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Intro to Synchronization

The problem: define a unified clock given a set the time differences
between locations.

Mathematical interpretation – overdetermined system of linear
equations, modulo 24 hours.
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The Mathematical Problem of Synchronization

Problem formulation
Estimate n unknown group elements {gi}ni=1 from a set of
measurements gij of their ratios

gij ≈ gig
−1
j , 1 ≤ i < j ≤ n.

Any solution is up to a global alignment, as seen by

gig
−1
j = (gig)(gjg)−1.
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3D Registration via Synchronization

Database available online, consists of 24 point clouds, each of between
24, 000 to 36, 000 points
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State-of-the-art Registration

Numerical result

Available data Our method Separation Spectral Diffusion-based

29% .00175 .00176 > 0.01 > 0.01
59% .00175 .00175 > 0.01 > 0.01
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State-of-the-art Registration

Visual result

(a) Good registration
by our method

(b) Bad registration by
spectral method

(c) Model
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More Real World Applications of Synchronization

Structure from Motion (vision) Pose graph optimization (robotics)

Estimate viewing directions (Cryo-EM)

Nir Sharon (PACM, Princeton University) Synchronization via contraction July 11, 2017 7 / 13



Synchronization over Non-Compact Groups

We use the variety of known solutions for rotation (compact)
synchronization.

-1

For Ψ we use the notion of compactification
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Cartan Motion Groups

The Cartan decomposition,

G0
algebra−−−→ g = t ⊕ p,

defines

K
group←−−− t .

The associated Cartan
motion group

G = K n p.

Here g is skew-symmetric
matrices where

t =

{[
Zd×d 0
0 0

]
: Z + ZT = 0

}
and

p =

{[
0d×d b

−bT 0

]
: b ∈ Rd

}
.

Then, SE(d) = SO(d)nRd .
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Cartan Motion Groups
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Compactification of Cartan Motion Group

A famous study on relativistic mechanics, by Inönü and Wigner
(1953), investigates the relations between limiting physical processes.
This was the birth of contractions,

Φλ : G 7→ G0.

We adopt one family of contractions, by Dooley and Rice (1983),
{Ψλ}λ≥1 defined based on the Cartan decomposition

Ψλ(k , v) = exp
(
v/λ

)
k , (k , v) ∈ G .

The parameter λ induces the contraction.
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The Fundamental Requirements

Invertibility: guaranteed when v/λ is inside the injectivity
radius of the exponential of G0. For G = SE(d),

‖b‖/λ < π .

Approximated homomorphism: conditions for admissible
compactification,

Ψλ

(
g−1
)

=
(
Ψλ(g)

)−1
, g ∈ G ,∥∥Ψλ(g1g2)−Ψλ(g1)Ψλ(g2)

∥∥
F

= O
(

1

λ2

)
, g1, g2 ∈ G .

These conditions allow us to relate the metrics on G0 and G .
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Final Numerical Examples

Two Scenarios
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Th-th-th-that’s all folks!

Thank you
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Analysis Highlights – Synchronization via

Contraction

Global alignment: the choice in compact domain matters as

Ψ−1λ (QiQ) Ψ−1λ

(
(QjQ)−1

)
6= Ψ−1λ (Qi)

(
Ψ−1λ (Qj)

)−1
.

Effect of parameter λ: to retain the consistency of
synchronization

Ψλ(gij)Ψλ(gj`) ≈ Ψλ(gi`).

Noise analysis.
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Additional example of Cartan motion group

Example (matrix motion group)

Let G0 = O(d + `). Denote by M(d , `) the space of all real matrices
of order d × `.
Cartan decomposition of the Lie algebra:
t is the Lie algebra of O(d)× O(`) and p = M(d , `).
This decomposition yields the so called matrix motion group,

G =
(
O(d)× O(`)

)
n M(d , `).

This Cartan motion group is associated with the quotient space G/K
which is the Grassmannian manifold (all d dimensional linear
subspaces of Rd+`).
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Additional example of Cartan motion group

Example

Let G0 = SU(d), the group of all unitary matrices with determinants
equal to one. One Cartan involution of
{X : X + XT = 0, tr(X ) = 0} is to a real part (same as the Lie
algebra of SO(d)) and it’s orthogonal complement, denoted by
W = SO(d)⊥.
Then, the Cartan Motion group in this case is

SO(d) nW

.
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Analysis of noisy synchronization over SE(d)

Assume a noise model

gij = giNijg
−1
j , Nij = (υij , aij) ∈ G .

Some algebraic simplification leads to en explicit form of the mapped
synchronization problem

Ψλ(gij) = Ψλ (gi)WijΨλ

(
gj
)T
.

If E
[
aij
]

= 0 then Ψλ

(
Nij

)
= exp

(
aij/λ

)
υij (given in Cartan

form) is a good approximation to (the Cartan form) of E
[
Wij

]
.

In the simplified model Wij = Ψλ

(
Nij

)
we show how to

“translate” the phase transition point of rotations
synchronization to the setting of rigid motion synchronization.
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