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Data assimilation and Non-Gaussian statistics

I Non-Gaussian features in Geophysical fluids

I Ensemble based methods : use Gaussian assumption

I Particle filters

p(x) =
K∑
k

wkδ(x − xk )

where wk ≥ 0 and
∑

k wk = 1.



Limitation of particle filters

I Not applicable to high-dimensional systems

I Particle collapse : A small fraction of particles have the most
weights

I Number of particles increases exponentially with the
dimension of the system

I No localization : observation affects all state variables even if
they are not correlated



Clustered Particle Filters (CPF), L. and Majda, PNAS

A new class of particle filters to address the issues of
ensemble-based filters and standard particle filters
Key features

I Capture non-Gaussian statistics

I Use a relatively few particles

I Implements coarse-grained localization through the clustering
of state variables

I Particle adjustment

I Simple but robust even with sparse and high-quality
observations

I No adjustable parameter

For simplicity of the description of the algorithm, we assume that the

observation is linear, which observes partial components of the state

variable



Schematics of several particle filters

Total dimension is 6 and two observations at x2 and x5

wk
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Figure: Schematics of particle weight, wk , for the k-th particle.

I Standard particle filter uses the same particle weight at different
locations

I Localized particle filter uses different weights at different locations

I In CPF, sparse observation network determines the clustering of
state variables; two clusters for CPF

I Weights are the same in the same cluster



Another problem of particle filter

I The mean of p(x) =
∑K

k wkδ(x − xk ), wk ≤ 0,
∑

k wk = 1
is a convex combination of xk ,wkxk

I If the posterior mean is not in the convex hull of the prior
samples, the particle filter cannot represent the correct
posterior distribution (∵ particle filtering updates only the
particle weights)



Particle Adjustment

Adjust the prior particles to match the Kalman posterior mean and
covariance (i.e., update the prior under Gaussian assumption) if
the prior particles cannot represent the observation

yj 6∈ {
K∑
k

qk [xf
Cj ,k

]|,∀qk ≥ 0 such that
∑

k

qk = 1}

yj : j-th observation component, xf
Cj

: prior particles in the j-th cluster Cj

Note several adjustment or transformation methods of
ensemble-based methods can be applied to the particle adjustment.
In this study, we use EAKF by Anderson.



Hard Threshold Clustered Particle Filter Algorithm - one
step assimilation

Given :
1) Nobs observations {y1, y2, ..., yNobs}
2) prior K particles {xf

Cj ,k
, k = 1, 2, ...,K} and weight vectors

{ωf
l,k , k = 1, 2, ...,K} for each cluster Cl , l = 1, 2, ..,Nobs

For yj from j = 1 to Nobs

If yj 6∈ {
∑K

k qk H[xf
Cj ,k

]|, ∀qk ≥ 0 such that
∑

k qk = 1}
Do particle adjustment

Else Use particle filtering
Update {ωf

j,k} using standard PF update
If Keff = 1∑

k (ω
a
l,k

)2
< K

2

Do resampling
Add additional noise to the resampled particles

xCl ,Resample(k) ← xCl ,Resample(k) + ε (1)

where ε is IID Gaussian noise with zero mean and variance rnoise

End If
End If

End For



Multiscale Clustered Particle Filtering

I Multiscale data assimilation (particle filter, ensemble filter)
Lee and Majda, Multiscale Methods for Data Assimilation
in Turbulent Systems, SIAM MMS, 2015

I Probability distribution : conditional Gaussian mixture

p(u) =
K∑
k

wkδ(u − uk )N (u′(uk ),R ′(u))

I Particle filtering for the large scales and Kalman update for
the small scales

I Particle adjustment : Accounts for representative error, the
error due to the contribution of unresolved scales



Multiscale Clustered Particle Filtering

I For the j-th observation component vj , the posterior particle
weights are given by

wa
l ,k =


w f

l,k Ik∑
k w f

l,k Ik
l = j ,

w f
l ,k l 6= j

(2)

where Ik =
∫
p(vj |xCl ,k , yCl

)p(yCl
|xk )dyCl

.

