

Network Reconstruction via High-Dimensional ODEs

Ali Shojaie Department of Biostatistics University of Washington faculty.washington.edu/ashojaie

SIAM Annual Meeting – 2017 Joint work with <u>Shizhe Chen</u> & Daniela Witten

Nonlinear Dynamics in Gene Regulatory Networks

Karlebach & Shamir (2008), Nature Reviews: Molecular Cell Biology

- p genes
- Expressions $X(\cdot)$ measured at *n* discrete time points t_1, \ldots, t_n

E. coli Gene Regulatory Network¹

¹Subnetwork of *E-coli* regulatory network (GeneNetWeaver, Schaffter et al, 2011)

The change in expression of one gene is "regulated" by the expressions of others at the same time point

 $X_j'(t) = f_j(X(t), \theta_j)$

The change in expression of one gene is "regulated" by the expressions of others at the same time point

 $X_j'(t) = f_j(X(t), \theta_j)$

Example: Linear ODEs, $X'(t) = \Theta X(t)$ ($\Rightarrow X(t) = \exp(\Theta t)X(0)$)

The change in expression of one gene is "regulated" by the expressions of others at the same time point

 $X_j'(t) = f_j(X(t), \theta_j)$

Example: Linear ODEs, $X'(t) = \Theta X(t)$ ($\Rightarrow X(t) = \exp(\Theta t)X(0)$)

● Given *X*(*t*) (and hence *X*′(*t*)), can find ⊙ ... either closed-form solutions or numerical methods

- Given *X*(*t*) (and hence *X'*(*t*)), can find ⊙ ... either closed-form solutions or numerical methods
- We observe noisy measurements at discrete time points: $Y_i = X(t_i) + \varepsilon_i$

- Given *X*(*t*) (and hence *X'*(*t*)), can find ⊙ ... either closed-form solutions or numerical methods
- We observe noisy measurements at discrete time points: $Y_i = X(t_i) + \varepsilon_i$

Suppose f is known but θ is unknown

 $X'(t) = f(X(t), \theta)$

Suppose f is known but θ is unknown

$$X'(t) = f(X(t), \theta)$$

Gold Standard:

• Find θ such that $X(\cdot; \theta)$ solves the ODE:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} \|Y_i - X(t_i; \theta)\|^2$$

s.t. $X'(t; \theta) = f(X(t; \theta), \theta)$

Suppose f is known but θ is unknown

$$X'(t) = f(X(t), \theta)$$

Gold Standard:

• Find θ such that $X(\cdot; \theta)$ solves the ODE:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} \|Y_i - X(t_i; \theta)\|^2$$

s.t. $X'(t; \theta) = f(X(t; \theta), \theta)$

- Accurate but slow
 - requires numerical solution of ODE for every candidate θ
 - \sqrt{n} -consistent²

Suppose f is known but θ is unknown

 $X'(t) = f(X(t), \theta)$

Suppose f is known but θ is unknown

$$X'(t) = f(X(t), \theta)$$

Collocation Methods³:

- Two-stage estimation strategy:
 - estimate $\hat{X}(t)$ and $\hat{X}'(t)$ from data (e.g. kernel smoothing)
 - find θ that minimizes deviation from ODE:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} \|\hat{X}'(t_i) - f\left(\hat{X}(t_i); \theta\right)\|_2^2$$

Suppose f is known but θ is unknown

$$X'(t) = f(X(t), \theta)$$

Collocation Methods³:

- Two-stage estimation strategy:
 - estimate $\hat{X}(t)$ and $\hat{X}'(t)$ from data (e.g. kernel smoothing)
 - find θ that minimizes deviation from ODE:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} \|\hat{X}'(t_i) - f\left(\hat{X}(t_i); \theta\right)\|_2^2$$

- Fast but not exact
 - easy computation
 - not solving the ODE exactly!

Challenges:

- Many genes and not many observations $(p \gg n)$
- Exact form of *f* not known!

$$X'_{j}(t) = \underline{f_{j}}(X(t); \boldsymbol{\theta}), \quad j = 1, \dots, p$$

Challenges:

- Many genes and not many observations $(p \gg n)$
- Exact form of f not known!

$$X'_{j}(t) = \underline{f_{j}}(X(t); \boldsymbol{\theta}), \quad j = 1, \dots, p$$

Solution:

• Assume that *f_j* is additive

$$X'_j(t) = \sum_{k=1}^p f_{jk}(X_k(t); \theta), \quad j = 1, \dots, p$$
$$Y_i = X(t_i) + \varepsilon_i, \ i = 1, \dots, n$$

Challenges:

