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Nonlinear Dynamics in Gene Regulatory Networks

Karlebach & Shamir (2008), Nature Reviews: Molecular Cell Biology
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Time-course gene expression data

p genes

Expressions X(·)
measured at n discrete
time points t1, . . . , tn
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E. coli Gene Regulatory Network1

In this graph: X1 X2 X1 regulates X2

1Subnetwork of E-coli regulatory network (GeneNetWeaver, Schaffter et al, 2011)
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Gene Regulatory Network as a System of ODEs

The change in expression of one gene is “regulated” by the expressions of others at
the same time point

X′j(t) = fj(X(t),θj)

Example: Linear ODEs, X′(t) = ΘX(t) (⇒ X(t) = exp(Θt)X(0))

Θ =

−0.59 −1.36 1.32
0.00 1.18 0.62
−1.52 −0.93 0.00


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Estimation of ODEs from Noisy Observations

Given X(t) (and hence X′(t)), can find Θ ... either closed-form solutions or
numerical methods

We observe noisy measurements at discrete time points: Yi = X(ti)+ εi
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Existing Approaches: Parameter Estimation

Suppose f is known but θ is unknown

X′(t) = f
(
X(t),θ

)
Gold Standard:

Find θ such that X(·;θ) solves the ODE:

θ̂ = argminθ

n

∑
i=1
‖Yi−X(ti;θ)‖2

s.t. X′(t;θ) = f (X(t;θ),θ)

Accurate but slow
I requires numerical solution of ODE for every candidate θ

I
√

n-consistent2
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Existing Approaches: Parameter Estimation

Suppose f is known but θ is unknown

X′(t) = f
(
X(t),θ

)

Collocation Methods3:

Two-stage estimation strategy:
I estimate X̂(t) and X̂′(t) from data (e.g. kernel smoothing)
I find θ that minimizes deviation from ODE:

θ̂ = argminθ

n

∑
i=1
‖X̂′(ti)− f

(
X̂(ti);θ

)
‖2

2

Fast but not exact
I easy computation
I not solving the ODE exactly!
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Gene Regulatory Network as a System of ODEs

Challenges:

Many genes and not many observations (p� n)

Exact form of f not known!

X′j(t) = fj (X(t);θ) , j = 1, . . . ,p

Solution:

Assume that fj is additive

X′j(t) =
p

∑
k=1

fjk(Xk(t);θ), j = 1, . . . ,p

Yi = X(ti)+ εi, i = 1, . . . ,n

Xk −→ Xj iff fjk 6= 0

9
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Existing Approaches: Non-parametric Estimation

Suppose fj and θ are both unknown: X′j(t) = fj
(
X(t),θ

)

Gradient Matching4:

Estimate X̂j(t) from Yj (e.g., via nonparametric regression, etc)

Calculate X̂′j(t)≡ ∂ X̂j/∂ t (similar to collocation)

For a truncated basis ψ = (ψ1, . . . ,ψM)T,

fjk(·) = ψ(·)Tθjk +δjk(·) (allowing M→ ∞ with n)

For j = 1, . . . ,p, find θ̂j that minimizes∫ 1

0

{
X̂′j(t)−θj0−

p

∑
k=1

ψ
(
X̂k(t)

)T
θjk︸ ︷︷ ︸

f̂j

}2
dt+λ

p

∑
k=1

[∫ 1

0

{
ψ
(
X̂k(t)

)T
θjk

}2
dt
]1/2

︸ ︷︷ ︸
group lasso penalty

A penalized regression problem!

10



Existing Approaches: Non-parametric Estimation

Suppose fj and θ are both unknown: X′j(t) = fj
(
X(t),θ

)
Gradient Matching4:

Estimate X̂j(t) from Yj (e.g., via nonparametric regression, etc)

Calculate X̂′j(t)≡ ∂ X̂j/∂ t (similar to collocation)

For a truncated basis ψ = (ψ1, . . . ,ψM)T,

fjk(·) = ψ(·)Tθjk +δjk(·) (allowing M→ ∞ with n)

For j = 1, . . . ,p, find θ̂j that minimizes∫ 1

0

{
X̂′j(t)−θj0−

p

∑
k=1

ψ
(
X̂k(t)

)T
θjk︸ ︷︷ ︸

f̂j

}2
dt+λ

p

∑
k=1

[∫ 1

0

{
ψ
(
X̂k(t)

)T
θjk

}2
dt
]1/2

︸ ︷︷ ︸
group lasso penalty

A penalized regression problem!

