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e Wave shape function analysis in mode decomposition problems
© Motivation
o The curse of wave shape functions
o Recursive diffeomorphism-based analysis
o Numerical examples
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Health data

Electrocardiography (ECG) for cardiology test;

ECG ' ‘
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Figure: An ECG signal

o A periodic signal s(2wNx)?
o A quasi-periodic signal s(2m¢(x))?
e A quasi-periodic signal with changing amplitude «(x)s(27¢(x))
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Health data

Photoplethysmogram (PPG), an optically obtained plethysmogram, a
volumetric measurement of an organ;

Figure: The PPG signal contains two components: f(x) = 3"4_, ay(x)sk(2m¢k(X)).
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Health data

Photoplethysmogram (PPG), an optically obtained plethysmogram, a
volumetric measurement of an organ;
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Figure: Existing PPG signal analysis lacks accuracy. Courtesy of W. Karlen, S. Raman, J.
Ansermino, G. Dumont, IEEE Trans. Biomed. Eng., 2013.
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Wave shape function analysis in mode decomposition problems Motivation

Problem Statement

A long history, s(x) = e*:

K o instantaneous amplitude @, (x)
=3 e
k=1

instantaneous phase  ¢:(%)

Litterature review

e Windowed Fourier, wavelet transform;
Wigner-Ville distribution;
Empirical mode decomposition;
Data-driven optimization;
Synchrosqueezed transform.
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Wave shape function analysis in mode decomposition problems The curse of wave shape functions

Problem Statement

Litterature review

e Windowed Fourier, wavelet transform;

o Wigner-Ville distribution;

Empirical mode decomposition;
Synchrosqueezed transform;

o Data-driven optimization.

All methods work only for s(x) = €”, i.e.

K
)= ak(x)e?m o),
k=1

The curse of wave shape functions for more than
Z Ozk Sk 27T¢k( ))
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Wave shape function analysis in mode decomposition problems The curse of wave shape functions

The curse of wave shape functions for more than 20 years

Z Oék Sk 27T¢k Z Z Sk Ckk(X 27rin¢k(x)

k=1 n
with instantaneous frequenmes n¢j(x) for all n such that s,(n) # 0.
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S5 Figure: Instantaneous frequencies:
{n¢}(x)}n in blue and {n¢5(x)}n in red.
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Problem Statement

e Given data:
f(x) —Zak )Sk(27mpi(X))

o Assume {ak(x)} and {¢x(x)} are known smooth functions;
e Targets: s(x) with 5(0) = 0.

e Solutions:

» Diffeomorphism-based spectral analysis, Y., ACHA, 2015;
» Recursive diffeomorphism-based regression for shape functions, Xu, Y.,
Daubechies, Preprint, 2016.
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

o fi(x) = ay(x)s1(2mp1(X));
e and we know «a4(x) and ¢1(x).

Figure: Original signal:
o1 (X)s1(2m1(x)).
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

o fi(x) = ay(x)s1(2mp1(X));
e and we know «a4(x) and ¢1(x).

Figure: Original signal:
o1 (X)s1(2m1(x)).

Diffeomorphism to create periodicity

fiog;'(v)

hi(v) = o o¢1_1(v)

=5 (27TV).

Figure: After deffeomorphism:
Sq (27FV).
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

o fi(x) = ay(x)s1(2mp1(X));
e and we know «a4(x) and ¢1(x).

Figure: Original signal:

a1(x)s1(2mé1(x)).
Diffeomorphism to create periodicity
fioodr (v Osm
i (v) = L_f) = s1(27v). :
aro g (V) U

Figure: Regression gives an
accurate shape function.
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

o f(x) = a1(X)s1(2m1 (X)) + az(X)s2(2m2(X)),
e we know ax(x) and ¢«(x), for k =1, 2.

Figure: fi(x) + &(x).
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

o f(X) = a1(Xx)s1(2mp1(X)) + aa(X)S2(27p2(X)),
e we know a(x) and ¢«(x), for k =1, 2.

