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Motivation

Classic Segmentation Scheme

|mage in false colors — Extract feature(s) — Segmentation according to

the selected features
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Challenges with Images

Example: Note that the objects of interest can be at different scales.
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Challenges with Features

Depending on the choice of feature, results can vary.

Original image

Segmentation via “color feature”

How do you choose and represent a feature?
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Segmentation

There are many ways to do this, for example:

Region Based
Neural Networks
Histogram
Threshold
Clustering

Optimization

etc.

Which method is best to segment according to the feature of interest?
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Our Proposed Scheme

Main Idea: Introduce manifold learning to achieve image segmentation
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colors

use manifold learning to cluster
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Data Driven Feature Space
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Each 4 x 4 patch is a point in a 16 dimensional data cloud, whose PCA
representation is on the left.
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Patch Space
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Original image PCA projection of Patches on top
in false colors 4 by 4 patches of their PCA projection
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Sample 4 by 4 patches
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Density Based Clustering

How would you cluster points with the following density 7

fix)

X

Challenges: (1) Points to be cluster are in m? dimensions. (2) We do not have

~

access to the real density f, but an estimation f.
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Cut: Super-level Set

Suppose we knew f, then a solution can be found looking at super-level
sets, i.e. {x € Xy :f(x)> A}

VARVAN
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Cut-Cluster-Classify

Cluster: Connected Components

Connected components of {x € Xy : f(x) > A}
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Classify

How do we label the rest of the points? Using a classifier!
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Cut-Cluster-Classify
Cut

Step 1: Estimate sample density
Step 2: Threshold, or cut, according to density

PCA projection

by top left corner pixel colored by density
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Cut-Cluster-Classify

Cluster

Step 3: Cluster points that passed the threshold
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Cut-Cluster-Classify

Classification
Step 4: Classify remaining points
- J
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Cluster 1 Cluster 2

Il =

Sample patches being classified. ~ PCA projection of all 4 by 4

patches classified.
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Cut-Cluster-Classify

From patches to Pixels

Step 5: Label pixels using patch labels
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To decide which cluster pixel (3,1) belongs to, we look at all the patches that it appears

in. As illustrated in the top images, it only appears in 3 patches. The actual patches,
shown on the bottom, were classified to cluster 1, 2, and 2, respectively. This means
that cluster 2 gets 2 votes, and cluster 1 gets 1 vote. Therefore, this pixel gets placed in

cluster 2.
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Cut-Cluster-Classify

Density Estimation

Our choice: §(x) = m i.e. one over the distance to the kth nearest
neighbor (kNN).

Benefits of this estimator:
e Efficient algorithms to find ||x — x|

o Consistent with q(x)5
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Cut-Cluster-Classify

Consistent Estimator

Suppose Xy C R is the set of data points, x € R?, x; € Xy. Let k > 1
be fixed, x; be identically distributed, and g be the density function. Also,
suppose x; is the ith nearest neighbor of x and define € = ||x — xi||. Then

ko1 k 1 &
N NZ {d(xx)<ey — E [N] = Nzﬂ{d(x,x,-)<e}]
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Cluster

Our choice: Continuous k Nearest Neighbor (CkNN) introduced by T.
Berry and T. Sauer.

Facts:
@ It is a very efficient and accurate method of clustering
@ The unnormalized graph Laplacian spectrally converges to the
Laplace-de Rham operator

@ This implies that the connected components of the CkNN graph will
converge to the connected components of the manifold
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Cut-Cluster-Classify

Cluster

MeanShift SpectralClustering DBSCAN

Birch

CKNN
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Vazquez (GM

Comparing 5 different clustering algorithms.
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Cut-Cluster-Classify

Classify

Our choice: kNN classifier, which is a very fast classifier but there could
be better choices.
Steps

© Find the k nearest neighbors that have a label
@ Pick the most frequent label among the neighbors
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Results

Synthetic Images: Multi-scale Features
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Original image in false Segmentation from 2 x 2 Segmentation from
colors. patches. 12 x 12 patches.
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Synthetic Images

Original image in false colors. Segmentation from 10 x 10 patches.
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Synthetic Images
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Original image in false colors. Segmentation from 6 x 6 patches.
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Real Images

.
-\

&
s

Original image in false colors. Segmentation from 5 x 5 patches.
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Results

Real Images

Original image in false Segmentation from 8 x 8 Confidence level on the
colors. patches. voting outcome.
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Real Images

Original image in false colors. Segmentation from 20 x 20 patches.
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Real Images

Original image in false colors. Segmentation from 30 x 30 patches.
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On Going Research

Future Directions

@ Better metrics to measure similarities between patches

@ Hierarchical approach to achieve multiscale segmentation:
How do we incorporate and compare different patch sizes?

@ Find a sense of consistency for classifiers
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