Ligra

Shared memory framework for frontier-based algorithms

Algorithm:

- Runs over a sequence of rounds
- Each round, the frontier, a subset of vertices is processed
- Terminates once the frontier becomes empty

Breadth-First Search:

Shared memory framework for bucketing-based algorithms

Algorithm:

- Runs over a sequence of rounds
- Vertices are stored in a set of ordered buckets
- Each round, vertices in the next bucket are processed
- Terminates once the bucket structure is empty

Shared memory framework for bucketing-based algorithms

Algorithm:

- Runs over a sequence of rounds
- Vertices are stored in a set of ordered buckets
- Each round, vertices in the next bucket are processed
- Terminates once the bucket structure is empty

Bucketing interface:

- Maintains dynamic mapping from identifiers to buckets
- Identifiers can represent vertices, edges, triangles, etc

Shared memory framework for bucketing-based algorithms

Framework extends Ligra with:

- Interface for bucketing
- Work-efficient parallel implementation of the interface

Implementations of:

- · k-core
- Weighted Breadth-First Search
- Delta-Stepping
- Parallel Approximate Set Cover

Please see the paper for more details!

Julienne: Interface

Julienne: Interface

[(1,3), (7,2), (6,2)]

UpdateBuckets

 $k:\mathsf{int}$

 $F: \mathsf{int} \to (\mathsf{identifier}, \mathsf{bucket_dest})$

Update buckets for k identifiers

Parallel Bucketing

Can implement parallel bucketing with:

- n identifiers
- T total buckets
- K calls to UpdateBuckets, where each updates the ids in S_i
- L calls to NextBucket

in
$$O(n+T+\sum_{i=0}^K |S_i|)$$
 expected work and

$$O((K+L)\log n)$$
 depth w.h.p.

Implementation:

- Use dynamic arrays
- MakeBuckets: call UpdateBuckets. NextBucket: parallel filter

Parallel Bucketing

UpdateBuckets:

- Use work-efficient semisort [Gu et al. 2015]
- Given k (key, value) pairs, semisorts in O(k) expected work and O(log k) depth w.h.p.

- All ids going to bucket 1
- Prefix sum to compute #ids going to each bucket
- Resize buckets and inject all ids in parallel

k-core and Coreness

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

 $\lambda(v)$: largest k-core that v participates in

k-core and Coreness

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

 $\lambda(v)$: largest k-core that v participates in

k-core and Coreness

Sequential Peeling:

- Bucket sort vertices by degree
- Remove the minimum degree vertex, set its core number
 - Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

$$W = O(|E| + |V|)$$

Existing parallel algorithms:

• Scan all remaining vertices when computing each core ρ = number of peeling steps done by the parallel algorithm

$$W = O(|E| + \rho|V|)$$
$$D = O(\rho \log |V|)$$

Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

- 1. Extract the next bucket, set core numbers
- 2. Sum edges removed from each neighbor of this frontier
- 3. Compute the new buckets for the neighbors
- 4. Update the bucket structure with the (neighbors, buckets)

Work-efficient Peeling

We process each edge at most once in each direction:

```
# updates = O(|E|) # buckets \leq |V| # calls to NextBucket = \rho # calls to UpdateBuckets = \rho
```

Therefore the algorithm runs in:

$$O(|E| + |V|)$$
 expected work $O(\rho \log |V|)$ depth w.h.p.

On the largest graph we test on, $\rho = 130,728$

On 72 cores, our code finishes in a few minutes, but the work-inefficient algorithm does not terminate within 3 hours

Delta-Stepping and wBFS

Idea: Only process vertices within the current annulus

$$\Delta = 10$$

Delta-Stepping and wBFS

Insert s into the first bucket (annulus)

While the bucket structure is not empty:

- 1. Extract the next bucket
- 2. Relax neighbors of vertices in this bucket
- 3. Compute new bucket for each relaxed vertex
- 4. Update buckets with relaxed (vertex, bucket)

Delta-Stepping and wBFS

On a graph with constant integer edge weights, eccentricity r_{src} and $\Delta=1$:

```
# updates = O(|E|) # of identifiers \leq |E| # of buckets \leq r_{src} # calls to NextBucket = # calls to UpdateBuckets \leq r_{src} O(r_{src} + |E|) \text{ expected work} O(r_{src} \log |V|) \text{ depth w.h.p.}
```

In general, our implementation is

- · "Work-efficient" w.r.t. to the original delta-stepping algorithm
- · Not work-efficient w.r.t. Dijkstra's algorithm with Fibonacci heaps

Experiments: k-core

Across all inputs:

- Between 4-41x speedup over sequential peeling
- Speedups are smaller on small graphs with large ρ
- 2-9x faster than work-inefficient implementation

Experiments: Delta-Stepping

Across all inputs:

- 18-32x self-relative speedup, 17-30x speedup over DIMACS solver
- 1.1-1.7x faster than best existing implementation of Delta-Stepping
- 1.8-5.2x faster than (work-inefficient) Bellman-Ford

Experiments: Hyperlink Graphs

Hyperlink graphs extracted from Common Crawl Corpus

Graph	V	E	E (symmetrized)
HL2014	1.7B	64B	124B
HL2012	3.5B	128B	225B

- Previous analyses use supercomputers [1] or external memory [2]
- Able to process in main-memory of 1TB machine by compressing

- [1] Slota et al., 2015, Supercomputing for Web Graph Analytics
- [2] Zheng et al., 2015, FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs

Experiments: Hyperlink Graphs

Graph	k-core	wBFS	Set Cover
HL2014	97.2	9.02	45.1
HL2012	206	-	104

Running time in seconds on 72 cores with hyperthreading

- 23-43x speedup across applications
- Compression is crucial
 - Julienne/Ligra codes run without any modifications
 - Can't run other codes on these graphs without significant effort