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Quantitative computational models play an increasingly important role in modern biology. Such models typically
involve many free parameters, and assigning their values is often a substantial obstacle to model development.
Directly measuring in vivo hm(hemltal parimetels is difficult, and collectively fitting them to other experimental data
often yields large n earlier work we showed in a growth-factor-signaling model
that collective fitting could yield well-constrained predictions, even when it left mdmdual param:ters very poorly
constrained. We also showed that the model had a “sloppy™ fith

roughly evenly distributed over many decades. Here we use a collection ul’ models from the Inleratun to test whether
such sloppy spectra are commen in systems biology. Strikingly, we find that every model we examine has a sloppy

spectrum of sensitivities. We also test several of this i for building models.

particular, sloppiness suggests that collective fits to even Iarge amounts of ideal time-series data will often leave many
parameters poorly constrained. Tests over our model are i with this ion. This difficulty with
collective fits may seem to argue for direct but i also implies that such
measuremems must be |nrm:dably prec:s: and complete to usefully constrain many model predictions. We confirm
this inour g th-f: model. Dur lesuhs suggest that sloppy sensitivity spectra are universal
in systems biology models. The of the power of fits and suggests that

modelers should focus on predictions rather than on parameters.

Citation: Gutenkunst RN, Waterfall 1), Casey FP, Brown KS, Myers CR, et al. (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Bl
30101 €169, dol10.1371/Journal pebl 0030189
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An equivalence relation on parameter space ¥ | s
Mathematical models with perfect data NTED KINGOOM - GHIA - ALAYS

» M is a mathematical model describing the behaviour of a
variable x € X € R™ depending on a parameter pe P € R’
and with measurable output y € Y < R".

» Specify a choice of “perfect data” z.
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An equivalence relation on parameter space ¥ | s
Mathematical models with perfect data NTED KINGOOM - GHIA - ALAYS

» (M, z) is a mathematical model with a choice of “perfect
data” z.

» This choice of perfect data induces an equivalence relation
~m,z on the parameter space P.
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An equivalence relation on parameter space ¥ | s
Mathematical models with perfect data NTED KINGOOM - GHIA - ALAYS

» (M, z) is a mathematical model with a choice of “perfect
data” z.

» This choice of perfect data induces an equivalence relation
~m,z on the parameter space P.

Example (Real-analytic ODE systems)
x = f(p,x), y = g(x), where f and g are real-analytic functions
and X and P are real-analytic manifolds.
and for p € P perfect data is chosen to be
» Time series data: (y(t1),...,y(ty)) for 0 < t; < --- < ty.

» Steady state data:
{yeY[f(p,x) =0, y=g(x)(, x(0) € Xo)}.
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Case Study: the sum of exponentials ) R

The model equivalence relation and its equivalence classes NTED KNGOOL - CHIVA - WALAYSI

M describes the behaviour of the variable x € R>o depending on
(a,b) € RZ via

x(a, b, t) = e + e~ bt
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The University of

Case Study: the sum of exponentials ) R

The model equivalence relation and its equivalence classes NTED KNGOOL - CHIVA - WALAYSI

M describes the behaviour of the variable x € R>o depending on
(a,b) € RZ via
x(a, b, t) = e + e~ bt

Perfect data produced by the parameter (a, b):

» The perfect measurements (e72% + e P . 72t 4 e~btn)
for some N and timepoints t; < --- < ty.
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Case Study: the sum of exponentials ) ikt
The model equivalence relation and its equivalence classes NTED KNGOOL - CHIVA - WALAYSI

M describes the behaviour of the variable x € R>o depending on
(a,b) € RZ via

x(a, b, t) = e + e~ bt

Perfect data produced by the parameter (a, b):

» The perfect measurements (e72% + e P . 72t 4 e~btn)
for some N and timepoints t; < --- < ty.

Taking measurements at two distinct nonzero timepoints induces
the same equivalence relation on P as knowing the value of

e~?' + et for all t (the continuous data), that is for

0<t; <--- < ty, we have

~Mitr,.oty — ~M,00-
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Case Study: the sum of exponentials ) R

The model equivalence relation and its equivalence classes NTED KNGOOL - CHIVA - WALAYSI

M describes the behaviour of the variable x € R>o depending on
(a,b) € RZ via

x(a, b, t) = e + e~ bt

> It is easy to see that (a, b) ~u,«(b, a).
» One can show that the equivalence class of (a, b) is

{(a’b)v(b’a)} ifasﬁb
{(a,9)} if a = b.
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Model prediction maps ) R
Geometric realizations of the quotient P/~ ;. UNITED KINGDOM - CA - WALAYSA

Definition

A model prediction map is a function ¢: P — RN giving the
perfect data (the model predictions) as a function of the parameter
which factors through the set-theoretic quotient P/~ , and is
injective on the equivalence classes.

» The existence of a model prediction map requires that the
perfect data z produced for the parameter p can be identified
with a point of RV for some N.
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The University of

Model prediction maps ) R
Geometric realizations of the quotient P/~ ;. UNITED KINGDOM - CA - WALAYSA

Definition

A model prediction map is a function ¢: P — RN giving the
perfect data (the model predictions) as a function of the parameter
which factors through the set-theoretic quotient P/~ , and is
injective on the equivalence classes.