- Many genes and not many observations $(p \gg n)$
- Exact form of f not known!

$$X'_{j}(t) = f_{j}(X(t); \boldsymbol{\theta}), \quad j = 1, \dots, p$$

Solution:

• Assume that *f_j* is additive

$$X'_j(t) = \sum_{k=1}^p f_{jk}(X_k(t); \theta), \quad j = 1, \dots, p$$
$$Y_i = X(t_i) + \varepsilon_i, \ i = 1, \dots, n$$

• $X_k \longrightarrow X_j$ iff $f_{jk} \neq 0$

Suppose f_j and θ are both unknown: $X'_j(t) = f_j(X(t), \theta)$

Suppose f_j and θ are both unknown: $X'_j(t) = f_j(X(t), \theta)$

Gradient Matching4:

- Estimate $\hat{X}_{j}(t)$ from Y_{j} (e.g., via nonparametric regression, etc)
- Calculate $\hat{X}'_{i}(t) \equiv \partial \hat{X}_{j} / \partial t$ (similar to collocation)

⁴Wu et al (2014), Henderson & Michailidis (2014)

Suppose f_j and θ are both unknown: $X'_j(t) = f_j(X(t), \theta)$

Gradient Matching4:

- Estimate $\hat{X}_{j}(t)$ from Y_{j} (e.g., via nonparametric regression, etc)
- Calculate $\hat{X}'_{i}(t) \equiv \partial \hat{X}_{j} / \partial t$ (similar to collocation)
- For a truncated basis $\psi = (\psi_1, \dots, \psi_M)^{\mathrm{T}}$,

 $f_{jk}(\cdot) = \psi(\cdot)^{\mathrm{T}} \theta_{jk} + \frac{\delta_{jk}(\cdot)}{(n-1)!}$ (allowing $M \to \infty$ with n)

⁴Wu et al (2014), Henderson & Michailidis (2014)

Suppose f_j and θ are both unknown: $X'_j(t) = f_j(X(t), \theta)$

Gradient Matching4:

- Estimate $\hat{X}_{j}(t)$ from Y_{j} (e.g., via nonparametric regression, etc)
- Calculate $\hat{X}'_i(t) \equiv \partial \hat{X}_j / \partial t$ (similar to collocation)
- For a truncated basis $\psi = (\psi_1, \dots, \psi_M)^{\mathrm{T}}$,

 $f_{jk}(\cdot) = \psi(\cdot)^{\mathrm{T}} \theta_{jk} + \frac{\delta_{jk}(\cdot)}{\delta_{jk}(\cdot)}$ (allowing $M \to \infty$ with n)

• For j = 1, ..., p, find $\hat{\theta}_j$ that minimizes $\int_0^1 \left\{ \hat{\mathbf{X}}'_j(t) - \underbrace{\theta_{j0} - \sum_{k=1}^p \psi\left(\hat{\mathbf{X}}_k(t)\right)^{\mathrm{T}} \theta_{jk}}_{\hat{f}_j} \right\}^2 dt + \lambda \sum_{k=1}^p \underbrace{\left[\int_0^1 \left\{ \psi\left(\hat{\mathbf{X}}_k(t)\right)^{\mathrm{T}} \theta_{jk} \right\}^2 dt \right]^{1/2}}_{\text{group lasso penalty}}$

A penalized regression problem!

⁴Wu et al (2014), Henderson & Michailidis (2014)

- Estimating the derivative is inefficient⁵!
- Hard to pick optimal bandwidth for estimating $d\hat{X}/dt!$

⁵More later...

- Estimating the derivative is inefficient⁵!
- Hard to pick optimal bandwidth for estimating $d\hat{X}/dt!$

⁵More later...

- Estimating the derivative is inefficient⁵!
- Hard to pick optimal bandwidth for estimating $d\hat{X}/dt!$

⁵More later...

- Estimating the derivative is inefficient⁵!
- Hard to pick optimal bandwidth for estimating $d\hat{X}/dt!$

- Estimating the derivative is inefficient⁵!
- Hard to pick optimal bandwidth for estimating $d\hat{X}/dt!$

- Estimating the derivative is inefficient⁵!
- Hard to pick optimal bandwidth for estimating $d\hat{X}/dt!$

⁵More later...

