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From Flatland to Our Land

A mathematician’s journey through our changing planet

Emily Shuckburgh @emilyshuckburgh
British Antarctic Survey
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“O day and night, but this is wondrous strange’
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Joseph Fourier, 1827: Mémoire sur les témperatures du globe
terreste et des espaces planétaires

He said he hoped:

“geometers would not only go on in
their researches into questions of
calculus, but they would consider... the
question of terrestrial temperature,
one of the most important and most
difficult of all of natural philosophy”.




What determines the Earth’s temperature?

- e AN Incident solar flux F =1370 W/m?*
Vo e Cross-sectional area ma’
e enery e 30% reflected (albedo o =0.3)
U - incoming power = (1—a)Fra’




What determines the Earth’s temperature?

Solar energy ’\

1Y Solar energy

Incident solar flux F =1370 W/m?
* Cross-sectional area 7a’

30% reflected (¢ =0.3 )

U - incoming power = (1—a)Fra’

e Assume Earth is black body at 1},

* Emits from surface following Stefan-
Boltzmann law: outgoing power = 477:a26T,:,i

incoming = outgoing

T, =255K observed surface
temperature ~288K




T, =286K

Temperature can change by changing solar flux,

Atmosphere transmits larger
fraction of shortwave (7, =0.9)
than longwave (7,, =0.2) radiation

r - ((1 —a)(1+7,,) F]M

4o(1+1,,)

observed surface
temperature ~288K

fraction of radiation transmitted or reflectivity.



Temperature relative to present (°C)

CO, concentration (ppmv)
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More greenhouse gases means smaller 405 ppmv

fraction of longwave radiation transmitted ,
45% increase
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National Edition
Northern Cali dy. Rain.
Mountain snow showers. Highs in
30s to 50s. Heavy rain and mountain
snow tonight. Lows in teens to 40s.
Weather map appears on Page A28.
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How much monthly temperatures
were above or below normal

Last year was the hottest on the historical record,
scientists say. Of the 17 hottest years recorded, 16

have occurred since 2000.
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In Farewell, Obama Sets Red Lines That Would Pull Him Back

By MICHAEL D. SHEAR
and PETER BAKER

WASHINGTON — When Presi-
dent Obama arrived in office eight
years ago, the departing Presi-
dent George W. Bush essentially
withdrew from public life, declar-
ing that his successor “deserves
my silence” It was an approach
that Mr. Obama greatly appreciat-
ed but does not intend to follow.

At the final news conference of
his presidency, Mr. Obama made
clear on Wednecdav that he finde

that normal functioning of politics
and certain issues or certain mo-
ments where I think our core val-
ues may be at stake,” Mr. Obama
told reporters in the White House
briefing room.

Mr. Obama continued: “I put in
that category if I saw systematic
discrimination being ratified in
some fashion. I put in that catego-
ry explicit or functional obstacles
to people being able to vote, to ex-
ercise their franchise. I'd put in
that category institutional efforts

ST P e N R S Sy, W T A

Pledge to Re-enter Fray
When ‘Core Values
May Be at Stake’

country.”

Allof his red lines seemed to re-
fer to positions taken in the past
by Mr. Trump, foreshadowing the
possibility of a periodic clash of
ideas over the next four vears he.

office since Woodrow Wilson.

Mr. Obama did say he was look-
ing forward to some quiet time
and does not plan to stay involved
in the hurly-burly of politics. He
has told advisers and friends that
he wants to be careful not to pg-
come such a regular p}lbhc critic
of Mr. Trump that he alienates the
mercurial new president.

Since the election, the depzm’-
ing president has med_ to fp} g_e a
relationship of sorts with his suc-
pes to keep lines of
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FOR THIRD YEAR,
THE EARTH IN 2016
HIT RECORD HEAT

Threat to Society and Nature Is Rising —
Scale of Shift Startles Scientists

By JUSTIN GILLIS

Marking another milestone for
a changing planet, scientists re-
ported on Wednesday that the
Earth reached its highest tem-
perature on record in 2016, trounc-
ing arecord set only a year earlier,
which beat one set in 2014. Itis the
first time in the modern era of
global warming data that tem-
peratures have blown past the
previous record three years in a
TOW.

The findings come two days be-
fore the inauguration of an Ameri-
can president who has called
global warming a Chinese plot
and vowed to roll back his prede-
cessor’s efforts to cut emissions of
heat-trapping gases. {

In reality, the Earth is heating
up, a point long beyond serious
scientific dispute, but one becom-
ing more evident as the recor@s
keep falling. Temperatures me
heading toward levels that many
experts believe will pose a PVAOi
found threat to both the natura
world and to human civilization-

In 2015 and 2016, the planctey
warming was imensﬂ@d by th
weather pattern known
Nifio, in which the P_
released a huge DUISt . o,
o3 watar yapor into WSS

gases.

