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Point Processes

Interested in studying cascading series of events in networks. Examples

include:

e Biological neural networks: neuron firings can inhibit or stimulate
other neurons (Smith & Brown (2004))

e Social networks: users share their friends’ content (Zhou et al.
(2013))

e Crime: violence from one gang can lead to retaliatory violence from
another gang (Bertozzi et al. (2011))




e Goal: estimate network structure from event data

e Network is possibly large relative to number of events we observe,
but we assume it is sparse.



Related Work

Multi-Variate Poisson Autoregressive Model:
X1 ~ Poisson(A¢11)

|Og()\t+1) =V -+ A*Xt

e 1 = background rate
e Xim = number of events from node m during time period t

e A* = influence matrix to be estimated

Lcf., Hall et al. (2016)



Related Work

Multi-Variate Poisson Autoregressive Model:

X1 ~ Poisson(A¢11) where log(Aer1) = v+ A X,
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Related Work

Multi-Variate Poisson Autoregressive Model:
X1 ~ Poisson(As11)
log(Aer1) = v+ A" X,
e Two key limitations:
e Model only considers first order effects

e Due to log link function, process can be highly unstable with positive
A*. Hall et al. give sample complexity bounds assuming A* <0
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Log-linear point processes make bad generative models
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Spike train data from monkey cortex. Simulated data generated by model learned
Each row represents a single trial. from spike train data.

Figure 1: Figures from Gerhard et al. (2016).



Related Work

Multi-Variate Poisson Autoregressive Model:
Xiy1 ~ Poisson(As11)

log(Aes1) = v+ A X,

e Practitioners are interested in log-linear point process models 2, but
unrealistic as generative model 3

e Need stability to facilitate analysis, and understand space of
networks we can infer.

e No infinite rates in practice, real systems have dampening effects *

2cf., Laub (2015); Mensi et al. (2011); Weber & Pillow (2016)
3cf., Gerhard et al. (2016)
4cf., Ertekin et al. (2015)



Saturation effects ensure stability

Clipped PAR Model
log(At+1) = v + A* min(X;, K) for some constant K

e Clipped PAR model is stable with stimulatory effects.
e How does clipping function effect our ability to learn?
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Saturation effects

e What is the space of networks we can reconstruct with clipping?
How many observations do we need?

e Should depend on amount of clipping and structure of network.
Connections can't be so stimulatory that we're constantly clipping.



ARMA(1,1) model

In a variety of applications want to consider longer term memory.
Consider:
X1 ~ Poisson(As11)

log(Ae+1) = ve + A*(Z o' Xe_i) (1)
i=0

Similar form to PAR, but is equivalent to an ARMA(1,1) model:

log(Ae+1) = v + A™X; + arlog(Ae) (2)
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Clipped ARMA(1,1) Model

Notation

Let g(X;) = 3i_ @' min(X;—;, K) for some constant K
Clipped ARMA(1,1) Model:

X1 ~ Poisson(As11)

log(At11) = vr + A"g(Xr)

e Guarantees stability and incorporates long range memory but
clipping creates challenges in deriving performance guarantees.

e When a@ = 0 and K = oo this reduces to PAR model
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Related Work

e Discrete-time point process models in low-dimensional setting (e.g.
INGARCH model) °
e Continuous time models (e.g. Hawkes process) °

e Application driven works incorporating saturation effects 7

5cf., Heinen (2003); Ferland et al. (2006)
SHansen et al. (2012); Etesami et al. (2016)
"cf., Ertekin et al. (2015)
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Regularized MLE

Estimate A* using regularized maximum likelihood estimation:

o~

A=argmin —L(AlXT) + M|AlI
A — ~——

negative log-likelihood  regularizer

e Convex optimization problem
e Incorporates sparsity assumption

e Decomposable in rows of A:

am = argmin —L(an|X7) + A||a||1
a
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Statistical Learning Bounds

Two key ingredients needed for sample complexity bounds:

1. Deviation Bound: Let €¢ 1 = Xet1.m — exp(Vm + (am, g(X:)). Need
to find A such that

.
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Statistical Learning Bounds

Two key ingredients needed for sample complexity bounds:

1. Deviation Bound: Let €¢ 1 = Xet1.m — exp(Vm + (am, g(X:)). Need
to find A such that

.
1
mnzjx?H Zg(?(t)ér,mﬂoo <A
=1

2. Restricted Eigenvalue: The smallest eigenvalue of
E[g(X:)g(X:)T|X:—1] is lower bounded by w > 0. Strong
dependencies make w smaller.
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Definition

€tm = Xt,m - IE:[Xt“,m")(t—l] = Xt,m - eXP(Vm I <am; g(Xt—1)>)

e Commonly studied settings where noise is iid and subgaussian do not
apply. Instead use martingale concentration inequalities to bound.

Deviation Bound

2
maxe |3 5 eem@(Xe1)|loo < SEELT whp
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Restricted Eigenvalue Condition
w is a lower bound on eigenvalues of E[g(X;)g(X:) " |X;_1]
e Show this equivalent to lower bound on
Var (min(Xe, m, K)|X¢—1)

e Two worst case scenarios: Arm = exp(Vm + (am, &(Xi—1))) is very
small, or very large
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Restricted Eigenvalue Condition
w is a lower bound on eigenvalues of E[g(X:)g(X:)T|X:_1]

o If A small, variance can be bounded in terms of ||A*||«, K, o (but
independent of M, T)

o If A, large, variance can be bounded in terms of a constant
which is related to the fraction of observations that are clipped.
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Figure 2: Values of « for varying ||A*||oc and K
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Performance Guarantees

Theorem 1:

Suppose data is generated according to the clipped ARMA(1,1) model.

Then:
A R [|A*lo log" (MT)
A— A* 2 <C max
|| ||F7 Rgﬂn min(%Rmin,K/)z T

whp for T sufficiently large.

Notation

e M: size of network
e T: number of time periods

® Riin, Rmax, #: Independent of M and T.

Key takeaway: bound scales well in ||Al|o < T < M? setting.
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Figure 3: MSE vs. T. Median of 100 trials is shown, with error bars denoting 25th-75th
percentiles. M=50, ov = .25.
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Experiments

Can we identify geographic patters in criminal activity?

Figure 4: Spectral clustering of community areas in Chicago based on network learned from
crime data. Half day time discretization period used with o« = .2. Log-likelihood of events on test
set larger than for constant Poisson process.

8cf., Moher et al. (2014); Adams & Linderman (2014)
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Conclusions

e The clipped ARMA(1,1) model incorporates saturation effects
common in real-world systems.

e Performance guarantees applicable in high-dimensional and sparse
setting.

e Lays groundwork for extensions to general autoregressive models or
to different regularizers.
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Thank You!



