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Figure: The T-LGL survival signaling network. This figure was taken from
Saadatpour et al., PLoS Comput Biol., 7(11), 2011.

The shape of the nodes indicates the cellular
location:

Rectangular indicates intracellular
components,

Ellipse indicates extracellular components,

Diamond indicates receptors.

Node colors reflect the state of these nodes in
leukemic cells:

Red: Highly active components in T-LGL,

Green: inhibited nodes,

Blue: Nodes that have been suggested to
be deregulated,

White: the state of nodes is unknown.

The network also include

Yellow: conceptual nodes (Stimuli,
Stimuli2, P2, Cytoskeleton signaling,
Proliferation, and Apoptosis).

An arrowhead or a short perpendicular bar
at the end of an edge indicates activation
or inhibition, respectively.
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Stochastic Discrete Dynamical Systems (SDDS)

A SDDS on n variables x1, . . . , xn over a finite set X is a collection of n
triplets

F = {fi ,p↑i ,p
↓
i }

n
i=1 where

fi : Xn → X is the update function for xi for all i = 1, . . . , n.

p↑i is the activation propensity.

p↓i is the degradation propensity.

p↑i , p↓i ∈ [0, 1].

θ
F
k,x (z) =


p↑k δ

fk
z + (1− p↑k )δ

xk
z , if xk < fk (x),

p↓k δ
fk
z + (1− p↓k )δ

xk
z , if xk > fk (x),

δ
xk
z , if xk = fk (x).

Transition probability: Ax,y =
n∏

k=1

θ
F
k,x (yk )

Modeling Stochasticity and Variability in Gene Regulatory Networks.
D. Murrugarra, A. Veliz-Cuba, B. Aguilar, S. Arat, R. Laubenbacher.
EURASIP Journal on Bioinformatics and Systems Biology, 2012:
2012:5.
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Example: WNT network in salamanders.

Genes WNT Network

x1 = AREG, x2 = PHLDA2,
x3 = FGF9, x4 = BMP2,
x5 = NGFR, x6 = HAPLN3,
x7 = SP7, x8 = Wnt-5a,
x9 = Inhbb, x10 = DUSP.

Update functions

f1 = x1 ∧ x2 ∧ x8 ∧ x10,
f2 = x1 ∧ x2 ∧ x6,
f3 = x10 ∨ (x7 ∧ x8),
f4 = x10 ∨ (x1 ∧ x2),
f5 = x10 ∨ (x1 ∧ x2),
f6 = (x1 ∧ x2 ∧ x4 ∧ x5 ∧ x9) ∨ (x1 ∧ x3 ∧ x7 ∧ x8),
f7 = x4 ∧ x5 ∧ x9,
f8 = x10 ∨ x8,
f9 = x10 ∨ (x1 ∧ x2),
f10 = (x1 ∧ x3 ∧ x4 ∧ x5 ∧ x9 ∧ x10) ∨ (x1 ∧ x2 ∧ x4 ∧ x5 ∧ x6 ∧ x7 ∧ x9 ∧ x10).

Propensities:

x1 · · · x10
p↑i 0.9 · · · 0.9

p↓i 0.9 · · · 0.9 Wiring diagram for the genes listed on the left. Blue edges represent
activation while red edges inhibition. Self loops were omitted.
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Simulations with SDDS

Data vs simulations.
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The figures in the left panel are
experimental data

The figures in the righ panel are
simulations.

100 runs initialized at 1100000001.
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Markov Chain and Stationary Distribution for SDDS

The transition from x to y : axy =
n∏

i=1

Prob(xi → yi).

Notice that Prob(xi → yi ) = 0 for all yi /∈ {xi , fi (x)}.

Then the transition matrix is: A = (axy )x ,y∈S (1)

The transition probability axy = p(Xt = x|Xt−1 = y) represents the probability of being in state x at time t given that system

was in state y at time t − 1.

