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Nonlinear Dynamics in Gene Regulatory Networks
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Karlebach & Shamir (2008), Nature Reviews: Molecular Cell Biology



Time-course gene expression data
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E. coli Gene Regulatory Network'

In this graph: X > X X regulates X,

Subnetwork of E-coli regulatory network (GeneNetWeaver, Schaffter et al, 2011)
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The in expression of one gene is “regulated” by the expressions of others at

the same time point
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@ -
~0.59 —1.36 1.32 L °

0= 118 0.62 °® =
—-1.52 —-0.93 N

T T T T T T
00 02 04 06 08 1.0
Time



Estimation of ODEs from Noisy Observations



Estimation of ODEs from Noisy Observations

o Given X(¢) (and hence X'(t)), can find © ... either closed-form solutions or
numerical methods



Estimation of ODEs from Noisy Observations

o Given X(¢) (and hence X'(t)), can find © ... either closed-form solutions or
numerical methods

@ We observe at discrete time points:



Estimation of ODEs from Noisy Observations

o Given X(¢) (and hence X'(t)), can find © ... either closed-form solutions or
numerical methods

@ We observe noisy measurements at discrete time points: v; = X(1;) + ¢
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Suppose [ is known but

Gold Standard:
o Find 6 such that X(-;0) solves the ODE:

n

6 =argming Y [|¥; — X(1;;0)|?

i=1

st. X' (1,0) =7 (X(1;0),0)




Existing Approaches: Parameter Estimation

Suppose f is known but 6 is unknown

Gold Standard:
O Find 6 such that X(-;0) solves the ODE:

n
6 =argming Y [|¥; — X (1:0)|*

i=1

st X' (,0) =71 (X(1;0),9)

@ Accurate but slow

» requires numerical solution of ODE for every candidate 6
» \/n-consistent?

26.g., Hall & Ma (2014)
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Suppose [ is known but
X'(1)=/(X(1),0)

Collocation Methods?:

o Two-stage estimation strategy:

» estimate X(¢) and X’(¢) from data (e.g. kernel smoothing)
» find 6 that :

b= argming Z ||Xl(ti) -f ()A((fi); ) ||%
i=1

3Varah (1982)




Existing Approaches: Parameter Estimation

Suppose [ is known but
X'(1)=/(X(1),0)

Collocation Methods?:

o Two-stage estimation strategy:

» estimate X(¢) and X’(¢) from data (e.g. kernel smoothing)
» find 6 that :

n
6 = argminy Z X' () —f (X(fi)§ ) ||%
i=1
O Fast but not exact

» easy computation
» not solving the ODE exactly!

3Varah (1982)
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Suppose /; and 6 are both  XU(1) =/;(X(1),0)
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Suppose /; and 6 are both 1 XN(1) =/;(X(1),0)

Gradient Matching®:

o Estimate X;() from ¥; (e.g., via nonparametric regression, etc)
© Calculate X/(1) = dX;/dr (similar to collocation)
0 For a truncated basis y = (y1,...,yy)",
k() =w()" 0 + (allowing M — oo with n)
@ Forj=1,...,p, find §; that minimizes

[ 50-00- L vty aara g [ [ {vore) o

N— ——
7 group lasso penalty
]

A penalized regression problem!

4Wu et al (2014), Henderson & Michailidis (2014)
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0 Recall that »
Xi(1) =~ 6o+ Y, w(Xe(r)" 6
k=1

Q , we get

P 't
X](t) —X(O) R‘/tej()-i-k; (/() l/J(Xk<S)) [lS) ij
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Key Observation — Il

o Recall that »
Xi(1) =~ 6o+ Y, w(Xe(r)" 6
k=1

Q@ Integrating both sides, we get
P 't
X;(1) —X(0) ~ 160+ ) (/0 l[/(Xk(s))TdS) Ok
k=1 \1
o Let¥, = j(;‘ I/I(Xk(s)) ds,
p
Y =~ X(0) +1,60 + Z WOk + &
k=1

0 W, can be estimated as | v(X;(s)) ds
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Key Observation — Il

@ Integral estimation is more precise!
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Our Proposal

GRADE: Graph Reconstruction via Additive Differential Equations
@ Suppose ODE is additive

X]l(t) = if}k(xk(t))a j=1....p
k=1

o Estimate X;() from Y; (using, e.g., nonparametric regression, etc)
o Calculate 'V, = [} w(X;(s))ds,i=1,...,n
@ Find the minimizer ; of

n 5 » [n , 1/2
v o= X o] <4 XY (Vo)
i= =1 |i=

—_—— e——

fi group lasso

™=
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@ Variable selection consistency for
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@ Variable selection consistency for

M'a
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@ Replacing ¥/, with ¥;;, we have a standardized group lasso regression
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i=1 i=1 k=1 [i=

2 ) 12
2 [Z (¥,65) ]

whose theoretical properties are well-understood
o With ¥, we have an errors-in-variables regression
o Need a bound on ||¥ —¥||
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Theory — I

