Network Reconstruction via High-Dimensional ODEs

Ali Shojaie
Department of Biostatistics
University of Washington
faculty.washington.edu/ashojaie

SIAM Annual Meeting - 2017
Joint work with Shizhe Chen \& Daniela Witten

Nonlinear Dynamics in Gene Regulatory Networks

$$
\begin{aligned}
& \frac{\mathbf{a}}{\frac{d\left(\text { gene }_{3}\right)}{d t}=k_{1, s} \cdot \frac{1}{1+k_{1,3} \cdot \text { gene }_{3}}-k_{1, d} \cdot \text { gene }_{1}} \\
& \frac{d\left(\text { gene }_{2}\right)}{d t}=k_{2, s} \cdot \frac{k_{21} \cdot \text { gene }_{1}}{1+k_{2,1} \cdot \text { gene }_{1}}-k_{2, \mathrm{~d}} \cdot \text { gene }_{2} \\
& \frac{d\left(\text { gene }_{3}\right)}{d t}=k_{3, s} \cdot \frac{k_{3,1} \cdot \text { gene }_{1} \cdot k_{3,2} \cdot \text { gene }_{2}}{\left(1+k_{3,1} \cdot \text { gene }\right) \cdot\left(1+k_{3,2} \cdot \text { gene }_{2}\right)}-k_{3, d} \cdot \text { gene }_{3}
\end{aligned}
$$

b

Karlebach \& Shamir (2008), Nature Reviews: Molecular Cell Biology

Time-course gene expression data

	0	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.1
rseB	0.22									
cpxR	0.99									
motB	0.71									
mdtA	0.62									
ompC	0.44									
infB	1.04									

E. coli Gene Regulatory Network ${ }^{1}$

In this graph: $\quad X_{1} \longrightarrow X_{2} \Longleftrightarrow X_{1}$ regulates X_{2}

[^0]
Gene Regulatory Network as a System of ODEs

Gene Regulatory Network as a System of ODEs

The change in expression of one gene is "regulated" by the expressions of others at the same time point

$$
X_{j}^{\prime}(t)=f_{j}\left(X(t), \theta_{j}\right)
$$

Gene Regulatory Network as a System of ODEs

The change in expression of one gene is "regulated" by the expressions of others at the same time point

$$
X_{j}^{\prime}(t)=f_{j}\left(X(t), \theta_{j}\right)
$$

Example: Linear ODEs, $X^{\prime}(t)=\Theta X(t) \quad(\Rightarrow X(t)=\exp (\Theta t) X(0))$

Gene Regulatory Network as a System of ODEs

The change in expression of one gene is "regulated" by the expressions of others at the same time point

$$
X_{j}^{\prime}(t)=f_{j}\left(X(t), \theta_{j}\right)
$$

Example: Linear ODEs, $X^{\prime}(t)=\Theta X(t) \quad(\Rightarrow X(t)=\exp (\Theta t) X(0))$

$$
\Theta=\left(\begin{array}{ccc}
-0.59 & -1.36 & 1.32 \\
0.00 & 1.18 & 0.62 \\
-1.52 & -0.93 & 0.00
\end{array}\right)
$$

Estimation of ODEs from Noisy Observations

Estimation of ODEs from Noisy Observations

- Given $X(t)$ (and hence $X^{\prime}(t)$), can find $\Theta \ldots$ either closed-form solutions or numerical methods

Estimation of ODEs from Noisy Observations

- Given $X(t)$ (and hence $X^{\prime}(t)$), can find $\Theta \ldots$ either closed-form solutions or numerical methods
- We observe noisy measurements at discrete time points: $Y_{i}=X\left(t_{i}\right)+\varepsilon_{i}$

Estimation of ODEs from Noisy Observations

- Given $X(t)$ (and hence $X^{\prime}(t)$), can find $\Theta \ldots$ either closed-form solutions or numerical methods
- We observe noisy measurements at discrete time points: $Y_{i}=X\left(t_{i}\right)+\varepsilon_{i}$

Existing Approaches: Parameter Estimation

Existing Approaches: Parameter Estimation

Suppose f is known but θ is unknown

$$
X^{\prime}(t)=f(X(t), \theta)
$$

Existing Approaches: Parameter Estimation

Suppose f is known but θ is unknown

$$
X^{\prime}(t)=f(X(t), \theta)
$$

Gold Standard:

- Find θ such that $X(\cdot ; \theta)$ solves the ODE:

$$
\begin{array}{r}
\hat{\theta}=\arg \min _{\theta} \sum_{i=1}^{n}\left\|Y_{i}-X\left(t_{i} ; \theta\right)\right\|^{2} \\
\text { s.t. } X^{\prime}(t ; \theta)=f(X(t ; \theta), \theta)
\end{array}
$$

Existing Approaches: Parameter Estimation

Suppose f is known but θ is unknown

$$
X^{\prime}(t)=f(X(t), \theta)
$$

Gold Standard:

- Find θ such that $X(\cdot ; \theta)$ solves the ODE:

$$
\begin{array}{r}
\hat{\theta}=\arg \min _{\theta} \sum_{i=1}^{n}\left\|Y_{i}-X\left(t_{i} ; \theta\right)\right\|^{2} \\
\text { s.t. } X^{\prime}(t ; \theta)=f(X(t ; \theta), \theta)
\end{array}
$$

- Accurate but slow
- requires numerical solution of ODE for every candidate θ
- \sqrt{n}-consistent ${ }^{2}$

Existing Approaches: Parameter Estimation

Suppose f is known but θ is unknown

$$
X^{\prime}(t)=f(X(t), \theta)
$$

Existing Approaches: Parameter Estimation

Suppose f is known but θ is unknown

$$
X^{\prime}(t)=f(X(t), \theta)
$$

Collocation Methods ${ }^{3}$:

- Two-stage estimation strategy:
- estimate $\hat{X}(t)$ and $\hat{X}^{\prime}(t)$ from data (e.g. kernel smoothing)
- find θ that minimizes deviation from ODE:

$$
\hat{\theta}=\arg \min _{\theta} \sum_{i=1}^{n}\left\|\hat{X}^{\prime}\left(t_{i}\right)-f\left(\hat{X}\left(t_{i}\right) ; \theta\right)\right\|_{2}^{2}
$$

[^1]
Existing Approaches: Parameter Estimation

Suppose f is known but θ is unknown

$$
X^{\prime}(t)=f(X(t), \theta)
$$

Collocation Methods ${ }^{3}$:

- Two-stage estimation strategy:
- estimate $\hat{X}(t)$ and $\hat{X}^{\prime}(t)$ from data (e.g. kernel smoothing)
- find θ that minimizes deviation from ODE:

$$
\hat{\theta}=\arg \min _{\theta} \sum_{i=1}^{n}\left\|\hat{X}^{\prime}\left(t_{i}\right)-f\left(\hat{X}\left(t_{i}\right) ; \theta\right)\right\|_{2}^{2}
$$

- Fast but not exact
- easy computation
- not solving the ODE exactly!
${ }^{3}$ Varah (1982)

Gene Regulatory Network as a System of ODEs

Gene Regulatory Network as a System of ODEs

Challenges:

- Many genes and not many observations ($p \gg n$)
- Exact form of f not known!

$$
X_{j}^{\prime}(t)=f_{j}(X(t) ; \theta), \quad j=1, \ldots, p
$$

Gene Regulatory Network as a System of ODEs

Challenges:

- Many genes and not many observations $(p \gg n)$
- Exact form of f not known!

$$
X_{j}^{\prime}(t)=f_{j}(X(t) ; \theta), \quad j=1, \ldots, p
$$

Solution:

- Assume that f_{j} is additive

$$
\begin{aligned}
X_{j}^{\prime}(t) & =\sum_{k=1}^{p} f_{j k}\left(X_{k}(t) ; \theta\right), \quad j=1, \ldots, p \\
Y_{i} & =X\left(t_{i}\right)+\varepsilon_{i}, i=1, \ldots, n
\end{aligned}
$$

Gene Regulatory Network as a System of ODEs

Challenges:

- Many genes and not many observations $(p \gg n)$
- Exact form of f not known!

$$
X_{j}^{\prime}(t)=f_{j}(X(t) ; \theta), \quad j=1, \ldots, p
$$

Solution:

- Assume that f_{j} is additive

$$
\begin{aligned}
X_{j}^{\prime}(t) & =\sum_{k=1}^{p} f_{j k}\left(X_{k}(t) ; \theta\right), \quad j=1, \ldots, p \\
Y_{i} & =X\left(t_{i}\right)+\varepsilon_{i}, i=1, \ldots, n
\end{aligned}
$$

- $X_{k} \longrightarrow X_{j}$ iff $f_{j k} \neq 0$

Existing Approaches: Non-parametric Estimation

Suppose f_{j} and θ are both unknown: $X_{j}^{\prime}(t)=f_{j}(X(t), \theta)$

Existing Approaches: Non-parametric Estimation

Suppose f_{j} and θ are both unknown: $X_{j}^{\prime}(t)=f_{j}(X(t), \theta)$
Gradient Matching ${ }^{4}$:

- Estimate $\hat{X}_{j}(t)$ from Y_{j} (e.g., via nonparametric regression, etc)
- Calculate $\hat{X}_{j}^{\prime}(t) \equiv \partial \hat{X}_{j} / \partial t$ (similar to collocation)
${ }^{4}$ Wu et al (2014), Henderson \& Michailidis (2014)

Existing Approaches: Non-parametric Estimation

Suppose f_{j} and θ are both unknown: $X_{j}^{\prime}(t)=f_{j}(X(t), \theta)$

Gradient Matching ${ }^{4}$:

- Estimate $\hat{X}_{j}(t)$ from Y_{j} (e.g., via nonparametric regression, etc)
- Calculate $\hat{X}_{j}^{\prime}(t) \equiv \partial \hat{X}_{j} / \partial t$ (similar to collocation)
- For a truncated basis $\psi=\left(\psi_{1}, \ldots, \psi_{M}\right)^{\mathrm{T}}$,

$$
f_{j k}(\cdot)=\boldsymbol{\psi}(\cdot)^{\mathrm{T}} \theta_{j k}+\delta_{j k}(\cdot) \quad(\text { allowing } M \rightarrow \infty \text { with } n)
$$

${ }^{4}$ Wu et al (2014), Henderson \& Michailidis (2014)

Existing Approaches: Non-parametric Estimation

Suppose f_{j} and θ are both unknown: $X_{j}^{\prime}(t)=f_{j}(X(t), \theta)$
Gradient Matching ${ }^{4}$:

- Estimate $\hat{X}_{j}(t)$ from Y_{j} (e.g., via nonparametric regression, etc)
- Calculate $\hat{X}_{j}^{\prime}(t) \equiv \partial \hat{X}_{j} / \partial t$ (similar to collocation)
- For a truncated basis $\psi=\left(\psi_{1}, \ldots, \psi_{M}\right)^{\mathrm{T}}$,

$$
f_{j k}(\cdot)=\psi(\cdot)^{\mathrm{T}} \theta_{j k}+\delta_{j k}(\cdot) \quad(\text { allowing } M \rightarrow \infty \text { with } n)
$$

- For $j=1, \ldots, p$, find $\hat{\theta}_{j}$ that minimizes

$$
\int_{0}^{1}\{\hat{X}_{j}^{\prime}(t)-\underbrace{\theta_{j 0}-\sum_{k=1}^{p} \psi\left(\hat{X}_{k}(t)\right)^{\mathrm{T}} \theta_{j k}}_{\hat{f}_{j}}\}^{2} d t+\lambda \sum_{k=1}^{p} \underbrace{\left[\int_{0}^{1}\left\{\psi\left(\hat{X}_{k}(t)\right)^{\mathrm{T}} \theta_{j k}\right\}^{2} d t\right]^{1 / 2}}_{\text {group lasso penalty }}
$$

A penalized regression problem!
${ }^{4}$ Wu et al (2014), Henderson \& Michailidis (2014)

Key Observation - I

Key Observation - I

- Estimating the derivative is inefficient ${ }^{5}$!
- Hard to pick optimal bandwidth for estimating $d \hat{X} / d t$!

[^2]
Key Observation - I

- Estimating the derivative is inefficient ${ }^{5}$!
- Hard to pick optimal bandwidth for estimating $d \hat{X} / d t$!

${ }^{5}$ More later...

Key Observation - I

- Estimating the derivative is inefficient ${ }^{5}$!
- Hard to pick optimal bandwidth for estimating $d \hat{X} / d t$!