Figure: f; (x) + f2(x).
Diffeomorphism to create periodicity? NO!

_ fos'(v) T
h2(V) - a2o¢2—1( ) ; \/(/V “,\;x
= s2rv) + W&(&r@o% vy W

= 32(27TV)+/£2(V)’ 0 o0z 04 08 08 1

Figure: Regression is
not accurate.
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

—true shape
|—estimated shape

15
02 04 06 08 1 [ 02 04 06 08 1

Regression fails  Estimation error

o Bad news: fail
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

—true shape
|—estimated shape

15
02 04 06 08 1 [ 02 04 06 08 1

Regression fails  Estimation error

o Bad news: fail
o However: failure not extrme
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

15
02 04 06 08 1 [ 02 04 06 08 1

Regression fails  Estimation error

o Bad news: fail

o However: failure not extrme
— iterative method?
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

15
02 04 06 08 1 0 02 04 06 08 1

Regression fails  Estimation error

o Bad news: fail

o However: failure not extrme
— iterative method?

o Key observation: the residual error is again a new mode decomposition
problem

r(x) = f(x)— a1(x)81(27d1(x)) + aa(Xx)S2(2mpa(x))
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

02 04 06 08 1 o 02 04 086 08 1

Regression fails  Estimation error

o Bad news: fail

e However: failure not extrme
< iterative method?

o Key observation: the residual error is again a new mode decomposition
problem

r(x)

f(X) — O (X).§1 (27T(b1 (X)) + az(X)§2(27T¢2(X))
ar(X)(s1 — 81)(2md1(X)) + az(x)(S2 — 52)(2md2(X))
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

02 04 06 08 1 o 02 04 086 08 1

Regression fails  Estimation error

o Bad news: fail

o However: failure not extrme
— iterative method?

o Key observation: the residual error is again a new mode decomposition
problem

r(x) = f(x)— a1(x)51(27p1(x)) + aa(x)52(27d2(X))
= a1(X)(s1 = 81)(2mP1(X)) + az(x)(s2 — 52)(2m2(x))
= on(x0)s{(2m61(x) + az(x)s? (2m2(x))
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

[terative method? Let Sk be the final estimation.
1. Step 1:

r(x) = ) — ar(x)8 (2761 (x)) — a2(x)8Y (22 (x))

= () (s — 8D) (271 (x)) + az(x)(sY — 8D)(2m2(x))
= ar(x)sV(2re (x)) + az(x)sy T (2rda(x))
2. Step 2: regression for 3V from ri)(x).

3. Step 3: update 5 + Sk + s ) for better estimation.

Haizhao Yang
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

lterative method?
1. Step 1:

r(f)(x) - r(/_‘)(x)—

NO convergence!

1 (x)8Y(2r61(x)) — a2(x)8Y (2r2(x))

a1 (X)(8Y — &) (2r1(x)) + az(x)(sY — 8))(2rd2(x))
a1 (x)sY ) (271 (X)) + a(x)sY T (2162 (x))

2. Step 2: regression for s (1)

from ri(x).

3. Step 3: update 5 + Sk + s ) for better estimation.

Haizhao Yang
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

New iterative method
1. Step 1:

) = 70(x) = as(x)8) (2m61(x)) — a2(x)8] (2m 2 (X))

= ar(0)(s)) - 87)(2m1(x)) + az(x)(sy — 50 (22 (x))
= ar()sV D (@r1(x) + az(x)sy ) (2rg2(x)

2. Step 2: regression for 3V*") from rf)( X).

3. Step 3: update 8V « 3/ — L 275U (x)dx (key step for

convergence).
4. Step 4: update S + Sk + s ) for better estimation.
Remark: only after careful mathematical analysis, we realize the key step.

