

Synchronization over Cartan Motion Groups

Nir Sharon

SIAM Annual Meeting (AN17) Geometry and Computational Challenges in Data Science July 11, 2017

A joint work with Onur Özyesil and Amit Singer

Intro to Synchronization

The problem: define a unified clock given a set the time differences between locations.

Intro to Synchronization

The problem: define a unified clock given a set the time differences between locations.

Mathematical interpretation – overdetermined system of linear equations, modulo 24 hours.

Problem formulation

Estimate *n* unknown group elements $\{g_i\}_{i=1}^n$ from a set of measurements g_{ii} of their ratios

$$g_{ij} \approx g_i g_j^{-1}, \quad 1 \leq i < j \leq n.$$

Problem formulation

Estimate *n* unknown group elements $\{g_i\}_{i=1}^n$ from a set of measurements g_{ii} of their ratios

$$g_{ij} \approx g_i g_j^{-1}, \quad 1 \leq i < j \leq n.$$

Any solution is up to a global alignment, as seen by

$$g_ig_j^{-1}=(g_i\mathbf{g})(g_j\mathbf{g})^{-1}.$$

3D Registration via Synchronization

Database available online, consists of 24 point clouds, each of between 24,000 to 36,000 points

State-of-the-art Registration

Numerical result

Available data	Our method	Separation	Spectral	Diffusion-based
29%	.00175	.00176	> 0.01	> 0.01
59%	.00175	.00175	> 0.01	> 0.01

State-of-the-art Registration

Visual result

(a) Good registration by our method

(b) Bad registration by spectral method

(c) Model

More Real World Applications of Synchronization

Structure from Motion (vision) Pose graph optimization (robotics)

Estimate viewing directions (Cryo-EM)

Synchronization over Non-Compact Groups

We use the variety of known solutions for rotation (compact) synchronization.

Synchronization over Non-Compact Groups

We use the variety of known solutions for rotation (compact) synchronization.

Synchronization over Non-Compact Groups

We use the variety of known solutions for rotation (compact) synchronization.

For Ψ we use the notion of **compactification**

<u>Start</u>: A semisimple Lie group G_0 . For example, $G_0 = SO(d + 1)$.

Start: A semisimple Lie group G_0 . For example, $G_0 = SO(d + 1)$.

• The Cartan decomposition,

$$G_0 \xrightarrow{\text{algebra}} g = t \oplus p,$$

defines

$$K \xleftarrow{group} t$$

• Here *g* is skew-symmetric matrices where

$$= \left\{ \begin{bmatrix} Z_{d \times d} & 0 \\ 0 & 0 \end{bmatrix} : Z + Z^{T} = 0 \right\}$$

and

t

$$p = \left\{ \begin{bmatrix} \mathbf{0}_{d \times d} & b \\ -b^T & 0 \end{bmatrix} : b \in \mathbb{R}^d \right\}.$$

<u>Start:</u> A semisimple Lie group G_0 . For example, $G_0 = SO(d + 1)$.

• The Cartan decomposition,

$$G_0 \xrightarrow{\text{algebra}} g = t \oplus p,$$

defines

$$K \xleftarrow{group} t$$

• The associated Cartan motion group

$$G = K \ltimes p$$
.

• Here *g* is skew-symmetric matrices where

$$=\left\{ \left[\begin{smallmatrix} Z_{d\times d} & 0 \\ 0 & 0 \end{smallmatrix} \right] : Z + Z^T = 0 \right\}$$

and

t

$$p = \left\{ \begin{bmatrix} \mathbf{0}_{d imes d} & b \\ -b^T & 0 \end{bmatrix} : b \in \mathbb{R}^d
ight\}.$$

• Then, $SE(d) = SO(d) \ltimes \mathbb{R}^d$.

• The Cartan decomposition,

$$G_0 \xrightarrow{algebra} g = t \oplus p_1$$

defines

$$K \xleftarrow{group} t$$
.

$$G = K \ltimes p$$
 with
 $(k_1, v_1)(k_2, v_2) = (k_1k_2, v_1 + \operatorname{Ad}_{k_1}(v_2))$.

• Here *g* is skew-symmetric matrices where

$$t = \left\{ \begin{bmatrix} Z_{d \times d \ 0} \\ 0 \end{bmatrix} : Z + Z^{\mathsf{T}} = 0 \right\}$$

and

$$p = \left\{ \begin{bmatrix} \mathbf{0}_{d \times d} & b \\ -b^T & \mathbf{0} \end{bmatrix} : b \in \mathbb{R}^d \right\}.$$

• Then, $SE(d) = SO(d) \ltimes \mathbb{R}^d$.