Recall that

$$X'_j(t) pprox oldsymbol{ heta}_{j0} + \sum_{k=1}^p oldsymbol{\psi}(X_k(t))^{\mathrm{T}} oldsymbol{ heta}_{jk}$$

Recall that

$$X'_j(t) pprox oldsymbol{ heta}_{j0} + \sum_{k=1}^p oldsymbol{\psi}(X_k(t))^{\mathrm{T}}oldsymbol{ heta}_{jk}$$

• Integrating both sides, we get

$$X_j(t) - X(0) \approx t \theta_{j0} + \sum_{k=1}^p \left(\int_0^t \psi(X_k(s))^{\mathsf{T}} ds \right) \theta_{jk}$$

Recall that

$$X_j'(t) pprox oldsymbol{ heta}_{j0} + \sum_{k=1}^p oldsymbol{\psi}(X_k(t))^{\mathrm{T}}oldsymbol{ heta}_{jk}$$

Integrating both sides, we get

$$X_j(t) - X(0) \approx t \theta_{j0} + \sum_{k=1}^p \left(\int_0^t \psi(X_k(s))^{\mathsf{T}} ds \right) \theta_{jk}$$

• Let $\Psi_{ik} = \int_0^{t_i} \psi(X_k(s)) ds$,

$$Y_{ij} \approx X(0) + t_i \theta_{j0} + \sum_{k=1}^{p} \Psi_{ik}^{\mathrm{T}} \theta_{jk} + \varepsilon_{ij}$$

• Ψ_{ik} can be estimated as $\int_0^{t_i} \psi(\hat{X}_k(s)) ds$

GRADE: Graph Reconstruction via Additive Differential Equations

GRADE: Graph Reconstruction via Additive Differential Equations

Suppose ODE is additive

$$X'_{j}(t) = \sum_{k=1}^{p} f_{jk}(X_{k}(t)), \quad j = 1, \dots, p$$

GRADE: Graph Reconstruction via Additive Differential Equations

Suppose ODE is additive

$$X'_{j}(t) = \sum_{k=1}^{p} f_{jk}(X_{k}(t)), \quad j = 1, \dots, p$$

• Estimate $\hat{X}_{j}(t)$ from Y_{j} (using, e.g., nonparametric regression, etc)

• Calculate $\hat{\Psi}_{ik} = \int_0^{t_i} \psi(\hat{X}_k(s)) \, ds, i = 1, \dots, n$

GRADE: Graph Reconstruction via Additive Differential Equations

Suppose ODE is additive

$$X'_{j}(t) = \sum_{k=1}^{p} f_{jk}(X_{k}(t)), \quad j = 1, \dots, p$$

- Estimate $\hat{X}_{j}(t)$ from Y_{j} (using, e.g., nonparametric regression, etc)
- Calculate $\hat{\Psi}_{ik} = \int_0^{t_i} \psi(\hat{X}_k(s)) \, ds, i = 1, \dots, n$
- Find the minimizer $\hat{\theta}_j$ of

$$\sum_{i=1}^{n} \left[Y_{ij} - t_i \theta_{j0} - \sum_{i=1}^{n} \hat{\Psi}_{ik}^{\mathrm{T}} \theta_{jk} \right]^2 + \lambda \sum_{k=1}^{p} \left[\sum_{i=1}^{n} \left(\hat{\Psi}_{ik}^{\mathrm{T}} \theta_{jk} \right)^2 \right]^{1/2}$$
group lasso

Theory – I

Variable selection consistency for

$$\sum_{i=1}^{n} \left[Y_{ij} - t_i \theta_{j0} - \sum_{i=1}^{n} \hat{\Psi}_{ik}^{\mathsf{T}} \theta_{jk} \right]^2 + \lambda \sum_{k=1}^{p} \left[\sum_{i=1}^{n} \left(\hat{\Psi}_{ik}^{\mathsf{T}} \theta_{jk} \right)^2 \right]^{1/2}$$

Theory – I

Variable selection consistency for

$$\sum_{i=1}^{n} \left[Y_{ij} - t_i \theta_{j0} - \sum_{i=1}^{n} \hat{\Psi}_{ik}^{\mathsf{T}} \theta_{jk} \right]^2 + \lambda \sum_{k=1}^{p} \left[\sum_{i=1}^{n} \left(\hat{\Psi}_{ik}^{\mathsf{T}} \theta_{jk} \right)^2 \right]^{1/2}$$