4Wu et al (2014), Henderson & Michailidis (2014)
10



Existing Approaches: Non-parametric Estimation

Suppose fj and θ are both unknown: X′j(t) = fj
(
X(t),θ

)
Gradient Matching4:

Estimate X̂j(t) from Yj (e.g., via nonparametric regression, etc)

Calculate X̂′j(t)≡ ∂ X̂j/∂ t (similar to collocation)

For a truncated basis ψ = (ψ1, . . . ,ψM)T,

fjk(·) = ψ(·)Tθjk +δjk(·) (allowing M→ ∞ with n)

For j = 1, . . . ,p, find θ̂j that minimizes∫ 1

0

{
X̂′j(t)−θj0−

p

∑
k=1

ψ
(
X̂k(t)

)T
θjk︸ ︷︷ ︸

f̂j

}2
dt+λ

p

∑
k=1

[∫ 1

0

{
ψ
(
X̂k(t)

)T
θjk

}2
dt
]1/2

︸ ︷︷ ︸
group lasso penalty

A penalized regression problem!

4Wu et al (2014), Henderson & Michailidis (2014)
10



Existing Approaches: Non-parametric Estimation

Suppose fj and θ are both unknown: X′j(t) = fj
(
X(t),θ

)
Gradient Matching4:

Estimate X̂j(t) from Yj (e.g., via nonparametric regression, etc)

Calculate X̂′j(t)≡ ∂ X̂j/∂ t (similar to collocation)

For a truncated basis ψ = (ψ1, . . . ,ψM)T,

fjk(·) = ψ(·)Tθjk +δjk(·) (allowing M→ ∞ with n)

For j = 1, . . . ,p, find θ̂j that minimizes∫ 1

0

{
X̂′j(t)−θj0−

p

∑
k=1

ψ
(
X̂k(t)

)T
θjk︸ ︷︷ ︸

f̂j

}2
dt+λ

p

∑
k=1

[∫ 1

0

{
ψ
(
X̂k(t)

)T
θjk

}2
dt
]1/2

︸ ︷︷ ︸
group lasso penalty

A penalized regression problem!

4Wu et al (2014), Henderson & Michailidis (2014)
10



Key Observation – I

Estimating the derivative is inefficient5!

Hard to pick optimal bandwidth for estimating dX̂/dt!
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Key Observation – II

Recall that

X′j(t)≈ θj0 +
p

∑
k=1

ψ(Xk(t))T
θjk

Integrating both sides, we get

Xj(t)−X(0)≈ tθj0 +
p

∑
k=1

(∫ t

0
ψ
(
Xk(s)

)T ds
)

θjk

Let Ψik =
∫ ti

0 ψ
(
Xk(s)

)
ds,

Yij ≈ X(0)+ tiθj0 +
p

∑
k=1

Ψ
T
ikθjk + εij

Ψik can be estimated as
∫ ti

0 ψ
(
X̂k(s)

)
ds
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Key Observation – II

Integral estimation is more precise!
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Our Proposal

GRADE: Graph Reconstruction via Additive Differential Equations

Suppose ODE is additive

X′j(t) =
p

∑
k=1

fjk
(
Xk(t)

)
, j = 1, . . . ,p

Estimate X̂j(t) from Yj (using, e.g., nonparametric regression, etc)

Calculate Ψ̂ik =
∫ ti

0 ψ(X̂k(s))ds, i = 1, . . . ,n

Find the minimizer θ̂j of

n

∑
i=1

[
Yij− tiθj0−

n

∑
i=1

Ψ̂
T
ikθjk︸ ︷︷ ︸

f̂j

]2
+λ

p

∑
k=1

[
n

∑
i=1

(
Ψ̂

T
ikθjk

)2
]1/2

︸ ︷︷ ︸
group lasso

14
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Theory – I

Variable selection consistency for

n

∑
i=1

[
Yij− tiθj0−

n

∑
i=1

Ψ̂
T
ikθjk

]2

+λ

p

∑
k=1

[
n

∑
i=1

(
Ψ̂

T
ikθjk

)2
]1/2

Replacing Ψ̂ik with Ψik, we have a standardized group lasso regression

n

∑
i=1

[
Yij− tiθj0−

n

∑
i=1

Ψ
T
ikθjk

]2

+λ

p

∑
k=1

[
n

∑
i=1

(
Ψ

T
ikθjk

)2
]1/2

whose theoretical properties are well-understood

With Ψ̂ik we have an errors-in-variables regression

Need a bound on ‖Ψ̂−Ψ‖
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Theory – II