${ }^{5}$ More later...

Key Observation - I

- Estimating the derivative is inefficient ${ }^{5}$!
- Hard to pick optimal bandwidth for estimating $d \hat{X} / d t$!

${ }^{5}$ More later...

Key Observation - I

- Estimating the derivative is inefficient ${ }^{5}$!
- Hard to pick optimal bandwidth for estimating $d \hat{X} / d t$!

${ }^{5}$ More later...

Key Observation - I

- Estimating the derivative is inefficient ${ }^{5}$!
- Hard to pick optimal bandwidth for estimating $d \hat{X} / d t$!

${ }^{5}$ More later...

Key Observation - II

Key Observation - II

- Recall that

$$
X_{j}^{\prime}(t) \approx \theta_{j 0}+\sum_{k=1}^{p} \psi\left(X_{k}(t)\right)^{\mathrm{T}} \theta_{j k}
$$

Key Observation - II

- Recall that

$$
X_{j}^{\prime}(t) \approx \theta_{j 0}+\sum_{k=1}^{p} \psi\left(X_{k}(t)\right)^{\mathrm{T}} \theta_{j k}
$$

- Integrating both sides, we get

$$
X_{j}(t)-X(0) \approx t \theta_{j 0}+\sum_{k=1}^{p}\left(\int_{0}^{t} \psi\left(X_{k}(s)\right)^{\mathrm{T}} d s\right) \theta_{j k}
$$

Key Observation - II

- Recall that

$$
X_{j}^{\prime}(t) \approx \theta_{j 0}+\sum_{k=1}^{p} \psi\left(X_{k}(t)\right)^{\mathrm{T}} \theta_{j k}
$$

- Integrating both sides, we get

$$
X_{j}(t)-X(0) \approx t \theta_{j 0}+\sum_{k=1}^{p}\left(\int_{0}^{t} \psi\left(X_{k}(s)\right)^{\mathrm{T}} d s\right) \theta_{j k}
$$

- Let $\Psi_{i k}=\int_{0}^{t_{i}} \psi\left(X_{k}(s)\right) d s$,

$$
Y_{i j} \approx X(0)+t_{i} \theta_{j 0}+\sum_{k=1}^{p} \Psi_{i k}^{\mathrm{T}} \theta_{j k}+\varepsilon_{i j}
$$

- $\Psi_{i k}$ can be estimated as $\int_{0}^{t_{i}} \psi\left(\hat{X}_{k}(s)\right) d s$

Key Observation - II

Key Observation - II

- Integral estimation is more precise!

Key Observation - II

- Integral estimation is more precise!

Key Observation - II

- Integral estimation is more precise!

Key Observation - II

- Integral estimation is more precise!

Key Observation - II

- Integral estimation is more precise!

Key Observation - II

- Integral estimation is more precise!

Our Proposal

Our Proposal

GRADE: Graph Reconstruction via Additive Differential Equations

Our Proposal

GRADE: Graph Reconstruction via Additive Differential Equations

- Suppose ODE is additive

$$
X_{j}^{\prime}(t)=\sum_{k=1}^{p} f_{j k}\left(X_{k}(t)\right), \quad j=1, \ldots, p
$$

Our Proposal

GRADE: Graph Reconstruction via Additive Differential Equations

- Suppose ODE is additive

$$
X_{j}^{\prime}(t)=\sum_{k=1}^{p} f_{j k}\left(X_{k}(t)\right), \quad j=1, \ldots, p
$$

- Estimate $\hat{X}_{j}(t)$ from Y_{j} (using, e.g., nonparametric regression, etc)
- Calculate $\hat{\Psi}_{i k}=\int_{0}^{t_{i}} \psi\left(\hat{X}_{k}(s)\right) d s, i=1, \ldots, n$

Our Proposal

GRADE: Graph Reconstruction via Additive Differential Equations

- Suppose ODE is additive

$$
X_{j}^{\prime}(t)=\sum_{k=1}^{p} f_{j k}\left(X_{k}(t)\right), \quad j=1, \ldots, p
$$