“A single warm year is some-
thing of a curiosity,” said Deke
Arndt, chief of global climate mon-
itoring for the National Oceanic
and Atmospheric Administration.
“It’s really the trend, and the fact
that we're punching at the ceiling
every year now, that is the real in-
dicator that we're undergoing big
changes.”

The heat extremes were espe-
cially pervasive in the Arctic, with
temperatures in the fall running
20 to 30 degrees Fahrenheit above
normal across large stretches of
the Arctic Ocean. Sea ice in that
region has been in precipitous de-
cline for years, and Arctic commu-
nities are already wrestling with
enormous problems, such as rapid
coastal erosion, caused by the
changing climate.

“What's going onin the Arctic is
really very impressive; this year
was ridiculously off the chart,”
said Gavin A. Schmidt, head of the
Goddard Institute for Space Stud-
ies in Manhattan, a unit of the Na-
tional Aeronautics and Space Ad-
ministration that tracks global
temperatures.

But Arctic people were hardly
alone in feeling the heat. Drought



Mary Ellen Thomas, Nunavut Research Institute: “It is as if a friend that we
could trust is suddenly acting strangely”
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Contributions to observed surface temperature change over the period 1951-2010
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Fluid on a rotating sphere
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Atmosphere is an
ideal gas: £ = RT
o,
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Eddies in the atmosphere and ocean

Eddies in atmosphere of size ~1000 km

This near-infrared photograph of the Earth was
taken by the Galileo spacecraft

ENVISAT/ASAR image shows the marginal ice zone
outside the ice shelf at Marguerite Bay on the west

side of the Antarctic Peninsula.
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Eddies in ocean size ~25 km

(40 times smaller than atmosphere
& usually parameterized in climate
models)
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Southern Ocean estimated to be responsible for about 40%
of ocean carbon uptake and 75% of ocean heat uptake.
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Extent (million square kilometers)

Average Monthly Arctic Sea Ice Extent
September 1979 - 2016
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Projected temperature change to
2100 under two possible futures:

1000 1200 1400 1600 1800 201
Time (Year CE)

{°C relative 10 1850-1900, as an

appraximation of preindustrial levels)

Global mean temperature change



Risks of future climate change
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Unique & threatened systems
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Predicting future sea ice

Sea ice extent (10° km?)

Sea ice extent (10° km?)

(a) Arctic sea ice extent in September (1900-2012)
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(b) Antarctic sea ice extent in February (1900-2012)
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Depending on its morphology
& microstructure, ice may
behave as an elastic, brittle,
viscoelastic or quasi-liquid
material.

Sea-ice consists of solid
fresh-water ice, liquid salty
brine, gas inclusion &
possibly some other
components, which makes
it difficult to describe.

Mathematics of sea ice phenomena



Machine Learning tools (Gaussian Processes) using observational data

Arctic Sea ice extent
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Include: robust information from climate models for future (e.g. global
average temperature), information on long-term variability from other
datasets (e.g. North Atlantic)



C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. (© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.4 Model Selection for GP Regression 119
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-
tion of CO2 made between 1958 and the end of 2003, together with 95% predictive
Carl Edward Rasmussen and Christopher K. 1. Williams confidence region for a Gaussian process regression model, 20 years into the future.

o e, Rising trend and seasonal variations are clearly visible. Note also that the confidence
interval gets wider the further the predictions are extrapolated.
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Extreme weather,
distribution & global
aggregate of impacts
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Egyptian heatwave, Aug 2015: more than 90 deaths

70% more likely due to climate change
Mitchell, 2016
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(a) Sea-ice loss in Atlantic sector of Arctic

Stratospheric _—
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(b) Sea-ice loss in Pacific sector of Arctic
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Large-scale singular
events

{*C relative to 1850-1900, as an
approximation of preindustrial levels)

= 20032012
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e.g. Feldmann & Levermann, 2015



Temperature change relative to 1861-1880 (°C)
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Data: CDIAC/GCP/BP/USGS
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Our understanding of our climate is rooted in mathematics

Climate change is one of the greatest challenges of our time

The application of mathematical ideas & tools is driving forward our
knowledge of our changing climate and the risks posed to society and
the natural world, and is guiding our response to this global threat

It is a clear demonstration of the power of mathematics to address the

world’s most pressing issues

Credit: NASA



