
SIAM SIAG on Supercomputing track

� MS7/16: New Algorithms for Scientific Computing at Exascale
Part 2: Mon 4:00 PM - 6:00 PM

� MS36/24 HPC and Data Science in Molecular Engineering (Tue AM, Tue
PM)

� MS40/51 Resilient Computation in Large Scale Scientific Computing
(Tue PM, Wed AM)

� MS58/69 High Performance Tensor Computations (Wed PM, Th AM)

� MS76/93 Communication-Avoiding Algorithms (Th PM, Fri PM)

� MS87/98 Parallel-in-time integration of differential equations (Th AM, Fr
AM)

Topical speaker: Jacqueline Chen, SNL, Friday AM

1 of 26

NLAFET: Parallel Numerical Linear Algebra for Future
Extreme Scale Systems

L. Grigori and the NLAFET Consortium Team
Ume̊a University, Inria, STFC, and University of Manchester

July 2017

Towards Exascale High Performance Computing

Aim of the Horizon 2020 FETHPC call:

Attract projects that can achieve world-class extreme scale computing
capabilities in platforms, technologies and applications

19 Research and Innovation Actions (RIA); 2 Coordination and Support
Actions (CSA) Among those:

� Mathematics: NLAFET, ExaHYPE

� Algorithms: ExaFLOW, ExCAPE, ComPat, NLAFET, ExaHYPE

Members of the NLAFET Consortium

� Ume̊a University, Sweden (UMU; Coordinator Bo Kågström; Lennart
Edblom)

� The University of Manchester, UK (UNIMAN; Jack Dongarra; Nick
Higham)

� Institute National de Recherche en Informatique et en Automatique,
France (INRIA; Laura Grigori)

� Science and Technology Facilities Council, UK (STFC; Iain Duff)

Collaborating partners:
� Innovative Computing Laboratory (ICL), UT Knoxville
� James Demmel, UC Berkeley
� Individual researchers (academia and vendors)

Key European players with recognized leadership, proven expertise,
experience, and skills across the scientific areas of NLAFET!

Vast experience contributing to open source projects!

NLAFET—Aim and Main Research Objectives

Aim: Enable a radical improvement in the performance and scalability of a
wide range of real-world applications relying on linear algebra software for

future extreme-scale systems.

� Development of novel architecture-aware algorithms that expose as much
parallelism as possible, exploit heterogeneity, avoid communication
bottlenecks, respond to escalating fault rates, and help meet emerging
power constraints

� Exploration of advanced scheduling strategies and runtime systems
focusing on the extreme scale and strong scalability in multi/many-core
and hybrid environments

� Design and evaluation of novel strategies and software support for both
offline and online auto-tuning

� Results will appear in the open source NLAFET software library

NLAFET Work Package Overview

WP1

WP2 WP3 WP4

WP5

WP6

WP7

� WP1: Management and coordination (start M1)

� WP5: Challenging applications—a selection (start M13)
Materials science, power systems, study of energy solutions, and data
analysis in astrophysics

� WP7: Dissemination and community outreach (start M1)
Research and validation results; stakeholder communities

Research focus—Critical set of NLA operations

WP1

WP2 WP3 WP4

WP5

WP6

WP7

� WP2: Dense linear systems and eigenvalue problem solvers

� WP3: Direct solution of sparse linear systems

� WP4: Communication-optimal algorithms for iterative methods

� WP6: Cross-cutting issues (All four start M1)

WP2, WP3 and WP4: research into extreme-scale parallel algorithms
WP6: research into methods for solving common cross-cutting issues

WP2, WP3 and WP4 at a glance!

� Linear Systems Solvers

� Hybrid (Batched) BLAS

� Eigenvalue Problem Solvers

� Singular Value Decomposition Algorithms

� Lower Bounds on Communication for Sparse Matrices

� Direct Methods for (Near–)Symmetric Systems

� Direct Methods for Highly Unsymmetric Systems

� Hybrid Direct–Iterative Methods

� Computational Kernels for Preconditioned Iterative Methods

� Iterative Methods: use t vectors per it, nearest-neighbor comm

� Preconditioners: multi-level, communication reducing

Krylov subspace methods

Solve Ax = b by finding a sequence x1, x2, ..., xk that minimizes some
measure of error over the corresponding spaces

x0 +Ki (A, r0), i = 1, ..., k

.