» The existence of a model prediction map requires that the
perfect data z produced for the parameter p can be identified
with a point of RV for some N.

Remark

The sloppiness literature calls the closure of the image of a model
prediction map a “model manifold”, although it is not a manifold
in general.
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Noisy data and sloppiness ) R

The case of additive Gaussian measurement noise UNITED KINGDOM - CHINA - MALAYSA

» z ~ N(é(p), L), with probability density function (p, z),

School of Mathematical Sciences SIAM AN17, 12 July 2017

University of Nottingham The geometry of Sloppiness 12



The University of

Noisy data and sloppiness ) R

The case of additive Gaussian measurement noise UNITED KINGDOM - CHINA - MALAYSA

» z ~ N(é(p), L), with probability density function (p, z),

This induces a premetric on P via the Kullback-Liebler divergence:

d(p',p) = Lw(p, z) log (j((g,zz))) dz
1

- <2<¢<p'> —6(p) T (6(p) — ¢<P>>> :
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Noisy data and sloppiness ) R

The case of additive Gaussian measurement noise UNITED KINGDOM - CHINA - MALAYSA

» z ~ N(é(p), L), with probability density function (p, z),

This induces a premetric on P via the Kullback-Liebler divergence:

d(p',p) = (; (6(p) = d(p)) "= (B(p) — ¢(p))> :

Definition (A qualitative definition of sloppiness)

We say that a mathematical model (M, ¢, 1), dp) is sloppy at po if
in a neighborhood of py the premetric d diverges significantly from
the reference metric dp on parameter space.
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Sloppiness is a “local” property
Sloppiness is not uniform in the parameter space.
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Case Study: The sum of exponentials
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(a,b) = (4,1/8).

(a,b) = (4,3).

(a, b) = (3,3).

Level curves of 4/d(-, (a, b)) for the model prediction map given by
taking t1, tp, t3 = %, 1,3 assuming additive Gaussian noise with

identity covariance.
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Sloppiness is a “local” property 1

Nottingham
Sloppiness depends on the choice of timepoints. UNITED KINGDOM - CHIVA - MALAYSA
Case Study: The sum of exponentials
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t1,t2,t3=§,1,3 o =35,3 ti1,tp =1,3

Level curves of 4/d(-, (4,1/8)) for the model prediction map given

by taking the stated timepoints assuming additive Gaussian noise
with identity covariance.
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Quantifying Sloppiness ) R

Sloppiness in the literature: the Fisher Information Matrix UNITED KINGOOM - CHIVA - WALAYSi

Assume that dp = d» is the standard Euclidean metric. Suppose

that d(-, po): P — Rxo is twice continuously differentiable in a
neighbourhood of pg.

d(p. o) = 5((p — Po), V3d(p. po) (p — p)) + Ol(p — po)l2),
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The University of

Quantifying Sloppiness ) R

Sloppiness in the literature: the Fisher Information Matrix UNITED KINGOOM - CHIVA - WALAYSi

Assume that dp = d» is the standard Euclidean metric. Suppose

that d(-, po): P — Rxo is twice continuously differentiable in a
neighbourhood of pg.

d(p. o) = 5((p — Po), V3d(p. po) (p — p)) + Ol(p — po)l2),

» V2d(p, po) is known as the Fisher Information Matrix (FIM).
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Quantifying Sloppiness P Rotinghom

Sloppiness in the literature: the Fisher Information Matrix UNITED KINGOOM - CHIVA - WALAYSi

Assume that dp = d» is the standard Euclidean metric. Suppose

that d(-, po): P — Rxo is twice continuously differentiable in a
neighbourhood of pg.

d(p. o) = 5((p — Po), V3d(p. po) (p — p)) + Ol(p — po)l2),

» V2d(p, po) is known as the Fisher Information Matrix (FIM).

» The FIM induces a pseudometric on parameter space

dFIM,pO: PxP— R>0
(p,p") 2< p—p), (Vad(p,po)) lp=po (P — p)>

which is a linear approximation of d near py.
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Quantifying Sloppiness ) R

Sloppiness in the literature: the Fisher Information Matrix UNITED KINGOOM - CHIVA - WALAYSi

Assume that dp = d» is the standard Euclidean metric.
1
d(p, po) = 5{(p = o), Vd(p, po) (p — po)) + O(l(p = po) ),
> Vf,d(p,po) is known as the Fisher Information Matrix (FIM).

Definition

We say that a mathematical model (M, ¢, 1), d») is infinitesimally
sloppy at a parameter pg if there are several orders of magnitude
between the largest and smallest eigenvalues of the FIM at py.

We define the infinitesimal sloppiness at pg to be the condition
number of the FIM at pg, that is, the ratio between its largest and

smallest eigenvalues.
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A mathematical foundation of sloppiness ) R
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A summary of how everything fits together

R X —% LY CR"
RRo pP— % 7 CRN
\4 /&iinj
P/~m

Thank you for your attention!
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