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Analysis of a nudging-based algorithm for data 
assimila5on

	
(Joint	works	with	C.	Foias	and	E.	S.	Ti?)	



• General	idea	of	Data	Assimila?on	(DA).	
•  Feedback-control	(nudging)	algorithm.	
▫  Discrete	in	?me	DA	with	systema?c	errors.	
▫  Numerical	approxima?on	–	Postprocessing	Galerkin.	
•  Summary.	
•  Remarks/Future	work.	

Outline



Ques%on:	How	to	make	a	weather	forecast?	
	
You	will	need...	

•  A	theore?cal	model:	
	
𝑑𝑢/𝑑𝑡 =𝐹(𝑡,𝑢(𝑡))	
	
𝑢: unknown	variable	represen?ng	the	
state	of	the	atmosphere	(velocity	
field,	temperature,	pressure,	...).	
	
•  Observa?onal	measurements.	
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•  Data	Assimila*on	combines	the	theore?cal	
model	with	informa?on	from	observa?ons	
in	order	to	obtain	a	good	approxima?on	of	
the	state	of	the	physical	system	at	a	certain	
future	?me.		

	
•  Numerous	applica?ons:	meteorology,	
oceanography,	oil	industry,	neuroscience,	
etc.	

	
•  Several	approaches:	
▫  Nudging.	
▫  Kalman	Filter	(KF).	
▫  Ensemble	Kalman	Filter	(EnKF).	

▫  Local	Ensemble	Transform	Kalman	Filter	(LETKF).	
▫  3DVAR.	
▫  4DVAR.	



Feedback-control (nudging) approach 
(Azouani-Olson-Ti5, ‘14)

original	(forecast)	model	

approximate	model	=		
original	model	+	feedback		

control	term	

•  Combine	model	and	measurements	by	adding	a	feedback-control	term	to	the	
equa?ons.		

Approximate	solu?on	𝑣;	arbitrary	𝑣(0)=𝑣0	;	arbitrary	𝑣(0)=𝑣0	

Reference	solu?on	𝑢;	missing	𝑢(0)=𝑢0	;	missing	𝑢(0)=𝑢0	

Feedback	control	term	
forces	coarse	spa?al	scales	
of	𝑣 toward	those	of	𝑢		



Background idea

•  Long-?me	behavior	of	solu?ons	to	dissipa?ve	evolu?on	equa?ons	is	determined	by	
only	a	finite	number	of	degrees	of	freedom.	
▫  Fourier	modes,	2D-NSE	(Foias-Prodi,	‘67):	
	
				Let									be	the	projec?on	operator	onto	the	first	N	Fourier	modes.	
																					s.t.	if															are	two	solu?ons	of	2D-NSE	with	
		
				then	
	
	
▫  Spa?al	nodes,	2D-NSE	(Foias-Temam,	’84).	
▫  Finite	volume	elements,	2D-NSE	(Foias-Ti?,	’91;	Jones-Ti?,	’92).	
▫  Other	dissipa?ve	evolu?on	eqs.	(Cockburn-Jones-Ti?,	‘97).	

	
	



Example

•  Consider	the	forecast	(theore?cal)	model	given	by	the	2D	incompressible	
Navier-Stokes	equa*ons:	

(2D-NSE)	

density	of	volume	forces	pressure	

kinema?c	viscosity	velocity	field	

•  Assume:	
▫  No	model	error.	
▫  Con?nuous	in	?me	and	error-free	measurements.	



Approximate model

same	as	for	the	2D-NSE	

modified	pressure	

resolu?on	of	spa?al	mesh	

relaxa?on	parameter	

linear	interpolant	operator	in	space	

controls	large	scales	
controls	

small	scales	



•  Denote																						.	

•  Assume																							

Ex.:			
▫  Low	modes	projector:		
	



▫  Finite	volume	elements:	

OR:	

Ex.:			

▫  Nodal	values:		



Theorem	(Azouani-Olson-Ti%,	‘14)

If																								and																											,	then																																																		.	

Some related works

•  Other	models:	3D	NS-alpha	(Albanez-Nussenzveig	Lopes-Ti?,	‘16),	3D	Brinkman-
Forchheimer-extended	Darcy	(Markowich-Ti?-Trabelsi,	’16),	2D-SQG	(Jolly-Mar?nez-Ti?,	
’17).	
•  Par?al	observa?ons	of	the	state	variables:	
▫  2D	Bénard,	only	velocity	(Farhat-Jolly-Ti?,	’15).	
▫  2D-NSE,	one	velocity	component	(Farhat-Lunasin-Ti?,	’16)	.	
▫  3D	planetary	geostrophic	model,	only	temperature	(Farhat-Lunasin-Ti?,	‘16).	
▫  2D	Bénard,	only	horizontal	velocity	component	(Farhat-Lunasin-Ti?,	’17).	
▫  3D	Bénard	in	porous	media,	only	temperature	(Farhat-Lunasin-Ti?,	’17).	
▫  3D	Leray-alpha,	only	two	components	of	velocity	(Farhat-Lunasin-Ti?,	17).	
	



Some related works (cont’d)

•  Higher	order	convergence,	Gevrey	class	and								(Biswas-Mar?nez,	’17).	
•  Measurements	with	stochas?c	errors	(Blomker-Law-Stuart-Zygalakis,	‘13;	Bessaih-
Olson-Ti?,	‘15).	
•  Time-averaged	meas.:	2D-SQG	(Jolly-Olson-Ti?-Mar?nez),	Lorenz	(Blocher-Olson-
Mar?nez).	
•  Discrete	in	?me	meas.	with	syst.	errors,	2D-NSE	(Foias-M-Ti?,	‘16).	
•  Numerical	computa?ons:	
▫  2D-NSE	(Gesho-Olson-Ti?,	‘16).	
▫  2D	Bénard	(Altaf-Ti?-Gebrael-Knio-Zhao-McCabe-Hoteit,	‘16).	
•  Numerical	approxima?on	by	PPGM,	2D-NSE	(M-Ti?).	
	