Haizhao Yang
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of recursive diffeomorphism-based regression

4Original superposition

4Residual superposition

Residual norm

T N T
U ﬂ l m 0 ! ﬂv Mf
U ‘ J |} os
-2
-4 (0]
0.5 o] 0.5 1 5 10 15 20 25
Results of shape 1 Results of shape 2 log , (residual norm)
estimated estimated (0]
true 1 true
-2
0 -4
-1 -6
-2 -8
0.5 0.5 1 5 10 15 20 25
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of recursive diffeomorphism-based regression

4Original superposition 4Residual superposition Residual norm
2 p m 2 1
W) [

o \J (\ U 0 \N\f
U ‘ 0.5

-2 -2

-4 -4 (0]

(0] 0.5 1 [0} 0.5 1 5 10 15 20 25

log 2(residual norm)

Results of shape 1 > Results of shape 2
estimated 0] X

1 true
-2

o -4

-1 -6

-2 -3 -8

(o] 0.5 1 (o] 0.5 1 5 10 15 20 25
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of recursive diffeomorphism-based regression

4Original superposition 4Residual superposition Residual norm
. mm ﬁ ST " 1
| Wi
\ﬂ J I \J I b 0.5
2 | 2
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(0] 0.5 1 (o) 0.5 1 5 10 15 20 25
> Results of shape 1 - Results of shape 2 log , (residual norm)
estimated estimated (0]
1 true 1 true
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0 0 »
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

Theorem (Xu, Y., Daubechies, Preprint, 2016)

o Given data:
Zak )sk(2m k(X)) + (1)

sampled on [0, T] with N samples, where n(t) is a random nose with a
bounded variance.

e Assume {ak(x)} and {¢x(x)} are known smooth functions, {¢«(x)} are
well-differentiated, and sy are Lipschitz continuous with 5(0) = 0.

e The residual data in the jth iteration satisfies
[rP|2 < O(e + B).

e Convergence is

» B < 1,linear, if N and T are large enough;
» robust against noise as long as N is large enough.

Remark:
¢ In fact, the theory works for K components;

e We numerically observed the convergence even though T is small.
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

Diffeomorphism for periodicity:
fo e (v)

) = et w)
ajo ¢ (V)
= s¢(27v) L~ Tk 27
sz + 3 S a0 o5 ')

= Sk(27TV) + Hk(V),
Folding to create “stochastic processes” k(v) for v € [0, 1]:

Samples for regression Samples for regression
stimated shape estimated shape

“o 02 04 06 08 1 “o 02 04 06 08 1
s1(27v) + k1 (V) Sp(2mV) + ko(V)
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

Diffeomorphism for periodicity:
f —1
hy(v) = Lq(v)
ag 0 ¢y (V)
azo ¢y (v)
Q10 ¢1_1 v
= s1(2nrv) + Ii1(V)
Folding to create * stochastlc processes” ki (V) for v € [0,1]:

= s(27v)+ S2(2m2 0 97 (V)

“o 02 04 06 08 1
51(27v) + k1(v)
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

Diffeomorphism for periodicity:

h1(V) =

= si(2nv)+ 22°

fogi'(v)
% 0¢1_1(V)
¢7'(v)

at 0 ¢,

= s1(2mv) + K1(v),
Folding to create “stochastic processes” x«(v) for v € [0, 1]:

Samples for regression
.. ##{ — estimated shape

0 0.2 0.4 0.6 0.8

Sq (27TV) + Kq (V)

)32(27T¢2 o ¢y (V)

2 T i ; ; ; ;
NANANNANANNNN
NAVYAYAY |

0

0.02  0.04

0.06 0.08
Sq (271’ V)

0.1 0.12  0.14

AVPANAA

0

0.02 0.04

H1(V) =

0.06  0.08 0.1 0.12

02007 ' (V) —1
e Certac o)
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

2
Of\f\f\f\/’\f\f\/’\f\/’\/’\
VUV UUUUU VU UL

- Samples for regression
—— estimated shape

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
S$q (27‘( V)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

()(20¢1
V) = 2 v
: ’91( ) ¢—1 ) 32( T 0 ¢1 ( ))
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Recursive diffeomorphism-based analysis

Histogram of black points
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

31 (27‘( V)

