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Sloppiness
Understanding the uncertainty in parameter estimation
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An equivalence relation on parameter space
Mathematical models with perfect data

§ M is a mathematical model describing the behaviour of a
variable x P X Ď Rm depending on a parameter p P P Ď Rr

and with measurable output y P Y Ď Rn.

§ Specify a choice of “perfect data” z .

Example (Real-analytic ODE systems)

9x “ f pp, xq, y “ gpxq, where f and g are real-analytic functions
and X and P are real-analytic manifolds.

and for p P P perfect data is chosen to be

§ Time series data: pypt1q, . . . , yptNqq for 0 ď t1 ă ¨ ¨ ¨ ă tN .

§ Steady state data:
ty P Y | f pp, xq “ 0, y “ gpxqp, xp0q P X0qu.
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Case Study: the sum of exponentials
The model equivalence relation and its equivalence classes

M describes the behaviour of the variable x P Rě0 depending on
pa, bq P R2

ě0 via

xpa, b, tq “ e´at ` e´bt .
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Case Study: the sum of exponentials
The model equivalence relation and its equivalence classes

M describes the behaviour of the variable x P Rě0 depending on
pa, bq P R2

ě0 via

xpa, b, tq “ e´at ` e´bt .

Perfect data produced by the parameter pa, bq:

§ The perfect measurements pe´at1 ` e´bt1 , . . . , e´atN ` e´btN q
for some N and timepoints t1 ă ¨ ¨ ¨ ă tN .

Taking measurements at two distinct nonzero timepoints induces
the same equivalence relation on P as knowing the value of
e´at ` e´bt for all t (the continuous data), that is for
0 ă t1 ă ¨ ¨ ¨ ă tN , we have

„M,t1,...,tN “ „M,8.
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Case Study: the sum of exponentials
The model equivalence relation and its equivalence classes

M describes the behaviour of the variable x P Rě0 depending on
pa, bq P R2

ě0 via

xpa, b, tq “ e´at ` e´bt .

§ It is easy to see that pa, bq „M,8pb, aq.

§ One can show that the equivalence class of pa, bq is

tpa, bq, pb, aqu if a ‰ b

tpa, aqu if a “ b.
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Model prediction maps
Geometric realizations of the quotient P{„M,z .

Definition
A model prediction map is a function φ : P Ñ RN giving the
perfect data (the model predictions) as a function of the parameter
which factors through the set-theoretic quotient P{„M,z and is
injective on the equivalence classes.

§ The existence of a model prediction map requires that the
perfect data z produced for the parameter p can be identified
with a point of RN for some N.
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Model prediction maps
Geometric realizations of the quotient P{„M,z .

Definition
A model prediction map is a function φ : P Ñ RN giving the
perfect data (the model predictions) as a function of the parameter
which factors through the set-theoretic quotient P{„M,z and is
injective on the equivalence classes.

§ The existence of a model prediction map requires that the
perfect data z produced for the parameter p can be identified
with a point of RN for some N.

Remark
The sloppiness literature calls the closure of the image of a model
prediction map a “model manifold”, although it is not a manifold
in general.
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Noisy data and sloppiness
The case of additive Gaussian measurement noise

§ z „ N pφppq,Σq, with probability density function ψpp, zq,

This induces a premetric on P via the Kullback-Liebler divergence:

dpp1, pq “

ˆ

1

2

`

φpp1q ´ φppq
˘T

Σ´1
`

φpp1q ´ φppq
˘

˙

.

Definition (A qualitative definition of sloppiness)

We say that a mathematical model pM, φ, ψ, dPq is sloppy at p0 if
in a neighborhood of p0 the premetric d diverges significantly from
the reference metric dP on parameter space.
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Sloppiness is a “local” property
Sloppiness is not uniform in the parameter space.

Case Study: The sum of exponentials

pa, bq “ p4, 1{8q. pa, bq “ p4, 3q. pa, bq “ p3, 3q.

Level curves of
a

dp¨, pa, bqq for the model prediction map given by
taking t1, t2, t3 “

1
3 , 1, 3 assuming additive Gaussian noise with

identity covariance.
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Sloppiness is a “local” property
Sloppiness depends on the choice of timepoints.

Case Study: The sum of exponentials

t1, t2, t3 “
1
3 , 1, 3 t1, t2 “

1
9 ,

1
3

t1, t2 “ 1, 3

Level curves of
a

dp¨, p4, 1{8qq for the model prediction map given
by taking the stated timepoints assuming additive Gaussian noise
with identity covariance.
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Quantifying Sloppiness
Sloppiness in the literature: the Fisher Information Matrix

Assume that dP “ d2 is the standard Euclidean metric. Suppose

that dp¨, p0q : P Ñ Rě0 is twice continuously differentiable in a
neighbourhood of p0.

dpp, p0q “
1

2
xpp ´ p0q,∇2

pdpp, p0qpp ´ p0qy `Op}pp ´ p0q}2q,

§ ∇2
pdpp, p0q is known as the Fisher Information Matrix (FIM).

Definition
We say that a mathematical model pM, φ, ψ, d2q is infinitesimally
sloppy at a parameter p0 if there are several orders of magnitude
between the largest and smallest eigenvalues of the FIM at p0.

We define the infinitesimal sloppiness at p0 to be the condition
number of the FIM at p0, that is, the ratio between its largest and
smallest eigenvalues.
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dFIM,p0 : P ˆ P Ñ Rě0

pp, p1q ÞÑ
1

2

A

pp ´ p1q,
`

∇2
pdpp, p0q

˘

|p“p0pp ´ p1q
E

.

which is a linear approximation of d near p0.
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A mathematical foundation of sloppiness
A summary of how everything fits together

Rm Ě X Y Ď Rn

Rr Ě P Z Ď RN

P{„M

g

φ

φ, inj

Thank you for your attention!
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