- Estimate $\hat{X}_{j}(t)$ from Y_{j} (using, e.g., nonparametric regression, etc)
- Calculate $\hat{\Psi}_{i k}=\int_{0}^{t_{i}} \psi\left(\hat{X}_{k}(s)\right) d s, i=1, \ldots, n$
- Find the minimizer $\hat{\theta}_{j}$ of

$$
\sum_{i=1}^{n}[Y_{i j}-\underbrace{t_{i} \theta_{j 0}-\sum_{i=1}^{n} \hat{\Psi}_{i k}^{T} \theta_{j k}}_{\hat{f}_{j}}]^{2}+\lambda \sum_{k=1}^{p} \underbrace{\left.\sum_{i=1}^{n}\left(\hat{\Psi}_{i k}^{T} \theta_{j k}\right)^{2}\right]^{1 / 2}}_{\text {group lasso }}
$$

Theory - I

- Variable selection consistency for

$$
\sum_{i=1}^{n}\left[Y_{i j}-t_{i} \theta_{j 0}-\sum_{i=1}^{n} \hat{\Psi}_{i k}^{\mathrm{T}} \theta_{j k}\right]^{2}+\lambda \sum_{k=1}^{p}\left[\sum_{i=1}^{n}\left(\hat{\Psi}_{i k}^{\mathrm{T}} \theta_{j k}\right)^{2}\right]^{1 / 2}
$$

Theory - I

- Variable selection consistency for

$$
\sum_{i=1}^{n}\left[Y_{i j}-t_{i} \theta_{j 0}-\sum_{i=1}^{n} \hat{\Psi}_{i k}^{\mathrm{T}} \theta_{j k}\right]^{2}+\lambda \sum_{k=1}^{p}\left[\sum_{i=1}^{n}\left(\hat{\Psi}_{i k}^{\mathrm{T}} \theta_{j k}\right)^{2}\right]^{1 / 2}
$$

- Replacing $\hat{\Psi}_{i k}$ with $\Psi_{i k}$, we have a standardized group lasso regression

$$
\sum_{i=1}^{n}\left[Y_{i j}-t_{i} \theta_{j 0}-\sum_{i=1}^{n} \Psi_{i k}^{\mathrm{T}} \theta_{j k}\right]^{2}+\lambda \sum_{k=1}^{p}\left[\sum_{i=1}^{n}\left(\Psi_{i k}^{\mathrm{T}} \theta_{j k}\right)^{2}\right]^{1 / 2}
$$

whose theoretical properties are well-understood

Theory - I

- Variable selection consistency for

$$
\sum_{i=1}^{n}\left[Y_{i j}-t_{i} \theta_{j 0}-\sum_{i=1}^{n} \hat{\Psi}_{i k}^{\mathrm{T}} \theta_{j k}\right]^{2}+\lambda \sum_{k=1}^{p}\left[\sum_{i=1}^{n}\left(\hat{\Psi}_{i k}^{\mathrm{T}} \theta_{j k}\right)^{2}\right]^{1 / 2}
$$

- Replacing $\hat{\Psi}_{i k}$ with $\Psi_{i k}$, we have a standardized group lasso regression

$$
\sum_{i=1}^{n}\left[Y_{i j}-t_{i} \theta_{j 0}-\sum_{i=1}^{n} \Psi_{i k}^{\mathrm{T}} \theta_{j k}\right]^{2}+\lambda \sum_{k=1}^{p}\left[\sum_{i=1}^{n}\left(\Psi_{i k}^{\mathrm{T}} \theta_{j k}\right)^{2}\right]^{1 / 2}
$$

whose theoretical properties are well-understood

- With $\hat{\Psi}_{i k}$ we have an errors-in-variables regression

Theory - I

- Variable selection consistency for

$$
\sum_{i=1}^{n}\left[Y_{i j}-t_{i} \theta_{j 0}-\sum_{i=1}^{n} \hat{\Psi}_{i k}^{\mathrm{T}} \theta_{j k}\right]^{2}+\lambda \sum_{k=1}^{p}\left[\sum_{i=1}^{n}\left(\hat{\Psi}_{i k}^{\mathrm{T}} \theta_{j k}\right)^{2}\right]^{1 / 2}
$$

