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Projected Data Assimilation
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Projected Data Assimilation — Motivation

Project Goals

The goals of the project (work in progress) are to combine:

I the use of sophisticated models of land-surface,
radiation-convection, ground-water flow, ...

I data collected from from different sources,

I computational dynamical systems, data assimilation,
parameter estimation, and uncertainty quantification
techniques.

to investigate problems related to climatological change and obtain
improved understanding of uncertainties.
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Projected Data Assimilation — Motivation

Data Assimilation

For n = 0, 1, ...,N − 1,

Data Model yn+1 = H(un+1) + ηn+1

State Space Model un+1 = F (un) + ξn

Here yn are the observations, ηn observational noise, and ξn the
model noise.

Idea is to use the observations to determine solution, i.e., u0.

Common techniques (based on Bayes’ Rule): Variations on
ensemble Kalman filter, 4DVar, proposal density methods, particle
filters, etc..
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Projected Data Assimilation — Projected Data Assimilation

Consider a nonlinear evolution equation (solution operator of a
model)

un+1 = Fn(un;α), n = 0, 1, ...,N − 1

where

I un are the state variables at time n,

I α are adjustable model parameters, e.g., global in time.

Write un = u
(0)
n + δn.

If we can decompose the time dependent tangent space into slow
variables and fast variables, then we write δn = Pnδn + (I − Pn)δn.

Rewrite original nonlinear evolution approximately as two
subsystems ...
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Projected Data Assimilation — Projected Data Assimilation

For k = 0, 1, 2, ...

P System:

u
(k)
n+1 + Pn+1δn+1 = Pn+1Fn(u

(k)
n + Pnδn),

u
(k+ 1

2
)

n+1 = u
(k)
n + Pnδn, n = 0, 1, ...,N − 1,

I-P System:

u
(k+ 1

2
)

n+1 + (I − Pn+1)δn+1 = (I − Pn+1)Fn(u
(k+ 1

2
)

n + (I − Pn)δn),

u
(k+1)
n = u

(k+ 1
2

)
n + (I − Pn)δn, n = 0, 1, ...,N − 1.

Roughly speaking the first subsystem contains the slow variables
(positive, zero, and slightly negative Lyapunov exponents) and the
second subsystem contains the fast variables (strongly negative
Lyapunov exponents).

Some questions ...
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Projected Data Assimilation — Projected Data Assimilation

Q1: Computing time dependent projections Pn and (I − Pn)?

Q2: How to determine u(0), its uncertainties, etc.?

Q3: How to take advantage of such a slow/fast splitting?

Notes:

I Assimilation in the Unstable Subspace (AUS) [Trevisan, D’Isidoro,

Talagrand ’10 Q.J.R. Meteorol. Soc., Palatella, Carrassi, Trevisan ’13 J. Phys A, ...]

I Error analysis in DA for hyperbolic system [González-Tokman, Hunt ’13

Phys D]

I Convergence of covariances matrices in unstable subspace
[Bosquet etal. ’17 SIAM UQ]

Importance of observations rich in unstable subspace
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Projected Data Assimilation — Time Dependent Stability Theory

Time Dependent Stability Theory

I Lyapunov exponents play the role of the real parts of
eigenvalues in time dependent stability theory,

I Computational techniques involve performing a change of
variables to effectively extract the Lyapunov exponents and
corresponding Lyapunov vectors,

I For review of recent developments on computation of
Lyapunov exponents, see
Dieci & VV (2015) Encyclopedia of Applied and Computational Mathematics, 834–838.

VV (2015) Festschrift chapter in honor of Volker Mehrmann in Numerical algebra, matrix theory,

differential-algebraic equations and control theory, 299-318.
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Projected Data Assimilation — Time Dependent Stability Theory

Forming time dependent projections

Discrete QR algorithm for determining Lyapunov exponents, local
in time stability information, etc.:

For Q0 ∈ IRm×p random such that QT
0 Q0 = I ,

Qn+1Rn = F ′(un)Qn, n = 0, 1, ...

where QT
n+1Qn+1 = I and Rn is upper triangular with positive

diagonal elements.