π1 =
∑
x∈S

π0(x)axy . (2)

If we iterate Equation 2 and if we get to the point where

π =
∑
x∈S

π(x)axy (3)

We say that the Markov chain has reached a stationary distribution.
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Example: Lac operon network

Genes Lac operon Network

x1 = M: lac mRNA, x2 = P: lac permease,
x3 = B: lacβ-galactosidase, x4 = C: CAP,
x5 = R: repressor, x6 = Rm: repressor at medium concentration,
x7 = A: allolactose, x8 = Am: allolactose at medium concentration,
x9 = L: lactose, x10 = Lm: lactose at medium concentration,

Update functions

f1 = x4 ∧ x5 ∧ x6, f2 = x1,
f3 = x1, f4 = Ge ,
f5 = x7 ∧ x8, f6 = (x7 ∧ x8) ∨ x5,
f7 = x9 ∧ x3, f8 = x9 ∨ x10,
f9 = x2 ∧ Le ∧ Ge , f10 = ((Lem ∧ x2) ∨ Le) ∧ Ge .

Propensities:
Wiring diagram for the genes listed on the left. Arrows represent
activation while blunt arrows inhibition.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
p↑i 0.81 1.00 0.97 0.62 0.11 0.63 0.22 0.82 0.48 0.60

p↓i 0.17 0.59 0.03 0.98 0.39 1.00 0.33 0.07 0.52 0.06
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Example: Lac operon network

Scores with all 0.9 propensities. Scores with computed propensities.

PageRank scores before and after the genetic algorithm. The x-axes show the PageRank scores while the y -axes show the
frequencies of states with the given scores in the x-axis. Left panel shows the state space where all the propensities are equal to
0.9 while the right panel shows the state space where the propensity parameters where estimated using the genetic algorithm.
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Example: Lac operon network

State space with all 0.9 propensities. State space with computed propensities.

State space comparison before and after the genetic algorithm. Left panel shows the state space where all the propensities are
equal to 0.9 while the right panel shows the state space with the estimated propensity parameters using the genetic algorithm.
The edges in blue represent the most likely trajectory. The size of the labels of the nodes were scaled according to their
PageRank score.
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Network Control: for Boolean networks.

ui

uj

x(t+1)=f(x(t),u)
attractor landscape:
Lf(x,0)=L0 (no control)

Identification of control
targets: Lf(x,u)=L*

desired attractor
landscape: L*

Control targets:
u=A, B, C, D, ...

u=A u=B u=C u=D

computational algebra

A B C

D

F

good
attractor

bad
attractors

molecular
network

E

good
attractor

Identification of control targets in Boolean molecular network models via computational algebra.
D. Murrugarra, A. Veliz-Cuba, B. Aguilar, and R. Laubenbacher. BMC Systems Biology, 10:94, 2016.
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Network Control: for Boolean networks.

Theorem (Effect of an edge deletion on the state space)
Let F = (f1, . . . , fn) : {0,1}n → {0,1}n be a Boolean network where

ft(x1, . . . , xn) = M1(M2(. . . (Mm−1(MmPc + 1) + 1) . . . ) + 1) + b,

where Mi =
∏`i

i=1(xij + aij ), Pc is a polynomial with no canalizing
variables, and d = `1 + `2 + · · ·+ `m is the canalizing depth.
The probability that any transition will be removed from the state space
upon deletion of xk → xt is at most

2n−`1−`2−...−`r /2n = (
1
2
)`1+`2+···+`r .

Molecular Network Control Through Boolean Canalization.
David Murrugarra and Elena Dimitrova.
EURASIP Journal on Bioinformatics and Systems Biology, 2015:9, 2015.
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Definition of Control Targets:

We consider two types of control actions:

1 Deletion or constant expression of edges
2 Deletion or constant expression of nodes.

x1

x2 x3
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Edge Deletion

Network Controlled System

x1

x2 x3

F2(x,u3,2) = f2(x1, x2, (u3,2 + 1)x3)

For u3,2 = 0, F2(x, 0) = f2(x1, x2, x3).
The control is not active.

For u3,2 = 1, F2(x, 1) = f2(x1, x2, 0).
The control is active and the action represents the deletion of the
edge x3 → x2.
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Node Deletion

Network Regulatory rule

x1

x2 x3

Fj(x,u−i ,u
+
i ) := (u−i + u+

i + 1)fj(x) + u+
i

For u−i = 0, u+
i = 0, Fj (x, 0, 0) = fj (x). The control is not active.