Histogram of black points

= E(s1(27v) + k1(V))
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

Histogram of black points

= E(s1(27v) + k1(V))
= 51(2nv) +E(k1(v))
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

- Samples for regression
estimated shape

0 0.2 0.4 0.6 0.8

Histogram of black points

= E(s1(27v) + k1(V))

s1(2mv) + E(k1(v))

si(2rv)+ [ sp(2wv)dv
0

Q
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

- Samples for regression
estimated shape

Histogram of black points

51(2rv) = E(s1(27v) + k1(V))
= 51(2nv) +E(k1(v))

si(2rv)+ [ sp(2wv)dv
0

0 0.2 0.4 0.6 0.8

Q

= 8 (27T V)

On the Convergence of Recursive Schemes for Wave Shape Functions 22/28



Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

§1 (27‘( V)

true shape
local samples

Histogram of black points

Q

E(s1(27V) + k1(V))
s1(2mv) + E(k1(v))

|
s1(2nv) + / Sp(2mv)dv
0

Sq (27T V)

If distribution close to uniform:

1
o oz 04 05 o8 1 H§1 . S1||L2 < / |E(I€1(V))‘2dv
0

1/2

~0
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

- Samples for regression
estimated shape

Histogram of black points

0 02 04 06 08 1 51 (27”/) = E(S1 (271—‘/) + K1 (V))
[ | = s1(27v) + E(r1(v))

]
si(2mv) + / Sz(27v)dv
0

= 5 (27T V)

Q

Distribution close to uniform? NO!

; 1/2
Ha—mmzi/mmwm%v ~ 07
0
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Convergence analysis

51(27v) = E(s1(27v) + k1(Vv))
w 1
30 ~ 5 (27TV) +/ 32(27TV)dV
20 0 0
0 > = S1(27TV)
0 Aslong as p > 0, 30 < 8 < 1 such that
0 05 1 1 1/2
e 181=51]|2 = (/ E(M(V))Izd\/) < Blisall.2
0
and hence
max{[|Sx — sllr2} < S max{|[sk|.2}.
Finally

1P|z < O(e + ).
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

The idea of diffeomorphism-based regression

New iterative method
1. Step 1:

) = 70(x) = as(x)8) (2m61(x)) — a2(x)8] (2m 2 (X))

= ar(0)(s)) - 87)(2m1(x)) + az(x)(sy — 50 (22 (x))
= ar()sV D (@r1(x) + az(x)sy ) (2rg2(x)

2. Step 2: regression for 3V*") from rf)( X).

3. Step 3: update 8V « 3/ — L 275U (x)dx (key step for

convergence).
4. Step 4: update S + Sk + s ) for better estimation.
Remark: only after careful mathematical analysis, we realize the key step.

Haizhao Yang
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Wave shape function analysis in mode decomposition problems Recursive diffeomorphism-based analysis

Future works

Theorem for the recursive regression (Xu, Y., Daubechies, Preprint, 2016)
e Given data:

Z Oék Sk(27T¢k(X)) + n( )

sampled on [0, T] with N samples, where n(t) is a random nose with a
bounded variance.

o Assume {ak(x)} and {¢k(x)} are known smooth functions, {¢«(x)} are
well-differentiated, and s are Lipschitz continuous with s(0) = 0.

e The residual data in the jth iteration satisfies

1. < O(c+B) and sP — s+

Convergence is

» B < 1, linear, if N and T are large enough;
» robust against noise as long as N is large enough.

Fast algorithms to get the shape function in each iteration?
Fast convergence’?

ber of periods T and samples N?
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Wave shape function analysis in mode decomposition problems Numerical examples

Numerical examples

Photoplethysmogram (PPG) signal

n LI
o [

3 0 P P

Raw PPG signal

N

Recovered cardiac component

RRTATRATATARATATATAATRTATAY

Recovered respiratory component

Haizhao Yang

On the Convergence of Recursive Schemes for Wave Shape Functions 27/28



Wave shape function analysis in mode decomposition problems Numerical examples

Thank you!
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