related Work

Multi-Variate Poisson Autoregressive Model:

Xt+1 ∼ Poisson(λt+1) where log(λt+1) = ν + A∗Xt
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Related Work

Multi-Variate Poisson Autoregressive Model:

Xt+1 ∼ Poisson(λt+1)

log(λt+1) = ν + A∗Xt

• Two key limitations:

• Model only considers first order effects

• Due to log link function, process can be highly unstable with positive

A∗. Hall et al. give sample complexity bounds assuming A∗ ≤ 0
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Log-linear point processes make bad generative models

Spike train data from monkey cortex.

Each row represents a single trial.

Simulated data generated by model learned

from spike train data.

Figure 1: Figures from Gerhard et al. (2016).
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Related Work

Multi-Variate Poisson Autoregressive Model:

Xt+1 ∼ Poisson(λt+1)

log(λt+1) = ν + A∗Xt

• Practitioners are interested in log-linear point process models 2, but

unrealistic as generative model 3

• Need stability to facilitate analysis, and understand space of

networks we can infer.

• No infinite rates in practice, real systems have dampening effects 4

2cf., Laub (2015); Mensi et al. (2011); Weber & Pillow (2016)
3cf., Gerhard et al. (2016)
4cf., Ertekin et al. (2015)
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Saturation effects ensure stability

Clipped PAR Model

log(λt+1) = ν + A∗min(Xt ,K ) for some constant K

• Clipped PAR model is stable with stimulatory effects.

• How does clipping function effect our ability to learn?
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Saturation effects

• What is the space of networks we can reconstruct with clipping?

How many observations do we need?

• Should depend on amount of clipping and structure of network.

Connections can’t be so stimulatory that we’re constantly clipping.
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ARMA(1,1) model

In a variety of applications want to consider longer term memory.

Consider:

Xt+1 ∼ Poisson(λt+1)

log(λt+1) = νt + A∗(
t∑

i=0

αiXt−i ) (1)

Similar form to PAR, but is equivalent to an ARMA(1,1) model:

log(λt+1) = ν + A∗Xt + α log(λt) (2)
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Clipped ARMA(1,1) Model

Notation

Let g(Xt) =
∑t

i=0 α
i min(Xt−i ,K ) for some constant K

Clipped ARMA(1,1) Model:

Xt+1 ∼ Poisson(λt+1)

log(λt+1) = νt + A∗g(Xt)

• Guarantees stability and incorporates long range memory but

clipping creates challenges in deriving performance guarantees.

• When α = 0 and K =∞ this reduces to PAR model
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Related Work

• Discrete-time point process models in low-dimensional setting (e.g.

INGARCH model) 5

• Continuous time models (e.g. Hawkes process) 6

• Application driven works incorporating saturation effects 7

5cf., Heinen (2003); Ferland et al. (2006)
6Hansen et al. (2012); Etesami et al. (2016)
7cf., Ertekin et al. (2015)
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Regularized MLE

Estimate A∗ using regularized maximum likelihood estimation:

Â = arg min
A

−L(A|XT )︸ ︷︷ ︸
negative log-likelihood

+ λ||A||1︸ ︷︷ ︸
regularizer

• Convex optimization problem

• Incorporates sparsity assumption

• Decomposable in rows of A:

âm = arg min
a
−L(am|XT ) + λ||a||1
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Statistical Learning Bounds

Two key ingredients needed for sample complexity bounds:

1. Deviation Bound: Let εt,m = Xt+1,m − exp(νm + 〈am, g(Xt)). Need

to find λ such that

max
m

1

T
||

T∑
t=1

g(Xt)εt,m||∞ ≤ λ

2. Restricted Eigenvalue: The smallest eigenvalue of

E[g(Xt)g(Xt)
T |Xt−1] is lower bounded by ω > 0. Strong

dependencies make ω smaller.
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Definition

εt,m = Xt,m − E[Xt,m|Xt−1] = Xt,m − exp(νm + 〈am, g(Xt−1)〉)

• Commonly studied settings where noise is iid and subgaussian do not

apply. Instead use martingale concentration inequalities to bound.

Deviation Bound

maxm || 1T
∑T

t=1 εt,mg(Xt−1)||∞ ≤ C log2(MT )√
T

whp
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Restricted Eigenvalue Condition

ω is a lower bound on eigenvalues of E[g(Xt)g(Xt)
T |Xt−1]

• Show this equivalent to lower bound on

Var (min(Xt,m,K )|Xt−1)

• Two worst case scenarios: λt,m = exp(νm + 〈am, g(Xt−1)〉) is very

small, or very large
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Restricted Eigenvalue Condition

ω is a lower bound on eigenvalues of E[g(Xt)g(Xt)
T |Xt−1]

• If λt,m small, variance can be bounded in terms of ||A∗||∞,K , α (but

independent of M,T )

• If λt,m large, variance can be bounded in terms of a constant κ

which is related to the fraction of observations that are clipped.
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Figure 2: Values of κ for varying ||A∗||∞ and K
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Performance Guarantees

Theorem 1:

Suppose data is generated according to the clipped ARMA(1,1) model.

Then:

||Â− A∗||2F ≤ C
R2
max

R2
min min( 1

2Rmin, κ)2
||A∗||0 log4(MT )

T

whp for T sufficiently large.

Notation

• M: size of network

• T : number of time periods

• Rmin,Rmax, κ: Independent of M and T.

Key takeaway: bound scales well in ||A||0 � T � M2 setting.
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Simulations
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Figure 3: MSE vs. T. Median of 100 trials is shown, with error bars denoting 25th-75th

percentiles. M=50, α = .25.
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Experiments

Can we identify geographic patters in criminal activity? 8

Figure 4: Spectral clustering of community areas in Chicago based on network learned from

crime data. Half day time discretization period used with α = .2. Log-likelihood of events on test

set larger than for constant Poisson process.

8cf., Moher et al. (2014); Adams & Linderman (2014)
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Conclusions

• The clipped ARMA(1,1) model incorporates saturation effects

common in real-world systems.

• Performance guarantees applicable in high-dimensional and sparse

setting.

• Lays groundwork for extensions to general autoregressive models or

to different regularizers.
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Thank You!
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