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INTRODUCTION



COARSE GRID OPERATORS

Ubiquious components

e numerical robustness

e practical scalability

No silver bullet

e geometric grids

e spectral grids




COARSE GRID OPERATORS
Challenging issues

e MG: more levels means more communication

e DD, deflation: recursion is not always possible



COARSE GRID OPERATORS
Challenging issues

e MG: more levels means more communication

e DD, deflation: recursion is not always possible

— new hierarchies or inner solvers



HPDDM

® open-source

e https://github.org/hpddm/hpddm

e Python/C/C++/Fortran bindings

e cfficient implementation of RAP for DDM

e block iterative methods and recycled Krylov solvers
[Jolivet and Tournier 2016]


https://github.org/hpddm/hpddm

BLOCK ITERATIVE METHODS

e any kind of M~1/A functors, e.g., MatMatSolve/MatMatMult
e support left/right/variable preconditioning

Available methods

e BGMRES e BCG
e BGCRO-DR e BFBCG [Ji and Li 2016]




BLOCK ITERATIVE METHODS

e any kind of M~1/A functors, e.g., MatMatSolve/MatMatMult
e support left/right/variable preconditioning

Available methods

e BGMRES e BCG
e BGCRO-DR e BFBCG [Ji and Li 2016]

Enlarged Krylov methods

(i]) € [1:n] x [1:p] = (Bo)s, = {bf flslo-n<i< 5]

0 otherwise




WHY USE BLOCK ITERATIVE METHODS?

Advantages
e |arger Krylov subspace = faster convergence
e higher arithmetic intensity

e fewer synchronizations with more data
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RECYCLED KRYLOV SOLVERS

e any kind of M~1/A functors, e.g., GAMG
e support left/right/variable preconditioning

Available method

o GCRO-DR [Parks et al. 2006]




PERFORMANCE OF RECYCLED KRYLOV SOLVERS

Comparison with Loose GMRES by [Baker et al. 2005]

mpirun -np 8000 ./ex56 -ne 399 -ksp_rtol le-8
-ksp_type lgmres -ksp_pc_side right -pc_type gamg
-ksp_lgmres_augment 10

e small, moving inclusion (high contrast in E)
e assemble multiple linear systems/preconditioners
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PERFORMANCE OF RECYCLED KRYLOV SOLVERS
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COUPLING BOTH APPROACHES
Maxwell's equation |

V x(V XE)—p0<w25+iwa)E:0



COUPLING BOTH APPROACHES
Maxwell's equation |

V x(V xE)—pO(wQE-i-iwa)E:O

e domain decomposition
preconditioner

e exact LDL local solvers

N
Ma}%AS = Z RiTDfo_lRi?
i=1

cf. [Gander 2006]




COUPLING BOTH APPROACHES
Maxwell's equation |l

alternative p  solve # of it.  per RHS eff.

GMRES 1
GCRO-DR 1

* (m,k) = (50,10) for solving 32 RHSs
e 2,048 subdomains and 2 threads per subdomain
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COUPLING BOTH APPROACHES
Maxwell's equation |l

alternative p  solve # of it.  per RHS eff.

GMRES 1 3,0784 20,068 627 -
GCRO-DR 1 1,836.9 10,701 334 1.7

BGMRES 32  724.8 158 - 4.2
BGCRO-DR 8  677.6 524 131 45
BGCRO-DR 32  992.3 127 - 3.1

* (m,k) = (50,10) for solving 32 RHSs
e 2,048 subdomains and 2 threads per subdomain
e alternative #1to #5 =— 158X fewer iterations



COARSE GRIDS FOR DDM




RAP FOR DDM
For overlapping Schwarz

A, linear system

R;, restriction to subdomain i

R!, prolongation from subdomain i

e W, constraints/eigenvectors from subdomain i

n



RAP FOR DDM
For overlapping Schwarz

A, linear system

R;, restriction to subdomain i

R!, prolongation from subdomain i

Wi, constraints/eigenvectors from subdomain i

P=[RIW: RIW, --- RIWy]
E=PTAP
E; = WIRRI AW,

n



HOW TO HANDLE THE COARSE OPERATOR?

e direct solvers require an efficient redistribution

e multigrid methods may not converge

2



REDISTRIBUTION IN HPDDM

16 subdomains, ~hpddm_master_p 4 [Jolivet, Hecht, et al. 2013]
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REDISTRIBUTION IN HPDDM

— scalability of direct solvers quickly attained
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REDISTRIBUTION IN HPDDM

— scalability of direct solvers quickly attained

3D Stokes, TH, FE, 145M d.o.f., 4,096 subdomains
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REDISTRIBUTION IN HPDDM

—> poor convergence with MG

3D Stokes, TH, FE, 145M d.o.f., 4,096 subdomains
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NEW TOOLS FOR COARSE OPERATORS




BREAKING THE COMPLEXITY

Inexact coarse grid solver

e mixed-precision

e block Jacobi with “fat" aggregates

e enlarge Krylov subspace + recycling (one solve for each
outer iteration)
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16 subdomains, ~hpddm_master_p 4
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BREAKING THE COMPLEXITY
Block Jacobi with "“fat" aggregates

3D Stokes, TH, FE, 145M d.o.f., 4,096 subdomains
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BREAKING THE COMPLEXITY
Block Jacobi with "“fat" aggregates

3D Stokes, TH, FE, 145M d.o.f., 4,096 subdomains
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BREAKING THE COMPLEXITY

What happens with a "bad” inexact solver?

Composing options

e coarse enlarged Krylov subspace

e recycled inner solver




FINAL WORDS

Summary:
e various strategies to improve coarse grid solvers

e applicable to most hierarchies
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FINAL WORDS

Summary:
e various strategies to improve coarse grid solvers

e applicable to most hierarchies

Thank you!
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