We establish a new concentration inequality to bound∫ 1

0

{
X̂j(t)−Xj(t)

}2 dt

I This inequality allows us to bound ‖Ψ̂−Ψ‖ in high dimensions, when
logp/nα = o(1) for some 0 < α < 0.5

I Using this inequality, the bound for derivative is asymptotically worst

We show that GRADE can consistently select the parents of each node in a
sparse high-dimensional ODE network

I The proof requires establishing model selection consistency of
(standardized) group lasso regression with errors-in-variables6
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logp/nα = o(1) for some 0 < α < 0.5

I Using this inequality, the bound for derivative is asymptotically worst

We show that GRADE can consistently select the parents of each node in a
sparse high-dimensional ODE network

I The proof requires establishing model selection consistency of
(standardized) group lasso regression with errors-in-variables6

6Extending lasso (Loh & Wainwright, 2012 and Rosenbaum & Tsybakov, 2010)
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Simulation: Design
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Simulation: Results

NeRDS: Network Reconstruction via Dynamic Systems7
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7Henderson & Michailidis (2014)
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Application: DREAM-3 Challenge8 (Regulatory Networks)

in silico data from 5 regulatory networks with p = 10 or 100; n = 50

A difficult task: non-additive ODEs with unobserved latent variables

Table: Area Under ROC Curves for NeRDS and GRADE

p = 10 p = 100
Network NeRDS GRADE NeRDS GRADE
Ecoli1 0.450 0.545 0.624 0.670
Ecoli2 0.512 0.643 0.637 0.653
Yeast1 0.486 0.679 0.610 0.636
Yeast2 0.525 0.607 0.568 0.584
Yeast3 0.467 0.576 0.617 0.567

8Schaffter et al (2011)
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Application: Brain Functional Connectivity

Cortical activity map (CAM) project – Allen Institute for Brain Science

Calcium fluorescent imaging in a region of visual cortex at 175mm depth
measured using two-photons technology

575 neurons→ 25 neuronal populations (5 × 5 grids with ∼20 neurons)

3 stimuli: frequencies of 1, 2, and 4 Hz, at a 90◦ spatial orientation

R = 15 repetitions, n = 60 time points per repetition

More similar connectivity networks for closer frequencies
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Summary

Integration is better than differentiation!

GRADE takes advantage of the special structure of additive ODEs
I It uses the linearity in parameters of truncated bases to avoid the estimation

of derivatives

Empirical & theoretical evidence shows improved performance

GCV for bandwidth selection results in consistent estimates

How can this idea be generalize to non-additive ODEs?
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Comparison with Methods for Linear ODEs

Linear ODEs of the form X′(t) = ΘX(t)+C

Comparison of GRADE with Hall & Ma (2014) and Brunel et al (2014)
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A Concentration Inequality

Theorem:
Under standard assumptions and if εj, j = 1, . . . ,p are i.i.d. N(0,1), the local polynomial
regression estimator X̂(·) satisfies∫ 1

0

{
X̂j(t)−Xj(t)

}2 dt ≤ c1n
2β

2β+1 (α−0.5)

for all j = 1, . . . ,p, with probability converging to 1 if

pexp(−c2n2α ) = o(1).

Remarks:

Here, β and α are constants related to the smoothness of X and the choice of
bandwidth for X̂

GCV, CV, and other methods can be used to choose the bandwidth

For ‖X̂′−X′‖2, the rate is n
2β−2
2β−1 (α−0.5)

24



Model Selection Consistency

Theorem:
Let

N∗j = {k : ‖θjk‖2 6= 0}, j = 1, . . . ,p

be the true parents of Xj(·) in the ODE network, and N̂j be its estimator using the
proposed method. Then, under certain regularity conditions, as the number of time
points n increases,

P
(
N̂j = N∗j for all j = 1, . . . ,p

)
→ 1.

Remark:

The proof requires establishing model selection consistency of (standardized)
group lasso regression with errors-in-variables
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