I For the particle adjustment step, use the standard Ensemble
update formula using an increased observation error variance
(i.e., representation error)

Kalman gain G = R f HT (HR f HT + ro I + R ′)−1 (3)



Two-layer coupled Lorenz-96 system

dxi

dt
= xi−1(xi+1 − xi−2) + λ1

J∑
j=1

yi ,j − d1xi + F , i = 1, 2, ..., I

dyi ,j

dt
=

aLxi + aSyi ,j+1

ε
(yi ,j−1 − yi ,j+2)− λ2xi − d2yi ,j , j = 1, 2, ..., J

(4)

where xi is periodic in i and yi ,j is periodic in both i and j .

I x = {xi} : slow-climate variable of size I

I y = {yi ,j} : fast-weather variable of size IJ

I ε > 0 : an explicit time-scale separation parameter

I F : an external slow forcing

I Resolved variable Yi = 1
J

∑
j yij



Weakly Chaotic Regime

I I = 40, J = 10, there are total 440 variables

I aL = 1, aS = 0, F = 5, λ1 = 1/4, λ2 = −1, d1 = 1.5,
d2 = 2.5, ε = 1

Linearly stability

Blue square : linearly unstable modes



Weakly Chaotic Regime
Climatological properties

xi yij

mean 2.01 0.80
variance 8.51 0.75
skewness 0.18 0.38
kurtosis 2.40 2.68

corr length ≤ 1 ≤ 1
corr time 2.93 3.52

Table: Climatological properties of the weakly chaotic regime



Experiment setup

I Each observation component directly observes the sum of xj

and yj ,5 (observation has contributions from both the large-
and small-scale components)

I Raw observation error variance is only 1% of the total
variance (and thus the most observation error comes from the
unresolved scale components)

I Run 5000 assimilation cycles and use the last 3000 cycles to
measure the filter performance

I 50 samples for both MsCPF and MsEAKF



Experiment setup

I We compare two multiscale filtering methods, MsCPF and
MsEAKF

I MsCPF : Multiscale Clustered Particle Filter
I MsEAKF : Multiscale EAKF (which uses EAKF for the

large-scale estimation)

I To see the effect of the filtering method, we use the perfect
forecast model (i.e., the forecast use the same numerical
method as the method to generate the true signal)



Experiment results

Time series of forecast RMS errors

Time averaged RMS errors and pattern correlation in parenthesis.
40 observations 20 observations

obs time MsCPF MsEAKF MsCPF MsEAKF

0.05 0.52 (0.90) 1.30 (0.64) 0.55 (0.83) 1.46 (0.52)
0.10 0.54 (0.87) 1.32 (0.63) 0.61 (0.81) 1.53 (0.50)

Table: Climatological error is 0.844. Effective observation error is 2.900.



Experiment results

Forecast PDFs by MsCPF (blue) and MsEAKF (red) along with
the true value (black)

(a) in log-scale (b) without scaling

Figure: Dash-line is the Gaussian fit to the true PDF.

Forecast relative entropy using the forecast estimate PDFs.
40 observations 20 observations

obs time MsCPF MsEAKF MsCPF MsEAKF

0.05 0.1631 0.3024 0.1787 0.4328
0.10 0.1791 0.3234 0.1891 0.4523



Summary

Multiscale data assimilation method using the clustered particle
filter for resolved scales

I Captures non-Gaussian statistics

I Efficient - requires only a small number of particles

I Robust under sparse and high-quality observations

I Clustering of state variables

I Particle adjustment to prevent particle collapse

Future works

I Dense and vector observations

I Two- and three-dimensional spaces

I Bayesian parameter estimation



References

I Y. Lee and A.J. Majda, Multiscale Data Assimilation and
Prediction using Clustered Particle Filters, submitted

I Y. Lee and A.J. Majda, State estimation and prediction
using clustered particle filters, PNAS, 113(51),
14609–14614, 2016



Thank you for your attention


	Particle filtering
	Clustered Particle Filtering
	Multiscale Clustered Particle Filtering