For high dimensional models or when the tangent linear model is
not explicitly known, finite difference approximation

F ′(un)Qn ≈
1

ε
[F (un + εQn)− F (un)], ε ≈

√
εM ‖̇F (un)‖
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Projected Data Assimilation — Time Dependent Stability Theory

Forming time dependent projections

Windowed Growth/Decay Rates:

λj(n,M) =
1

M

n+M−1∑
k=n

log(Rk(j , j))

The columns of Qn form an orthonormal basis at time n for initial
conditions with growth/decay rates λ1 ≥ λ2 ≥ · · · ≥ λp

Orthogonal Projections:

Pn = QnQ
T
n , (I − Pn) = I − QnQ

T
n
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Projected Data Assimilation — Time Dependent Stability Theory

Forming time dependent projections

I Under assumptions (generic on half line t > 0) on the
continuity of Lyapunov exponents with respect to
perturbations in F ′(xn):

I the columns of Qn form an orthonormal basis for the Lyapunov
vectors associated with first p Lyapunov exponents at time n
[Dieci, VV ’02, ’07, Dieci, Elia, VV ’10, ’11],

I the Qn are robust with good long time global error properties
[Dieci, VV ’05, ’06, ’08, VV ’10, Badawy, VV ’12].
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Projected Data Assimilation — Time Dependent Stability Theory

Initial approximation u(0)

Data assimilation schemes typically make use of a prior/backgound
initial condition ub0
For example,

I for Kalman filter techniques ub0 is the prior mean,

I for variational techniques such as 4DVar ub0 serves as initial
guess for optimization.

Kalman filter and variational techniques can be used to determine

u(0) ≡ {u(0)
n }Nn=0.
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Projected Data Assimilation — Time Dependent Stability Theory

Initial approximation u(0)

Another approach (essentially an insertion technique) is to
combine ub0 with available observations:

Given observations yn, n = 0, 1, ...,N that are a subset of the state
space variables, let

u
(0)
0 = y0 ∪ H⊥(ub0 ),

ũ
(0)
n+1 = F (u

(0)
n ), u

(0)
n+1 = yn+1 ∪ H⊥(ũ

(0)
n+1), n = 0, 1, ...
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Projected Data Assimilation — Time Dependent Stability Theory

Slow/Fast Splitting and Techniques for P and I − P

Using the framework of a slow/fast splitting we

I may employ different DA/parameter estimation techniques in
each subsystem,

I obtain an explicit representions for the time dependent
unstable subspace.

Interested in systems that are hyperbolic in flavor (finite number of
positive Lyapunov exponents, few zero Lyapunov exponents,
potentially many negative Lyapunov exponents).
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Projected Data Assimilation — Time Dependent Stability Theory

Slow/Fast Splitting and Techniques for P and I − P

Techniques for P System:

I Particle filters that are effective for low dimensional problem,
a new class of techniques based upon residual correction
(Pseudo Orbit DA (PDA) [Du & Smith I & II, ’14 J. Atmos. Sci. 2014],

shadowing refinement [Grebogi, Hammel, Yorke, and Sauer, Phys Rev Lett (1990)] ),
....

Techniques I-P System:

I Techniques such as ETKF, LETKF, 4DVar (essentially a
shooting method starting from ub0 , trying to match
observations, basin of attraction shrinks in the presence of
positive Lyapunov exponents).
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Projected Data Assimilation — Time Dependent Stability Theory

Shadowing Refinement and Parameter Estimation
We’ve developed “interval sequential” (all “observations” over
subintervals are employed simultaneously) data
assimilation/parameter estimation techniques based upon

I Shadowing refinement and parameter estimation for P
problem,

I Insertion synchronization or ETKF for I − P problem.

We first describe shadowing refinement and parameter estimation
w/o projection (P = I ):

Given u(0) we solve G (u) = 0 where

(G (u);α)n = un+1 − F (un;α), n = 0, 1, ...,N − 1.
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Projected Data Assimilation — Time Dependent Stability Theory

Shadowing Refinement and Parameter Estimation

This is N vector residuals with N + 1 vector unknowns plus q
parameters so underdetermined.