For u−i = 1, u+
i = 0, Fj (x, 1, 0) = 0. This action represents the

knock out of the node xj .

For u−i = 0, u+
i = 1, Fj (x, 0, 1) = 1. This action represents the

constant expression of the node xj .

For u−i = 1, u+
i = 1, Fj (x, 1, 1) = fj (xt1

, . . . , xtm ) + 1.
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Control in the stochastic setting

Control actions. Consider E control edges and
V control nodes.

We define a control action a as an array of binary elements of size
|U|= E + V .

The set of all possible actions

A = {(0, . . . ,0), (0, . . . ,1), . . . , (1, . . . ,1)}

A has |A|= 2|U| elements.

Markov Decision Process for SDDS. A Markov decision process
(MDP) for the set of states S and the set of actions A, consists of
transition probabilities (Pa

x ,y ) and associated costs (C(x ,a, y)), for each
transition from state x to state y due to an applied action a.
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Control in the stochastic setting

Transition Probabilities. The application of an action a results in a
new SDDS,

F ′ = (Fk (x ,a),p
↑
k ,p
↓
k )

n
k=1.

Then, for each state action pair (x ,a), x ∈ S,a ∈ A, the probability of
transition to each state y upon execution of action a from state x , Pa

x ,y ,
is computed with the fk replaced by Fk ,

Pa
x ,y =

n∏
k=1

θF ′
k ,xa(yk ).

Cost distribution. The cost of going from state x to state y under

action a, C(x ,a, y), is a combination of two additive costs, one for
actions Ca and one for states Cy .

C(x ,a, y) = Ca + Cy (4)
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Cost distribution.
C(x ,a, y) = Ca + Cy

The application of control edges or nodes have a penalty, ce and cv
respectively, that represent expenses associated to the use of
technologies and drugs required to silence nodes and edges.

Thus, the cost of actions is: Ca = cv Nv + ceNe

where Nv and Ne are the number of applied control nodes and edges
in a given action a.

The cost of ending up in a state y is the weighted distance between
state y and a user specified desirable state s∗.

Cy =
N∑

k=1

wk |yk − s∗k |

where wk are user specified weights. If all the weights are 1, then Cy is
simply the Hamming distance between y and s∗.
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Control in the stochastic setting

A deterministic control policy π is defined as a set
π = {π0, π1, π2, . . . }, where

πt : S → A

is a mapping that associate a state x(t) to an action a at time step t .

The Optimal Control Problem

The optimal control problem in this setting is to derive a control policy
that dictates how to move from one state to another so that the
probability of reaching a desirable attractor is maximized.
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Control in the stochastic setting

Optimal Control Policies. We formulate the optimal control problem
for infinite horizon MDPs with a discounting factor. Given a state x ∈ S,
a control policy π, and a discounting factor γ ∈ (0,1), the cost function
Vπ for π, is defined as:

Vπ(x) = IE

[ ∞∑
t=0

γtC(x(t),a)|s0, π

]
(5)

where C(x(t),a) represents the expected cost at step t for executing
the policy π from state x , C(x(t),a) = IEy [C(x ,a, y)]. The goal is to find
the optimal policy π∗ = {π∗0, π∗1, . . . }, where π∗t : S → A, t = 1,2, . . . ,
that minimizes the function cost for all states. The function cost
associated with π∗ is

V ∗(x) = min
π

Vπ(x) for all x ∈ S.
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Control in the stochastic setting

We also define the Q-function for π by

Qπ(x ,a) = C(x(t),a) + γIEy [Vπ(y)] (6)

Similarly, for the optimal policy, Q∗(x ,a) = minπ Qπ(x ,a). It has been
shown that the optimal cost function V ∗ satisfies the Bellman’s
principle:

V ∗(x) = min
a∈A

[C(x ,a) + γIEy [V ∗(y)]] = min
a∈A

Q∗(x ,a), for all x ∈ S

The optimal policy for the MDP defined for SDDS is a stationary policy
in which every state is associated with an action.

We can determine π∗ with the help an iterative algorithm called value
iteration.
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Approximation Algorithm: near-optimality

We developed a randomized algorithm A for SDDS that takes as
input any state s0 and outputs an action.