Discrete in 5me Data Assimila5on

•  Discrete	in	space.	

Spa?al	mesh	with	
resolu?on	of	size	h.	

•  Discrete	in	?me.	

Measurements	are...	

•  May	contain	errors.	
				Denote	by								the	error	at	?me						,			

Measurement	at	?me						:		



Approximate Model

•  Assume																																										is	a	linear	operator	sa?sfying:	

•  Examples:	low	Fourier	modes	projector,	finite	volume	elements.	



Theorem	(Foias-M.-Ti%,	‘16)	
Assume:	
	
	
If																					,																																and																														,	then		
	
	
	
Moreover,	if														,	then	



Numerical Approxima5on

•  In	prac?ce,	numerical	models	can	only	compute	finite-dimensional	approxima?ons.	
•  Goal:	Obtain	an	analy?cal	es?mate	of	the	error	between	a	numerical	approxima?on	
of						and	the	(full)	reference	solu?on					.	

•  For	simplicity,	assume:	con?nuous	in	?me	and	error-free	measurements.	
•  Seong:	
▫  Phase	space	of	2D-NSE:	
▫  Apply	projector																																			to	the	feedback-control	equa?on:				

▫  Eigenvectors	of																												:													,	with	eigenvalues												.	
▫  Finite-dimensional	space:		



Galerkin spectral method

Find																									sa?sfying	

Nota?on:		



Theorem (M.-Ti5)   

If																										and																											,	then																																			and																																		s.t.,	
for	N	sufficiently	large,	
	
	
	
Thus,																																													s.t.	
	
	
	
where	



A Postprocessing of the Galerkin method
(‘García-Archilla’-Novo-Ti5, ‘98)

Nota?on:		

•  Idea:	Add	to	the	Galerkin	approxima?on	of				
a	suitable	approxima?on	of					:	

(Approximate	iner?al	manifold,	Foias-
Manley-Temam,	’88)	



Postprocessing Galerkin Algorithm

For	obtaining	an	approxima?on	of				,	and	thus					,	at	a	certain	?me				

1.  Integrate	the	Galerkin	system	over														to	obtain														.	

2.  Obtain								sa?sfying		
3.  Compute																									.	

•  Informa?on	on	the	high	modes	(fine	spa?al	scales)	is	only	used	at	the	final	
?me					!	This	is	one	of	the	reasons	for	the	efficiency	of	the	Postprocessing	
Galerkin	method	(compared	to,	e.g.,	the	Nonlinear	Galerkin	method).	



Par5cular case: 

Theorem (M.-Ti5)

If																									and																			,	then																																			and																																			s.t.,	for		
N	sufficiently	large,		
	
	
	
Thus,																																													s.t.	



General case

•  Assume																																				is	a	linear	operator	sa?sfying:	

▫  																	s.t.	
	

▫  																			s.t.	
	

▫  																s.t.	

	

	•  Examples:	low	Fourier	modes	projector;	finite	volume	elements.	



Theorem (M.-Ti5)   

If																									and																										,	then																																			and																																		s.t.,	
for	N	sufficiently	large,	
	
	
	
Thus,																																													s.t.	



Comparison

•  Error	using	the	Galerkin	method	(both	types	of						):	

	

	

•  Error	using	the	Postprocessing	Galerkin	method:	

▫  Case																			:															
	

	

▫  General	class	of						:										

	

	



Summary

•  Original	feedback-control	data	assimila?on	algorithm	(Azouani-Olson-Ti?,	’14):	
con?nuous	in	?me	and	error-free	measurements.		

▫  Foias-M.-Ti?,	‘16:	discrete	in	*me	measurements	with	errors.	
▫  Exponen?al	convergence	of	the	approximate	solu?on	to	the	reference	solu?on,	
up	to	an	upper	bound	on	the	errors.	

•  Numerical	approxima?ons	of	v,	and	thus	u	(M.-Ti?):		

▫  Postprocessing	Galerkin	method	has	a	berer	convergence	rate	than	the	Galerkin	
method,	with	respect	to	the	numerical	resolu?on.	
▫  Error	es?mates	are	uniform	in	*me	–	feedback-control	term	stabilizes	the	large	
scales	of	the	difference	v	-	u,	resul?ng	in	a	globally	asympto?cally	stable	system.	



Remarks/Future work

•  Theore?cal	condi?on	on	the	spa?al	resolu?on	of	the	measurements,	h,	is	far	from	being	

valid	for	real	flows.	

▫  Numerical	simula?ons	done	in,	e.g.	[Gesho-Olson-Ti?,	‘16]	and	[Altaf	et	al.,	‘16]	show	

that	a	much	less	restric?ve	condi?on	on	h	is	sufficient	for	exponen?al	convergence.		

▫  Analyze	ensemble	averages	of	the	physical	quan??es	associated	to	the	approximate	flow	
–	less	restric?ve	condi?ons	on	the	parameters?	Provide	rigorous	analy?cal	proofs.	

•  Other	types	of	numerical	methods	(e.g.,	finite	volume	elements)	need	to	be	considered	for	
approxima?ng	v.	This	may	yield	berer	convergence	rates	with	respect	to	the	numerical	

resolu?on.	

	



		

 

Thank	you!	


