
Factorization Based Sparse Solvers and
Preconditioners for Exascale

X. Sherry Li
xsli@lbl.gov

Lawrence Berkeley National Laboratory

SIAM Annual Meeting, July 10-14, 2017

Exascale Computing Project (ECP)

https://exascaleproject.org

This research was supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of two U.S. Department of Energy
organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware,
advanced system engineering and early testbed platforms, in support of
the nation’s exascale computing imperative.

Exascale refers to a class of high-performance computing systems
capable of performance on mission critical applications that is 50 times
more powerful than the nation’s most powerful systems in use today, and
“capable” exascale refers to systems not measured by benchmarks alone
but rather ones that can solve problems at this performance level in a
power envelope of 20-30 MW, are sufficiently resilient that user
intervention due to hardware or system faults is on the order of a week on
average, and have a software stack that meets the needs of a broad
spectrum of applications and workloads.

7/9/17 1

“Factorization based sparse solvers and preconditioners”

“Software Technology” à “Mathematical and Scientific Libraries
and Framework”

STRUMPACK : http://portal.nersc.gov/project/sparse/strumpack/
SuperLU : http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Collaborating with other ECP ST projects:
xSDK4ECP (Mike Heroux, Lois McInnes, et al.)

• Interoperability among numerical libraries, easy plug-in in
applications.

Pagota Project (Scott Baden, et al.)
• UPC++ programming to speed up fine grained, asynchronous

communication and computation.
Autotuning Compiler Technology (Mary Hall, et al.)

• Search for best parameters setting to achieve optimal
performance, dependent on applications and machines.

7/10/17 2

Goals

Explore new algorithms that require lower arithmetic complexity,
communication and synchronization, faster convergence rate

STRUMPACK: “inexact” direct solver, preconditioner, based on
hierarchical low rank structures: HSS, HODLR, etc.
SuperLU: new 3D algorithm to reduce communication

Refactor existing codes and implement new codes for current and
next-generation machines (exascale in a few years)

Fully exploit manycore node architectures
• Vectorization, multithreading, …
• GPU accelerator

Reduce communication and synchronization

3

Sparse factorization for linear
systems

Two algorithm variants

7/9/17 4

1
2

3
4

6
7

5L

U

L

U

L
U

L
U

Tree based
Multifrontal: STRUMPACK

S(j) ß S(j) - ((D (k1)) +D (k2)) + …)

1

6

9

3

7 8

4 52

DAG based
Supernodal: SuperLU

S(j) ß ((S(j) - D (k1)) - D (k2)) - …

STRUMPACK “inexact” direct solver

• Baseline is a sparse multifrontal direct solver.

• In addition to structural sparsity, further apply data-sparsity with
low-rank compression:

• O(N logN) flops, O(N) memory for 3D elliptic PDEs.

• Hierarchical matrix algebra generalizes Fast Multipole

• Diagonal block (“near field”) exact; off-diagonal block (“far
field”) approximated via low-rank compression.

• Hierarchically semi-separable (HSS), HODLR, etc.

• Nested bases + randomized sampling to achieve linear
scaling.

• Applications: PDEs, BEM methods, integral equations, machine
learning, and structured matrices such as Toeplitz, Cauchy
matrices.

7/9/17 5

U1

U2 U3 = U1
U2

U3
 0

0
V1

U6 V3B36
T

D1

D2

D4

D5

V2

U5
V4

U4
V5

Big

A≈

D1 U1B1V2
T

U2B2V1
T D2

"

#

$
$
$

%

&

'
'
'

U3B3V6
T

U6B6V3
T D4 U4B4V5

T

U5B5V4
T D5

"

#

$
$
$

%

&

'
'
'

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

Developers: P. Ghysels, C. Gorman, F.-H. Rouet, XL
Cluster tree

HSS approximation error vs. drop tolerance

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

1e-141e-121e-101e-081e-060.00010.011

||A-AHSS||F/||A||F

d=16
d=64

d=256
d=1024

6

60

80

100

120

140

160

180

200

220

240

1e-141e-121e-101e-081e-060.00010.011

maximum HSS rank

d=16
d=64

d=256
d=1024

Randomized sampling to reveal rank
1. Pick random matrix Ωnx(k+p), k target rank, p small, e.g. 10
2. Sample matrix S = A Ω, with slight oversampling p
3. Compute Q =ON-basis(S) via rank-revealing QR

Accurate with high probability. [N. Halko,P.G. Martinsson, J.A. Tropp, 2011]
è Adaptive sampling is essential for robustness:

Increase d, number of columns in Ω, until error small

RS Simplifies “extend-add” in MF+HSS

7/9/17 7

New “extend-merge” of sample matrices

Traditional extend-add

Algorithm scaling for 3D Poisson

Theory predicts O(n4/3 log n) flops for compression.
HSS ranks grow with mesh size ~ n1/3 = k
Use as a preconditioner with aggressive compression.