@ We establish a new concentration inequality to bound
LA 2
| &0 -x0ya

» This inequality allows us to bound ||¥ —¥|| in high dimensions, when
logp/n® =o(1) for some 0 < o < 0.5
» Using this inequality, the bound for derivative is asymptotically worst
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Theory — I

@ We establish a to bound
o 2
| &0 -x0ya

» This inequality allows us to bound ||¥ — ¥|| in high dimensions, when
logp/n® =o(1) for some 0 < o < 0.5
» Using this inequality, the bound for derivative is asymptotically worst

@ We show that GRADE can consistently select the of each node in a
sparse high-dimensional ODE network

» The proof requires establishing model selection consistency of
(standardized) group lasso regression with

8Extending lasso (Loh & Wainwright, 2012 and Rosenbaum & Tsybakov, 2010)
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Simulation: Results

o NeRDS: Network Reconstruction via Dynamic Systems”’

o GRADE
50 timepoints 400 timepoints
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"Henderson & Michailidis (2014)
18



Application: DREAM-3 Challenge® (Regulatory Networks)

O in silico data from 5 regulatory networks with p = 10 or 100; n = 50
oA task: with unobserved latent variables

8Schaffter et al (2011)
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Application: DREAM-3 Challenge® (Regulatory Networks) % \@

O in silico data from 5 regulatory networks with p = 10 or 100; n = 50
oA task: with unobserved latent variables

Table: Area Under ROC Curves for NeRDS and GRADE

p=10 p =100

Network | NeRDS | GRADE | NeRDS | GRADE
Ecoli1 0450 | 0.545 0.624 0.670
Ecoli2 | 0512 0.643 0.637 0.653
Yeast! | 0.486 0.679 0.610 0.636
Yeast2 | 0.525 0.607 0.568 0.584
Yeast3 | 0.467 0.576 0.617 0.567

8Schaffter et al (2011)
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Application: Brain Functional Connectivity

O Cortical activity map (CAM) project — Allen Institute for Brain Science

O Calcium fluorescent imaging in a region of visual cortex at 175mm depth
measured using two-photons technology

@ 575 neurons — 25 neuronal populations (5 x 5 grids with ~20 neurons)
o 3 stimuli: frequencies of 1, 2, and 4 Hz, at a 90° spatial orientation
@ R =15 repetitions, n = 60 time points per repetition
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Application: Brain Functional Connectivity

O Cortical activity map (CAM) project — Allen Institute for Brain Science

O Calcium fluorescent imaging in a region of visual cortex at 175mm depth
measured using two-photons technology

@ 575 neurons — 25 neuronal populations (5 x 5 grids with ~20 neurons)
@ 3 stimuli: frequencies of 1, 2, and 4 Hz, at a 90° spatial orientation
@ R =15 repetitions, n = 60 time points per repetition

1Hz 2 Hz 4 Hz
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@ More similar connectivity networks for closer frequencies
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Summary

Q@ Integration is better than differentiation!
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Summary

° !

o GRADE takes advantage of the special structure of additive ODEs

» It uses the linearity in parameters of truncated bases to avoid the estimation
of derivatives

o Empirical & theoretical evidence shows improved performance
@ GCV for bandwidth selection results in consistent estimates
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Summary

o GRADE takes advantage of the special structure of additive ODEs

» It uses the linearity in parameters of truncated bases to avoid the estimation
of derivatives

©

Empirical & theoretical evidence shows improved performance

©

GCV for bandwidth selection results in consistent estimates

@ How can this idea be generalize to non-additive ODEs?
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Comparison with Methods for Linear ODEs

o of the form X’'(r) = @X(r) + C
@ Comparison of GRADE with Hall & Ma (2014) and Brunel et al (2014)
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Comparison with Methods for Linear ODEs

0 Linear ODEs of the form X'(r) = ©X(r) + C
o Comparison of GRADE with Hall & Ma (2014) and Brunel et al (2014)
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A Concentration Inequality

Theorem:
Under standard assumptions and if g, j=1,...,p are i.i.d. N(0, 1), the local polynomial
regression estimator X(-) satisfies

1
/ %) *Xj(l)}zdz < clnz%(afo.S)
0
forallj=1,...,p, with probability converging to 1 if

pexp(—cznzo‘) =o(1).
Remarks:

@ Here,  and o are constants related to the of X and the choice of
bandwidth for X

@ GCV, CV, and other methods can be used to choose the bandwidth

R =T
o For | —X'||,, the rate is n2r 1 (*0)
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Model Selection Consistency

Theorem:
Let

Nj =Lk |6l #0}, j=1,...
be the true parents of X;(-) in the ODE network, and N be its estimator using the
proposed method. Then under certain regularity condltlons as the number of time
points n increases,

P(N;=Njforallj=1,...,p) = 1.
Remark:

@ The proof requires establishing model selection consistency of (standardized)
group lasso regression with

25
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