The value function of the stochastic policy derived from A
satisfies

|V A(s0)− V∗(s0)|≤ ε

where the value ε = ε(c, h) > 0 and

c is the sample size and

h is the number os iterations.

Michael J. Kearns and Yishay Mansour and Andrew Y. Ng.
A Sparse Sampling Algorithm for Near-Optimal Planning in
Large Markov Decision Processes
Machine Learning, 49, 193-208, 2002.

Instead of computing a infinite horizon cost value
function Vπ(s) under a policy π.

The approximation creates a sub-MDP of finite horizon
h by sampling the neighborhood of initial state s0.

The total expected cost function of the sub-MDP under
a policy π is:

Vπh (s0) = IE

h−1∑
t=0

γ
t C(x(t), a)|s0, π

 (7)

The optimal cost over the sub-MDP is V∗h (s) = minπ Vπh (S).

The approximation algorithm computes an estimate V̂∗h (s0) of
the optimal V∗h (s0) by performing a sampling of the sub-MDP in
the neighborhood of s0.
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Results

Fas

CeramideS1P DISC

FLIPApoptosis

Reduced T-LGL network adapted from Saadatpour et al., PLoS
Comput Biol., 7(11), 2011.

Controllers:

{
FLIP = OFF
Fas = ON.

Control nodes (in gray) represent:

the deletion of FLIP (FLIP = OFF or x2 = 0) and

the constant expression of Fas (Fas = ON or x3 = 1).
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Figure: State space for reduced T-LGL network. Picture from Saadatpour et
al., PLoS Comput Biol., 7(11), 2011.
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Results

Optimal control policy for the reduced T-LGL network.

Controllers:

{
FLIP = OFF
Fas = ON.

Arrows in green represent no control,

Arrows in blue represent the control of the
node FLIP (x2 = 0),

Arrows in orange represent the control of
the node Fas (x3 = 1), and

Arrows in red represent the control of both
nodes.

The colored thick arrows show the most likely
transition while arrows in gray represent other
possible transitions.
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Results

Statistics for the 6 nodes T-LGL network for the state 110000.
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Statistics for the 60 nodes T-LGL network for the state:

001111011101111110110010110101001110110100011010101111110100
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Approximations with cyclic policies, L = W = 2, and h = 3 and
c = 6.
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c = 6.
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Results

States Binary Expression
Cycle state 111111011101111110110010110101001110110100011010101111110100
Next state 101111011101111110110010110101001110111101001010101111110100
Next state 001111011101111110110010110101001110111101101010001111110100
Next state 011111011101111110110010110101001110111101101110011111110100
Fixed point 000000000000000000000000000000000000001000000000010000110100
Cycle state 101111011101111110110010110101001110110100011010101111110100
Next state 001111011101111110110010110101001110111101001010101111110100
Next state 011111011101111110110010110101001110111101101010001111110100
Next state 111111011101111110110010110101001110111101101110011111110100
Fixed point 000000000000000000000000000000000000001000000000010000110100
Cycle state 001111011101111110110010110101001110110100011010101111110100
Next state 011111011101111110110010110101001110111101001010101111110100
Next state 111111011101111110110010110101001110111101101010001111110100
Next state 101111011101111110110010110101001110111101101110011111110100
Fixed point 000000000000000000000000000000000000001000000000010000110100
Cycle state 001111011101111110110010110101001110110100011010101111110100
Next state 011111011101111110110010110101001110111101001010101111110100
Next state 111111011101111110110010110101001110111101101010001111110100
Next state 101111011101111110110010110101001110111101101110011111110100
Fixed point 000000000000000000000000000000000000001000000000010000110100

Table: Simulations from the states of the limit cycle for the 60 nodes T-LGL
network.
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Future Directions

Built a SDDS for this network.
Consider distributions of
propensities.
Apply the control methods for
SDDS for this network.
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Summary and conclusions:

SDDS is a useful stochastic extension for discrete models.
Google’s PageRank algorithm combined with genetic algorithms
can help to estimate the propensity parameters.
SDDS can be used as a framework to study optimal control
problems.
Approximation techniques can be useful for the control of large
networks.
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