Discrete Mathematical Models in Synthetic Biology

SIAM 2017 Minisymposium: Discrete Methods in Molecular Biology #SIAM2017 Davidson - Missouri Western Synthetic Biology Research Collaboration Davidson - Missouri Western Synthetic Biology Research Collaboration

- Design and construction of biological devices and systems
- Engineering principles and mathematical modeling
- Applications in energy, environment, medicine, technology

Davidson - Missouri Western Synthetic Biology Research Collaboration

- Focus on undergraduate education
- Pooling human resources
- Built on previous collaborations
- BioMath connections
- Common prioritized goals
 - Learn every day
 - Have fun
 - Contribute to science

Programmed Evolution

Uniform Random Starting Population

Driving (and Measuring) Evolution

Riboswitch Function

Evolution Target

Caffeine

Theophylline

Programmed Evolution, v1.0

Population after Programmed Evolution

Tracking the Input

- A disk soaked in caffeine is placed in the dish
 - what is the concentration of caffeine at each point of the plate as a function of time?
- Caffeine Diffusion Model

LB + Amp H₂0 Disk LB + Tet H₂0 Disk LB + Tet 40 mM Theophylline Disk LB + Tet 40 mM Caffeine Disk

Agent-Based Diffusion Model

Tracking the Output

- Some cells evolve to be good at converting caffeine to theophylline
 - Do other cells benefit by theophylline diffusing across cellular membranes?
 - Under what conditions might these cells dominate the ending population?
- "Makers and Moochers" model

"Makers" and "Moochers"

Riboswitch Design: Beyond Theophyline

Optimizing Mutations

_ _ _ _

Mutate sets of seven mutation sites to all four possible bases. Repeat six times.

 $6 \times 4^7 = 98,304$ total variants

Optimizing Mutations

Pair Frequencies

SITE	1	2	3	4	5	6	7	8	9	10
1	5	5	4	3	3	3	3	3	3	3
2	5	5	4	3	3	3	3	3	3	3
3	4	4	4	3	3	2	2	2	2	2
4	3	3	3	4	3	3	2	3	2	2
5	3	3	3	3	4	2	3	2	3	2
6	3	3	2	3	2	4	3	3	2	3
7	3	3	2	2	3	3	4	2	3	3
8	3	3	2	3	2	3	2	4	3	3
9	3	3	2	2	3	2	3	3	4	3
10	3	3	2	2	2	3	3	3	3	4

PACE: A New Combinatorics Module

Agent-Based Model of PACE

Procedures 🗸

M Indent automatically

Interface Info Code

```
Find... Check
to go ;; each tick
 if not any? turtles [ stop ]
 move-turtles
 check-washout ;; randomly washes out portion of phage and cells
 check-inflow ;; flows cells into lagoon
 ask phage [
    ifelse xanthine-color? [assign-color-phage] [set color 2]
    ;; if incubating and host is washed out, die
    if host = nobody
      [if incubating < infection-duration
        [die]
      ]
    ;; tracks time that progeny has been incubating
    if incubating < infection-duration</pre>
      [set incubating incubating + 1
        move-to host ;; follow host cell (stay inside)
    if not has-infected?
      [if incubating >= infection-duration ;; if not incubating
        [infect-cells]
    ;; create progeny after infecting
    if has-infected? \Gamma
```

The Coupon-Collecting Problem

The Phage-Collecting Problem

Q: In 24 hours of PACE, will we see all possible riboswitches (~40 nt)?

 $(5 \times 10^{-5} \text{ mutations/nt}) \times (40 \text{ nt}) \times (5 \times 10^{10} \text{ phage})$ = 1 x 10⁸ mutations

np = $(1 \times 10^8) \times (5 \times 10^{-10}) = 0.05$

P(double mutant) = $1 - e^{-0.05} - 0.05 e^{-0.05} = 2 \times 10^{-6}$

Expected number of double mutants = 1×10^5

Applying (an approximation for) the expected number of coupons required to see all 2700 double mutants: $E(X) \approx n \log n = 2700 \log 2700 \approx 2 \times 10^4$

For Further Reading

- [with 49 undergraduate students]
 <u>Programmed Evolution for Optimization of Orthogonal</u> <u>Metabolic Output in Bacteria</u>. *PLoS ONE* (2015) 10(2): e0118322. doi:10.1371/journal.pone.0118322.
- <u>Engineering bacteria to solve the burnt pancake</u> <u>problem</u>. *Journal of Biological Engineering* (2008) **2**:8.
- Solving a Hamiltonian Path Problem with a Bacterial Computer. Journal of Biological Engineering (2007) 3:11
- Synthetic Biology: A New Frontier. *American Mathematical Monthly*. **121**:857-867

Acknowledgments

- A. Malcolm Campbell (Davidson biology)
- Todd T. Eckdahl (Missouri Western State University)
- ~130 undergraduate students
- NSF UBM grant DMS-0733952 to Davidson College and DMS-0733955 to Missouri Western State University
- NSF RUI grants MCB-1120558 and MCB-1329350 to Missouri Western State University and MCB-1120578 and MCB-1329351 to Davidson College
- NSF RUI grants MCB-1613281 to Missouri Western State University and MCB-1613203 to Davidson College
- Davidson Research Initiative and James G. Martin Genomics Program at Davidson College