• Replacing $\hat{\Psi}_{ik}$ with Ψ_{ik} , we have a standardized group lasso regression

$$\sum_{i=1}^{n} \left[Y_{ij} - t_i \theta_{j0} - \sum_{i=1}^{n} \Psi_{ik}^{\mathsf{T}} \theta_{jk} \right]^2 + \lambda \sum_{k=1}^{p} \left[\sum_{i=1}^{n} \left(\Psi_{ik}^{\mathsf{T}} \theta_{jk} \right)^2 \right]^{1/2}$$

whose theoretical properties are well-understood

Theory – I

• Variable selection consistency for

$$\sum_{i=1}^{n} \left[Y_{ij} - t_i \theta_{j0} - \sum_{i=1}^{n} \hat{\Psi}_{ik}^{\mathsf{T}} \theta_{jk} \right]^2 + \lambda \sum_{k=1}^{p} \left[\sum_{i=1}^{n} \left(\hat{\Psi}_{ik}^{\mathsf{T}} \theta_{jk} \right)^2 \right]^{1/2}$$

• Replacing $\hat{\Psi}_{ik}$ with Ψ_{ik} , we have a standardized group lasso regression

$$\sum_{i=1}^{n} \left[Y_{ij} - t_i \theta_{j0} - \sum_{i=1}^{n} \Psi_{ik}^{\mathsf{T}} \theta_{jk} \right]^2 + \lambda \sum_{k=1}^{p} \left[\sum_{i=1}^{n} \left(\Psi_{ik}^{\mathsf{T}} \theta_{jk} \right)^2 \right]^{1/2}$$

whose theoretical properties are well-understood

• With $\hat{\Psi}_{ik}$ we have an errors-in-variables regression

Theory - I

Variable selection consistency for

$$\sum_{i=1}^{n} \left[Y_{ij} - t_i \theta_{j0} - \sum_{i=1}^{n} \hat{\Psi}_{ik}^{\mathsf{T}} \theta_{jk} \right]^2 + \lambda \sum_{k=1}^{p} \left[\sum_{i=1}^{n} \left(\hat{\Psi}_{ik}^{\mathsf{T}} \theta_{jk} \right)^2 \right]^{1/2}$$

• Replacing $\hat{\Psi}_{ik}$ with Ψ_{ik} , we have a standardized group lasso regression

$$\sum_{i=1}^{n} \left[Y_{ij} - t_i \theta_{j0} - \sum_{i=1}^{n} \Psi_{ik}^{\mathsf{T}} \theta_{jk} \right]^2 + \lambda \sum_{k=1}^{p} \left[\sum_{i=1}^{n} \left(\Psi_{ik}^{\mathsf{T}} \theta_{jk} \right)^2 \right]^{1/2}$$

whose theoretical properties are well-understood

- With $\hat{\Psi}_{ik}$ we have an errors-in-variables regression
- Need a bound on $\|\hat{\Psi} \Psi\|$

Theory - II

Theory – II

We establish a new concentration inequality to bound

$$\int_0^1 \left\{ \hat{X}_j(t) - X_j(t) \right\}^2 dt$$

- ► This inequality allows us to bound $\|\hat{\Psi} \Psi\|$ in high dimensions, when $\log p/n^{\alpha} = o(1)$ for some $0 < \alpha < 0.5$
- Using this inequality, the bound for derivative is asymptotically worst

Theory – II

We establish a new concentration inequality to bound

$$\int_0^1 \left\{ \hat{X}_j(t) - X_j(t) \right\}^2 dt$$

- ► This inequality allows us to bound $\|\hat{\Psi} \Psi\|$ in high dimensions, when $\log p/n^{\alpha} = o(1)$ for some $0 < \alpha < 0.5$
- Using this inequality, the bound for derivative is asymptotically worst
- We show that GRADE can consistently select the parents of each node in a sparse high-dimensional ODE network
 - The proof requires establishing model selection consistency of (standardized) group lasso regression with errors-in-variables⁶

⁶Extending lasso (Loh & Wainwright, 2012 and Rosenbaum & Tsybakov, 2010)

Simulation: Results

- NeRDS: Network Reconstruction via Dynamic Systems⁷
- GRADE

⁷Henderson & Michailidis (2014)

Application: DREAM-3 Challenge⁸ (Regulatory Networks)

- *in silico* data from 5 regulatory networks with p = 10 or 100; n = 50
- A difficult task: non-additive ODEs with unobserved latent variables

Application: DREAM-3 Challenge⁸ (Regulatory Networks)

- *in silico* data from 5 regulatory networks with p = 10 or 100; n = 50
- A difficult task: non-additive ODEs with unobserved latent variables

	p = 10		p = 100	
Network	NeRDS	GRADE	NeRDS	GRADE
Ecoli1	0.450	0.545	0.624	0.670
Ecoli2	0.512	0.643	0.637	0.653
Yeast1	0.486	0.679	0.610	0.636
Yeast2	0.525	0.607	0.568	0.584
Yeast3	0.467	0.576	0.617	0.567