They are defined by two conditions:

1. Subspace condition: xk ∈ x0 +Kk(A, r0)

2. Petrov-Galerkin condition: rk ⊥ Lk

⇐⇒ (rk)ty = 0, ∀ y ∈ Lk

where
� x0 is the initial iterate, r0 is the initial residual,

� Kk (A, r0) = span{r0,Ar0,A2r0, ...,Ak−1r0} is the Krylov subspace of dimension k,

� Lk is a well-defined subspace of dimension k.

9 of 26

Challenge in getting efficient and scalable solvers

� Solve Ax = b by using a Krylov subspace method:
find xk from x0 +Kk(A, r0) where

Kk(A, r0) = span{r0,Ar0,A2r0, ...,A
k−1r0},

such that the Petrov-Galerkin condition b − Axk ⊥ Lk is satisfied.

Typically, each iteration requires

� Sparse matrix vector product
→ point-to-point communication

� Dot products for orthogonalization
→ global communication

Map making on Cray XE6

0.010

0.100

1.000

10.000

 64 128 256 512 1024

Ti
m

e
[s

]

Number of MPI processes

1 It. with MBD
Computation
Communication

10 of 26

Challenge in getting efficient and scalable solvers

� Solve Ax = b by using a Krylov subspace method:
find xk from x0 +Kk(A, r0) where

Kk(A, r0) = span{r0,Ar0,A2r0, ...,A
k−1r0},

such that the Petrov-Galerkin condition b − Axk ⊥ Lk is satisfied.

Typically, each iteration requires

� Sparse matrix vector product
→ point-to-point communication

� Dot products for orthogonalization
→ global communication

Map making on Cray XE6

0.010

0.100

1.000

10.000

 64 128 256 512 1024

Ti
m

e
[s

]

Number of MPI processes

1 It. with MBD
Computation
Communication

10 of 26

Ways to improve performance

Typical approaches

� Improve the performance of sparse matrix-vector product

� Improve the performance of collective communication

NLAFET approach

� Change numerics - reformulate or introduce Krylov subspace algorithms
to:
� reduce communication
� increase arithmetic intensity - compute sparse matrix-set of vectors product

� Use preconditioners to decrease the number of iterations till convergence

11 of 26

Enlarged Krylov methods

� Partition the matrix into t domains
� Split the residual r0 into t vectors corresponding to the t domains,

r0 → T (r0) =



∗ 0 0

.

.

.

.

.

.

.

.

.
∗ 0 0
0 ∗ 0

.

.

.

.

.

.

.

.

.
0 ∗ 0

.
.
.

0 0 ∗
.
.
.

.

.

.

.

.

.
0 0 ∗


� Generate t new basis vectors, obtain an enlarged Krylov subspace

Kt,k(A, r0) = span{T (r0),AT (r0),A2T (r0), ...,Ak−1T (r0)}
� Search for the solution of Ax = b in Kt,k(A, r0)

� [Grigori and Moufawad, 2014, Grigori and Tissot, 2017,
Daas et al., 2017]

12 of 26

Properties of enlarged Krylov subspaces

� The Krylov subspace Kk(A, r0) is a subset of the enlarged one

Kk(A, r0) ⊂ Kt,k(A, r0)

� For all k < kmax the dimensions of Kt,k and Kt,k+1 are stricltly increasing
by some number ik and ik+1 respectively, where

t ≥ ik ≥ ik+1 ≥ 1.

� The enlarged subspaces are increasing subspaces, yet bounded.

Kt,1(A, r0) (... (Kt,kmax−1(A, r0) (Kt,kmax (A, r0) = Kt,kmax+q(A, r0),∀q > 0

� The solution of the system Ax = b belongs to the subspace x0 +Kt,kmax .

13 of 26

Enlarged Krylov subspace methods based on CG

Defined by the subspace Kt,k and the following two conditions:

1. Subspace condition: xk ∈ x0 +Kt,k

2. Orthogonality condition: rk ⊥ Kt,k

� At each iteration, the new approximate solution xk is found by
minimizing φ(x) = 1

2 (x)tAx − btx over x0 +Kt,k :

φ(xk) = min{φ(x),∀x ∈ x0 +Kt,k(A, r0)}

� Can be seen as a particular case of a block Krylov method:
� AX = S(b) such that S(b) · ones(t, 1) = b, R0 = AX0 − S(b)
� Orthogonality condition involves the block residual Rk ⊥ Kt,k

14 of 26

Convergence analysis

Given

� A is an SPD matrix, x∗ is the solution of Ax = b

� ||ek ||A = ||x∗ − xk ||A is the k th error of CG

� ||ek ||A = ||x∗ − xk ||A is the k th error of enlarged methods

� CG converges in K iterations

Result
Enlarged Krylov methods converge in K iterations, where K ≤ K ≤ n.