- Replacing $\hat{\Psi}_{i k}$ with $\Psi_{i k}$, we have a standardized group lasso regression

$$
\sum_{i=1}^{n}\left[Y_{i j}-t_{i} \theta_{j 0}-\sum_{i=1}^{n} \Psi_{i k}^{\mathrm{T}} \theta_{j k}\right]^{2}+\lambda \sum_{k=1}^{p}\left[\sum_{i=1}^{n}\left(\Psi_{i k}^{\mathrm{T}} \theta_{j k}\right)^{2}\right]^{1 / 2}
$$

whose theoretical properties are well-understood

- With $\hat{\Psi}_{i k}$ we have an errors-in-variables regression
- Need a bound on || $\hat{\Psi}-\Psi \mid$

Theory - II

Theory - II

- We establish a new concentration inequality to bound

$$
\int_{0}^{1}\left\{\hat{X}_{j}(t)-X_{j}(t)\right\}^{2} d t
$$

- This inequality allows us to bound $\|\hat{\Psi}-\Psi\|$ in high dimensions, when $\log p / n^{\alpha}=o(1)$ for some $0<\alpha<0.5$
- Using this inequality, the bound for derivative is asymptotically worst

Theory - II

- We establish a new concentration inequality to bound

$$
\int_{0}^{1}\left\{\hat{X}_{j}(t)-X_{j}(t)\right\}^{2} d t
$$

- This inequality allows us to bound $\|\hat{\Psi}-\Psi\|$ in high dimensions, when $\log p / n^{\alpha}=o(1)$ for some $0<\alpha<0.5$
- Using this inequality, the bound for derivative is asymptotically worst
- We show that GRADE can consistently select the parents of each node in a sparse high-dimensional ODE network
- The proof requires establishing model selection consistency of (standardized) group lasso regression with errors-in-variables ${ }^{6}$

[^3]
Simulation: Design

Simulation: Results

- NeRDS: Network Reconstruction via Dynamic Systems ${ }^{7}$
- GRADE

[^4]
Application: DREAM-3 Challenge ${ }^{8}$ (Regulatory Networks)

- in silico data from 5 regulatory networks with $p=10$ or $100 ; n=50$
- A difficult task: non-additive ODEs with unobserved latent variables

Application: DREAM-3 Challenge ${ }^{8}$ (Regulatory Networks)

- in silico data from 5 regulatory networks with $p=10$ or $100 ; n=50$
- A difficult task: non-additive ODEs with unobserved latent variables

Table: Area Under ROC Curves for NeRDS and GRADE

	$p=10$		$p=100$	
Network	NeRDS	GRADE	NeRDS	GRADE
Ecoli1	0.450	$\mathbf{0 . 5 4 5}$	0.624	$\mathbf{0 . 6 7 0}$
Ecoli2	0.512	$\mathbf{0 . 6 4 3}$	0.637	$\mathbf{0 . 6 5 3}$
Yeast1	0.486	$\mathbf{0 . 6 7 9}$	0.610	$\mathbf{0 . 6 3 6}$
Yeast2	0.525	$\mathbf{0 . 6 0 7}$	0.568	$\mathbf{0 . 5 8 4}$
Yeast3	0.467	$\mathbf{0 . 5 7 6}$	$\mathbf{0 . 6 1 7}$	0.567

[^5]
Application: Brain Functional Connectivity

- Cortical activity map (CAM) project - Allen Institute for Brain Science
- Calcium fluorescent imaging in a region of visual cortex at 175 mm depth measured using two-photons technology
- 575 neurons $\rightarrow 25$ neuronal populations (5×5 grids with ~ 20 neurons)
- 3 stimuli: frequencies of 1,2 , and 4 Hz , at a 90° spatial orientation
- $R=15$ repetitions, $n=60$ time points per repetition

Application: Brain Functional Connectivity

- Cortical activity map (CAM) project - Allen Institute for Brain Science
- Calcium fluorescent imaging in a region of visual cortex at 175 mm depth measured using two-photons technology
- 575 neurons $\rightarrow 25$ neuronal populations (5×5 grids with ~ 20 neurons)
- 3 stimuli: frequencies of 1,2 , and 4 Hz , at a 90° spatial orientation
- $R=15$ repetitions, $n=60$ time points per repetition

Application: Brain Functional Connectivity

- Cortical activity map (CAM) project - Allen Institute for Brain Science
- Calcium fluorescent imaging in a region of visual cortex at 175 mm depth measured using two-photons technology
- 575 neurons $\rightarrow 25$ neuronal populations (5×5 grids with ~ 20 neurons)
- 3 stimuli: frequencies of 1,2 , and 4 Hz , at a 90° spatial orientation
- $R=15$ repetitions, $n=60$ time points per repetition

- More similar connectivity networks for closer frequencies

Summary

Summary

- Integration is better than differentiation!