Compactification of Cartan Motion Group

A famous study on relativistic mechanics, by Inönü and Wigner (1953), investigates the relations between limiting physical processes. This was the birth of *contractions*,

 Φ_{λ} : $G \mapsto G_0$.

A famous study on relativistic mechanics, by Inönü and Wigner (1953), investigates the relations between limiting physical processes. This was the birth of *contractions*,

$$\Phi_{\lambda}\colon G\mapsto G_{0}.$$

We adopt one family of contractions, by Dooley and Rice (1983), $\{\Psi_{\lambda}\}_{\lambda\geq 1}$ defined based on the Cartan decomposition

$$\Psi_{\lambda}(k, v) = \exp(v/\lambda)k, \qquad (k, v) \in G.$$

The parameter λ induces the contraction.

The Fundamental Requirements

• Invertibility: guaranteed when v/λ is inside the injectivity radius of the exponential of G_0 . For G = SE(d),

$$\|b\|/\lambda < \pi \, .$$

• **Approximated homomorphism**: conditions for admissible compactification,

$$egin{aligned} \Psi_\lambda\left(g^{-1}
ight)&=\left(\Psi_\lambda(g)
ight)^{-1}\,,\qquad g\in {\mathcal G},\ &\left\|\Psi_\lambda(g_1g_2)-\Psi_\lambda(g_1)\Psi_\lambda(g_2)
ight\|_F={\mathcal O}\left(rac{1}{\lambda^2}
ight)\,,\quad g_1,g_2\in {\mathcal G}. \end{aligned}$$

These conditions allow us to relate the metrics on G_0 and G.

Final Numerical Examples

Two Scenarios

Th-th-that's all folks!

Thank you

Analysis Highlights – Synchronization via Contraction

• Global alignment: the choice in compact domain matters as

$$\Psi_{\lambda}^{-1}\left(Q_{i}\mathbf{Q}\right)\Psi_{\lambda}^{-1}\left((Q_{j}\mathbf{Q})^{-1}\right)\neq\Psi_{\lambda}^{-1}\left(Q_{i}\right)\left(\Psi_{\lambda}^{-1}(Q_{j})\right)^{-1}$$

• Effect of parameter λ: to retain the consistency of synchronization

$$\Psi_\lambda(g_{ij})\Psi_\lambda(g_{j\ell}) pprox \Psi_\lambda(g_{i\ell}).$$

• Noise analysis.

Example (matrix motion group)

Let $G_0 = O(d + \ell)$. Denote by $M(d, \ell)$ the space of all real matrices of order $d \times \ell$.

Cartan decomposition of the Lie algebra:

t is the Lie algebra of $O(d) \times O(\ell)$ and $p = M(d, \ell)$.

This decomposition yields the so called matrix motion group,

$$G = (\mathsf{O}(d) \times \mathsf{O}(\ell)) \ltimes \mathsf{M}(d, \ell).$$

This Cartan motion group is associated with the quotient space G/K which is the Grassmannian manifold (all *d* dimensional linear subspaces of $\mathbb{R}^{d+\ell}$).

Example

Let $G_0 = SU(d)$, the group of all unitary matrices with determinants equal to one. One Cartan involution of $\{X : X + X^T = 0, tr(X) = 0\}$ is to a real part (same as the Lie algebra of SO(d)) and it's orthogonal complement, denoted by $W = SO(d)^{\perp}$.

Then, the Cartan Motion group in this case is

 $SO(d) \ltimes W$

Analysis of noisy synchronization over SE(d)

Assume a noise model

$$g_{ij} = g_i N_{ij} g_j^{-1}, \quad N_{ij} = (v_{ij}, a_{ij}) \in G.$$

Some algebraic simplification leads to en explicit form of the mapped synchronization problem

$$\Psi_{\lambda}(g_{ij})=\Psi_{\lambda}\left(g_{i}
ight)\mathcal{W}_{ij}\Psi_{\lambda}\left(g_{j}
ight)^{\mathcal{T}}$$
 .

- If $\mathbb{E}[a_{ij}] = 0$ then $\Psi_{\lambda}(N_{ij}) = \exp(a_{ij}/\lambda) \upsilon_{ij}$ (given in Cartan form) is a good approximation to (the Cartan form) of $\mathbb{E}[W_{ij}]$.
- In the simplified model $W_{ij} = \Psi_{\lambda} (N_{ij})$ we show how to "translate" the phase transition point of rotations synchronization to the setting of rigid motion synchronization.