||ek ||A = ||x∗ − xk ||A ≤ ||ek ||A

15 of 26

Classical CG vs. Enlarged CG

Algorithm 1 Classic CG
1: r0 = b − Ax0

2: p1 =
r0√
rt
0
Ar0

3: while ||rk−1||2 > ε||b||2 do
4: αk = pt

k rk−1

5: xk = xk−1 + pkαk

6: rk = rk−1 − Apkαk

7: pk+1 = rk − pk (pt
kArk)

8: pk+1 =
pk+1√

pt
k+1

Apk+1

9: end while

Algorithm 2 ECG(Odir)
1: R0 = T (b − Ax0)
2: P1 = A-orthonormalize(R0)

3: while ||
∑t

i=1 R
(i)
k ||2 < ε||b||2 do

4: αk = Pt
kRk−1 . t × t

5: Xk = Xk−1 + Pkαk . n × t
6: Rk = Rk−1 − APkαk . n × t
7: Pk+1 = APk − Pk (Pt

kAAPk) −
Pk−1(Pt

k−1AAPk) . n × t

8: Pk+1 = A-orthonormalize(Pk+1)
9: end while

10: x =
∑t

i=1 X
(i)
k . n × 1

� Enlarged CG based on Orthodir (Lanczos formula) [Ashby et al., 1990]

� More stable than Orthomin [OLeary., 1980],
Pk+1 = Rk − Pk(P t

kARk).

16 of 26

Classical CG vs. Enlarged CG

Algorithm 3 Classic CG
1: r0 = b − Ax0

2: p1 =
r0√
rt
0
Ar0

3: while ||rk−1||2 > ε||b||2 do
4: αk = pt

k rk−1

5: xk = xk−1 + pkαk

6: rk = rk−1 − Apkαk

7: pk+1 = rk − pk (pt
kArk)

8: pk+1 =
pk+1√

pt
k+1

Apk+1

9: end while

BLAS 1&2 operations

messages per iteration

O(log P) from dot prod + norm +

O(1) from SpMV

Algorithm 4 ECG(Odir)
1: R0 = T (b − Ax0)
2: P1 = A-orthonormalize(R0)

3: while ||
∑t

i=1 R
(i)
k ||2 < ε||b||2 do

4: αk = Pt
kRk−1 . t × t

5: Xk = Xk−1 + Pkαk . n × t
6: Rk = Rk−1 − APkαk . n × t
7: Pk+1 = APk − Pk (Pt

kAAPk) −
Pk−1(Pt

k−1AAPk) . n × t

8: Pk+1 = A-orthonormalize(Pk+1)
9: end while

10: x =
∑t

i=1 X
(i)
k . n × 1

BLAS 3 operations

messages per iteration

O(log P) from BCGS + A-ortho +

O(1) from SpMsetV

17 of 26

Dynamic reduction of search directions

� If Rk−1 becomes rank deficient,

Rk−1v = 0 =⇒ Riv = 0,∀i ≥ k

=⇒ Xi−1v = X ∗v

� Monitor the rank of αk instead of Rk−1 to select search directions

αk = PT
k Rk−1 ≈ U

(1)
k σ

(1)
k W

(1)
k

� The new search directions are given by the relation:

Xk = Xk−1 + Pkαk = Xk−1 + (PkU
(1)
k)(Σ

(1)
k V

(1)
k

t
)

= Xk−1 + P
(1)
k α

(1)
k ,

Xk ,Rk ∈ Rn×t , α
(1)
k ∈ Rrank(αk)×t ,P

(1)
k ∈ Rn×rank(αk)

� Idea adapted from Robbé and Sadkane (2006)

18 of 26

Related work

� Block Krylov methods (O’Leary 1980): solve systems with multiple rhs

AX = B,

by searching for an approximate solution Xk ∈ X0 +Kk(A,R0),

Kk(A,R0) = block − span{R0,AR0,A
2R0, ...,A

k−1R0}

� BRRHS-CG (Nikishin and Yeremin, 1995) use a block method with t − 1
random right hand sides

� coopCG (Bhaya et al, 2012): solve one system by starting with t different
initial guesses

� GMRES with multiple preconditioners (Greif, Rees, Szyld, 2011)

� AMPFETI (D. Rixen 97, Gosselet et al, 2015)

19 of 26

Test cases: boundary value problem

3D Skyscraper Problem - SKY3D

−div(κ(x)∇u) = f in Ω

u = 0 on ∂ΩD

∂u

∂n
= 0 on ∂ΩN

discretized on a 3D grid , where

κ(x) =

{
103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi] = 0mod(2), i = 1, 2, 3,
1, otherwise.