Thus, we employ Gauss-Newton where linear systems are solved
using pseudo inverse so use minimum two norm solution as update.

If no parameter estimation (q = 0) then for L ≈ DuG (u) pseudo
inverse is (LLT block tridiagonal)

L+ = LT (LLT )−1

δ(k) = −L+G (u(k)), u(k+1) = u(k) + δ(k)
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Projected Data Assimilation — Parameter Estimation

Parameter Estimation

With no projection and with parameter estimation (q > 0),

L = G ′(u;α) = [DuG (u;α)|DαG (u;α)]

and

LLT = DuG (u;α)DuG (u;α)T + DαG (u;α)DαG (u;α)T

which is a rank q perturbation of the block tridiagonal
DuG (u;α)DuG (u;α)T

Using Sherman-Morrison-Woodbury formulas, linear systems
LLT x = b can be solved with q + 1 block tridiagonal solves.
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Projected Data Assimilation — Parameter Estimation

In Projected Space
Time dependent rank p orthogonal projections Pn = QnQ

T
n formed

using
Qn+1Rn = DunF (un;α)Qn

The matrix L (with m ×m blocks) replaced by L̃ (with p × p
blocks)

(Lδ)n = δn+1 − DunF (un;α)δn

and
(L̃z)n = zn+1 − Rnzn, δn = Qnzn.

Extension to optimizing parameters in projected space (still rank q
perturbation of block tridiagonal).

Simultaneous state space/parameter space estimation without
introducing additional neutral modes.
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Projected Data Assimilation — Some Results for Model Problem: Lorenz ’96

Example: Lorenz ’96 Model (N = 40,F = 8)

u̇k = (uk+1− uk−2)uk−1− uk +F , k = 0, 1, . . . ,N − 1 , (mod N)

I u̇ = −Iu + N(u)

I 13 positive Lyapunov exponents, Lyapunov dimension ≈ 28.

I Start from a high precision numerically generated solution,
noisy orbit using matlab command 2*(2*rand()-1) .
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Projected Data Assimilation — Some Results for Model Problem: Lorenz ’96

Simultaneous State Space and Parameter Estimation
Example: Lorenz ’95 (Noisy = Truth(F = 8) + ε·randn())
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Projected Data Assimilation — Some Results for Model Problem: Lorenz ’96

Interval Sequential
Example: Lorenz ’95 (Noisy = Truth(F = 8) + 0.3·randn())

RMSE with window lengths of 5 and p = 15.
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Projected Data Assimilation — Some Results for Model Problem: Lorenz ’96

Interval Sequential

RMSE with window lengths of 1.25 and p = 15.

Continuity between subintervals imposed in the strongly stable subspace (vT terminal value from previous window):

(I − P0)δ0 = (I − P0)[vT − u
(k+1/2)
0 ]
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Projected Data Assimilation — Some Results for Model Problem: Lorenz ’96

Applications

Working on several different applications

I Noah-MP: a land surface model combined with satellite and
tower data,

I ModFlow: A ground-water flow model together with hydraulic
conductivity and pressure head data.

I RadCon: A single column radiation-convection model of K.
Emanuel together with TOGA COARE data,

These models all have relevant configurations in which the number
of positive and near zero Lyapunov exponents is relatively small as
compared to the problem dimension.
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Projected Data Assimilation — Some Results for Model Problem: Lorenz ’96

Conclusions and Future Work
I Expansion in terms of Lyapunov vectors to determine splitting

of perturbed nonlinear models.
I The technique we have focused on is in some sense a hybrid

of
I synchronization,
I and non-autonomous inertial manifold technique.

I Have some theoretical results for synchronization scheme for
both linear non-autonomous and nonlinear models, essentially:
Good approximation in unstable subspace implies good
asymptotic synchronization independent of initial condition in
strongly stable subspace.

I Choice of methods to employ for P and I − P problems.

I Form projections, apply, e.g., Bayesian techniques to P and
I − P problems, combine results to obtain means, covariances,
etc..
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