7/9/17 8

Mesh size k
64 96 128 160 192 224 256

Fl
op

 c
ou

nt

10 11

10 12

10 13

10 14

10 15

FR
fit: 5 n 2.06

HSS(10 -1)
fit: 61420 n 1.29

HSS(0.5)
fit: 335647 n 1.14

Tree-based parallelization

7/9/17 9

Performance scaling

Matrix from SuiteSparse Matrix Collection:
Flan_1565 (N= 1,564,794, NNZ = 114,165,372)

Flat MPI on nodes with 2 12-core Intel Ivy Bridge, 64GB (NERSC Edison)
Fill-reducing reordering (ParMetis) has poor scalability, quality decreases

7/9/17 10

SuperLU direct solver – communication pattern

7/9/17 11

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

• Graph at step k+1 differs from step k
• Panel factorization on critical path

Developers: XL, J. Demmel, J. Gilbert, L. Grigori, P. Sao, Meiyue Shao, I. Yamazaki

Panel Factorization Schur-complement Update

SuperLU direct solver – communication pattern

7/9/17 12

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

• Graph at step k+1 differs from step k
• Panel factorization on critical path

8 x 16 MPI grid:
Profile “Send-Right”

Panel Factorization Schur-complement Update

Developers: XL, J. Demmel, J. Gilbert, L. Grigori, P. Sao, Meiyue Shao, I. Yamazaki

7/9/17 13

Final reduction: Schur complement of common ancestor
C = C1 + C2 + …

[Piyush Sao’s thesis, Georgia Tech., 2017]

3D Sparse LU: cost of communication

7/9/17 14

6/19/17 15

torso3: ‘sparser’ matrix

5X

3D Sparse LU: Performance Projection

 X

Actual performance

7/9/17 16

Local computation

7/9/17 17

Loop through N steps: (Gaussian Elimination)
FOR (k = 1, N) {

1) Gather sparse blocks A(:, k) and A(k,:) into dense work[]
2) Call dense GEMM on work[]
3) Scatter work[] into remaining sparse blocks

}

}

Schur complement update on each MPI rank

Intel Xeon Phi: Knights Landing

Cray XC40 supercomputer at NERSC:
• 9688 KNL nodes: single socket
• 2388 Haswell nodes: 2 sockets X 16 cores

18

KNL node

• 72 cores @ 1.3 GHz, self hosted
• 2 cores form a tile
• 4 hardware threads per core (272 threads)
• 2 512-bit (8 doubles) vector units (SIMD)

Memory hierarchy
• L1 cache per core, 64 KB
• L2 cache per tile (2 cores share), 1MB
• 16 GB MCDRAM, >400 GB/s peak bandwidth
• 96 GB DDR4, 102 GB/s peak bandwidth

SuperLU optimization on Cori KNL node (1/2)
Work with Sam Williams, Jack Deslippe, Steve Leak, Thanh Phung

Replace small independent single-threaded MKL GEMMs by large
multithreaded MKL GEMMs: 15-20% faster.
Use new OpenMP features: 10-15% faster.
• “task parallel” to reduce load imbalance
• “nested parallel for” to increase parallelism
Vectorizing Gather/Scatter: 10-20% faster.
• Hardware support: Load Vector Indexed / Store Vector Indexed

#pragma omp simd // vectorized Scatter
for (i = 0; i < b; ++i) {

nzval[indirect2[i]] = nzval[indirect[i]] - tempv[i];
}

19

SuperLU optimization on Cori KNL node (2/2)

Reduce cache misses

TLB (Translation Look-aside Buffer): a small cache for mapping virtual
address to physical address
• Large page requires smaller number of TLB entries

Alignment during malloc
• Page-aligned for large arrays à reduce TLB read frequency
• CacheLine-aligned malloc for threads-shared data structures à reduce

L1 read frequency, avoid false sharing

20

Roofline model (S. Williams)
basic concept

Is the code computation-bound or memory-bound?
Synthesize communication, computation, and locality into a single
visually-intuitive performance figure using bound analysis

Assume perfect overlap computation and communication w/ DRAM
Arithmetic Intensity (AI) is computed based on DRAM traffic
E.g.: DGEMM AI = 2*M*N*K / (M*K + K*N + 2*M*N) / 8

Time is the maximum of the time required to transfer the data and
the time required to perform the floating point operations.

21

Attainable
GFLOP/s = min

Peak GFLOP/s

AI * Peak GB/s

GEMM: non-uniform block size, non-square, many small

7/9/17 22

GEMM {m, n} dimensions GEMM {k, n} dimensions

Arithmetic Intensity DGEMMs performance profile

Summary

Explore new algorithms that require lower arithmetic complexity,
communication, synchronization

STRUMPACK: “inexact” direct solver, preconditioner, based on
hierarchical low rank structures: HSS, HODLR, etc.
SuperLU: new 3D algorithm to reduce communication.

Refactor existing codes and implement new codes for current and
next-generation machines (exascale in a few years)

Fully exploit manycore node architectures
• Vectorization, multithreading, …
• GPU accelerator

Reduce communication and synchronization

Software is available

23

THANK YOU