3D Anisotropic layers - ANI3D

� Ω divided into 10 layers parallel to z = 0, of size 0.1

� in each layer, the coefficients are constants (κx equal to 1, 102 or 104,
κy = 10κx , κz = 1000κx).

20 of 26

Test cases (contd)

Linear elasticity 3D problem

div(σ(u)) + f = 0 on Ω,

u = uD on ∂ΩD ,

σ(u) · n = g on ∂ΩN , Figure : The distribution
of Young’s modulus

� u ∈ Rd is the unknown displacement field, f is some body force.

� Young’s modulus E and Poisson’s ratio ν take two values,
(E1, ν1) = (2 · 1011, 0.25), and (E2, ν2) = (107, 0.45).

� Cauchy stress tensor σ(u) is given by Hooke’s law, defined by E and ν.

21 of 26

Enlarged CG: numerical results

� Block Jacobi preconditioner (1024 blocks)

� Stopping criterion 10−6

� Initial block size 32

� BRRHS-CG (Nikishin and Yeremin, 1995): block method with t − 1
random rhs

PCG BRRHS-CG ECG
red. iter iter dim(Kt,k) iter dim(Kt,k)

SKY2D × 655 61 1952 57 1824
X 655 61 1739 59 1546

Ela3D100 × 955 102 3264 109 3488
X 955 102 3093 116 2384

Ela2D200 × 4551 255 8160 253 8096
X 4551 258 7331 266 6553

22 of 26

Enlarged CG: parallel performance

� MeSU (UPMC cluster)
Intel Xeon E5-2670v3 (12 cores),
24 cores per node

� Comparison with PETSc 3.7.4

Method iter time (s) time/iter

ECG(12) 318 1.3 4.1× 10−3

PETSc 5198 3.3 6.3× 10−4

PETSc ECG(4) ECG(8) ECG(12) ECG(16) ECG(20) ECG(24)
0

1

2

3

4

5

6

7

8

T
im

e
 (

s)

Ela400, nproc = 48

24 48 96 192
nproc

0

2

4

6

8

10

12

14

T
im

e
 (

s)

Ela400

ECG(12)
PETSc

23 of 26

Detailed profiling (source slide O. Tissot)

beta = (AP)^t*Z
R = R - AP*alpha
A*P
A-CholQR
gamma = (AP_prev)^t*Z

Z = Z - P_prev*gamma

Z = M^-1*AP
Z = Z - P*beta
X = X + P*alpha
alpha = P^t*R

� Ela400 on 96 cores

� Orthodir ECG(12)

� Around 50% of the time spent in
applying the preconditioner

� Around 30% of the time spent in
Sparse Matrix-Matrix

Method iter time (s) time/iter

ECG(12) 318 1.3 4.1× 10−3

PETSc 5198 3.3 6.3× 10−4

Table : Comparison with PETSc PCG.
PETSc iteration is 6.5 times faster than
ECG(12) one. MKL-Pardiso has a
strange behaviour with multiple rhs n
our experiments: 1 rhs solve is 3 times
faster than 2 rhs solve.

24 of 26

Conclusions

� Enlarged CG converges faster than classic CG on our test matrices
� number of global reductions is reduced significantly
� arithmetic intensity is increased

� Prototype code in C and MPI available

� Implement the block size reduction, tuning, and optimize the code

� Code will be available in november 2017

25 of 26

References (1)

Ashby, S. F., Manteuffel, T. A., and Saylor, P. E. (1990).

A taxonomy for conjugate gradient methods.
SIAM Journal on Numerical Analysis, 27(6):1542–1568.

Daas, H. A., Grigori, L., Hénon, P., and Ricoux, P. (2017).

Enlarged GMRES for reducing communication.
Technical Report 8910, Inria.

Grigori, L. and Moufawad, S. (2014).

Communication avoiding incomplete LU0 factorization.
SIAM Journal on Scientific Computing, in press.
Also as INRIA TR 8266.

Grigori, L. and Tissot, O. (2017).

Reducing the communication and computational costs of enlarged krylov subspaces conjugate gradient.
Research Report RR-9023.

OLeary., D. P. (1980).

The block conjugate gradient algorithm and related methods.
Linear Algebra and Its Applications, 29:293–322.

26 of 26