Summary

- Integration is better than differentiation!
- GRADE takes advantage of the special structure of additive ODEs
- It uses the linearity in parameters of truncated bases to avoid the estimation of derivatives
- Empirical \& theoretical evidence shows improved performance
- GCV for bandwidth selection results in consistent estimates

Summary

- Integration is better than differentiation!
- GRADE takes advantage of the special structure of additive ODEs
- It uses the linearity in parameters of truncated bases to avoid the estimation of derivatives
- Empirical \& theoretical evidence shows improved performance
- GCV for bandwidth selection results in consistent estimates
- How can this idea be generalize to non-additive ODEs?

Acknowledgments:

- Grants from NSF-DMS \& NIH-NIGMS
- Allen Institute for Brain Sciences for calcium imaging data and authors of existing methods for providing code

Reference:

- Chen, S. \& Witten (2016), JASA, in press

Acknowledgments:

- Grants from NSF-DMS \& NIH-NIGMS
- Allen Institute for Brain Sciences for calcium imaging data and authors of existing methods for providing code

Reference:

- Chen, S. \& Witten (2016), JASA, in press

Comparison with Methods for Linear ODEs

- Linear ODEs of the form $X^{\prime}(t)=\Theta X(t)+C$
- Comparison of GRADE with Hall \& Ma (2014) and Brunel et al (2014)

Comparison with Methods for Linear ODEs

- Linear ODEs of the form $X^{\prime}(t)=\Theta X(t)+C$
- Comparison of GRADE with Hall \& Ma (2014) and Brunel et al (2014)

A Concentration Inequality

Theorem:

Under standard assumptions and if $\varepsilon_{j}, j=1, \ldots, p$ are i.i.d. $N(0,1)$, the local polynomial regression estimator $\hat{X}(\cdot)$ satisfies

$$
\int_{0}^{1}\left\{\hat{X}_{j}(t)-X_{j}(t)\right\}^{2} d t \leq c_{1} n^{\frac{2 \beta}{2 \beta+1}(\alpha-0.5)}
$$

for all $j=1, \ldots, p$, with probability converging to 1 if

$$
p \exp \left(-c_{2} n^{2 \alpha}\right)=o(1)
$$

Remarks:

- Here, β and α are constants related to the smoothness of X and the choice of bandwidth for \hat{X}
- GCV, CV, and other methods can be used to choose the bandwidth
- For $\left\|\hat{X}^{\prime}-X^{\prime}\right\|_{2}$, the rate is $n^{\frac{2 \beta-2}{2 \beta-1}(\alpha-0.5)}$

Model Selection Consistency

Theorem:
Let

$$
N_{j}^{*}=\left\{k:\left\|\theta_{j k}\right\|_{2} \neq 0\right\}, \quad j=1, \ldots, p
$$

be the true parents of $X_{j}(\cdot)$ in the ODE network, and \hat{N}_{j} be its estimator using the proposed method. Then, under certain regularity conditions, as the number of time points n increases,

$$
\mathbb{P}\left(\hat{N}_{j}=N_{j}^{*} \text { for all } j=1, \ldots, p\right) \rightarrow 1 .
$$

Remark:

- The proof requires establishing model selection consistency of (standardized) group lasso regression with errors-in-variables

[^0]: ${ }^{1}$ Subnetwork of E-coli regulatory network (GeneNetWeaver, Schaffter et al, 2011)

[^1]: ${ }^{3}$ Varah (1982)

[^2]: ${ }^{5}$ More later...

[^3]: ${ }^{6}$ Extending lasso (Loh \& Wainwright, 2012 and Rosenbaum \& Tsybakov, 2010)

[^4]: ${ }^{7}$ Henderson \& Michailidis (2014)

[^5]: ${ }^{8}$ Schaffter et al (2011)