Table: Area Under ROC Curves for NeRDS and GRADE

⁸Schaffter et al (2011)

Application: Brain Functional Connectivity

- Cortical activity map (CAM) project Allen Institute for Brain Science
- Calcium fluorescent imaging in a region of visual cortex at 175mm depth measured using two-photons technology
- 575 neurons \rightarrow 25 neuronal populations (5 \times 5 grids with \sim 20 neurons)
- 3 stimuli: frequencies of 1, 2, and 4 Hz, at a 90° spatial orientation
- R = 15 repetitions, n = 60 time points per repetition

Application: Brain Functional Connectivity

- Cortical activity map (CAM) project Allen Institute for Brain Science
- Calcium fluorescent imaging in a region of visual cortex at 175mm depth measured using two-photons technology
- 575 neurons \rightarrow 25 neuronal populations (5 \times 5 grids with \sim 20 neurons)
- 3 stimuli: frequencies of 1, 2, and 4 Hz, at a 90° spatial orientation
- R = 15 repetitions, n = 60 time points per repetition

Application: Brain Functional Connectivity

- Cortical activity map (CAM) project Allen Institute for Brain Science
- Calcium fluorescent imaging in a region of visual cortex at 175mm depth measured using two-photons technology
- 575 neurons \rightarrow 25 neuronal populations (5 \times 5 grids with \sim 20 neurons)
- 3 stimuli: frequencies of 1, 2, and 4 Hz, at a 90° spatial orientation
- R = 15 repetitions, n = 60 time points per repetition

More similar connectivity networks for closer frequencies

Summary

• Integration is better than differentiation!

Summary

- Integration is better than differentiation!
- GRADE takes advantage of the special structure of additive ODEs
 - It uses the linearity in parameters of truncated bases to avoid the estimation of derivatives
- Empirical & theoretical evidence shows improved performance
- GCV for bandwidth selection results in consistent estimates

Summary

- Integration is better than differentiation!
- GRADE takes advantage of the special structure of additive ODEs
 - It uses the linearity in parameters of truncated bases to avoid the estimation of derivatives
- Empirical & theoretical evidence shows improved performance
- GCV for bandwidth selection results in consistent estimates
- How can this idea be generalize to non-additive ODEs?

Acknowledgments:

- Grants from NSF-DMS & NIH-NIGMS
- Allen Institute for Brain Sciences for calcium imaging data and authors of existing methods for providing code

Reference:

Chen, S. & Witten (2016), JASA, in press

Acknowledgments:

- Grants from NSF-DMS & NIH-NIGMS
- Allen Institute for Brain Sciences for calcium imaging data and authors of existing methods for providing code

Reference:

Chen, S. & Witten (2016), JASA, in press

Thank You!

Comparison with Methods for Linear ODEs

- Linear ODEs of the form $X'(t) = \Theta X(t) + C$
- Comparison of GRADE with Hall & Ma (2014) and Brunel et al (2014)

Comparison with Methods for Linear ODEs

- Linear ODEs of the form $X'(t) = \Theta X(t) + C$
- Comparison of GRADE with Hall & Ma (2014) and Brunel et al (2014)

A Concentration Inequality

Theorem:

Under standard assumptions and if ε_j , j = 1, ..., p are i.i.d. N(0, 1), the local polynomial regression estimator $\hat{X}(\cdot)$ satisfies

$$\int_{0}^{1} \left\{ \hat{X}_{j}(t) - X_{j}(t) \right\}^{2} dt \le c_{1} n^{\frac{2\beta}{2\beta+1}(\alpha - 0.5)}$$

for all j = 1, ..., p, with probability converging to 1 if

$$p\exp(-c_2n^{2\alpha})=o(1).$$

Remarks:

- Here, β and α are constants related to the smoothness of X and the choice of bandwidth for X̂
- GCV, CV, and other methods can be used to choose the bandwidth
- For $\|\hat{X}' X'\|_2$, the rate is $n^{\frac{2\beta-2}{2\beta-1}(\alpha-0.5)}$

Model Selection Consistency

Theorem:

Let

$$N_j^* = \{k : \|\theta_{jk}\|_2 \neq 0\}, \quad j = 1, \dots, p$$

be the true parents of $X_j(\cdot)$ in the ODE network, and \hat{N}_j be its estimator using the proposed method. Then, under certain regularity conditions, as the number of time points *n* increases,

$$\mathbb{P}\left(\hat{N}_{j}=N_{j}^{*} \text{ for all } j=1,\ldots,p\right) \rightarrow 1.$$

Remark:

• The proof requires establishing model selection consistency of (standardized) group lasso regression with errors-in-variables