Ligra
Shared memory framework for frontier-based algorithms

Algorithm:
* Runs over a sequence of rounds

* Each round, the frontier, a subset of vertices is processed

* Terminates once the frontier becomes empty

Breadth-First Search:
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Shared memory framework for bucketing-based algorithms

Algorithm:
* Runs over a sequence of rounds
* Vertices are stored in a set of ordered buckets
* Each round, vertices in the next bucket are processed

* Terminates once the bucket structure is empty
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Shared memory framework for bucketing-based algorithms

Algorithm:
* Runs over a sequence of rounds
» Vertices are stored in a set of ordered buckets
* Each round, vertices in the next bucket are processed

* [erminates once the bucket structure is empty
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Bucketing interface:

* Maintains dynamic mapping from identifiers to buckets

* |dentifiers can represent vertices, edges, triangles, etc
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Shared memory framework for bucketing-based algorithms

Framework extends Ligra with:

* Interface for bucketing

» Work-efficient parallel implementation of the interface

Implementations of:
e kK-core

* Weighted Breadth-First Search This talk

» Delta-Stepping

* Parallel Approximate Set Cover

Please see the paper for more details!




Julienne: Interface
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Bucketing Intertace

vertexsSubset




Julienne: Interface
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[(1.3), (7.2), (6.2)]

UpdateBuckets
k:int
F : int — (identifier, bucket_dest)

Update buckets for k identifiers




Parallel Bucketing

Can implement parallel bucketing with:
* n identifiers

* T total buckets
« K calls to UpdateBuckets, where each updates the ids in S;

e | calls to NextBucket
K
in O(n+T+ ) |S;|) expected work and
1=10)

O((K + L)logn) depth w.h.p.

Implementation:

» Use dynamic arrays

 MakeBuckets: call UpdateBuckets. NextBucket: parallel filter




Parallel Bucketing

UpdateBuckets:
* Use work-efficient semisort [Gu et al. 2015]

* Given k (key, value) pairs, semisorts in O(k) expected work
and O(log k) depth w.h.p.

[(3.9), (4.7), ..., (2.1), (1,1)]
|

[(2,1). (1,1), (7,1), ..., (4,7), (6,7), ..., (3,9)]

\/

All ids going to bucket 1

* Prefix sum to compute #ids going to each bucket

* Resize buckets and inject all ids in parallel




k-core and Coreness

k-core : maximal connected subgraph of G s.t. all vertices
have degree > k

A(v) : largest k-core that v participates in




k-core and Coreness

k-core : maximal connected subgraph of G s.t. all vertices
have degree > k

A(v) : largest k-core that v participates in

3-core 2-core

1-core




k-core and Coreness

Sequential Peeling:
* Bucket sort vertices by degree

* Remove the minimum degree vertex, set its core number

* Update the buckets of its neighbors

Each vertex and edge is processed exactly once:
W = O(|E| + |V])

Existing parallel algorithms:
* Scan all remaining vertices when computing each core

p = number of peeling steps done by the parallel algorithm

W = O(|E| + p|V])
D = O(plog |V))




Work-efficient Peeling

While not all vertices have been processed yet:

4. Update the bucket structure with the (neighbors, buckets)

(1) (0)
2) —> @ Q)

(1) (2)




Work-efficient Peeling

We process each edge at most once in each direction:
# updates = O(|E|)

# buckets < |V
# calls to NextBucket = p

# calls to UpdateBuckets = p
Therefore the algorithm runs in:

O(|E| + |V|) expected work
O(plog |V|) depth w.h.p.

On the largest graph we test on, p = 130, 728

On 72 cores, our code finishes in a few minutes, but the
work-inefficient algorithm does not terminate within 3 hours




Delta-Stepping and wBFS

ldea: Only process vertices within the current annulus
A=10




Delta-Stepping and wBFS

O © O A =10

iInsert § into the tirst bucket (annulus)
While the bucket structure is not empty:
1. Extract the next bucket
2. Belax neignbors of vertices 1n this bucket

e

-"- . $ — |~ vl ¥ F - o | - ] .t ,
3. Compute new bucket for each relaxed vertex

4. Update buckets with relaxed (vertex, bucket)

Distances Buckets P




Delta-Stepping and wBFS

On a graph with constant integer edge weights, eccentricity 7src
and A=1:

# updates = O(|E|)

# of identifiers < |E]|

# of buckets < 7sre

# calls to NextBucket = # calls to UpdateBuckets < 7src
O(rsre + |E|) expected work
O(rsrelog [V]) depth w.h.p.

In general, our implementation is
* “Work-efficient” w.r.t. to the original delta-stepping algorithm

* Not work-efficient w.r.t. Dijkstra’s algorithm with Fibonacci heaps




Experiments: k-core

1000 ¢
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Running time (seconds)
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Number of threads

Across all inputs:
» Between 4-41x speedup over sequential peeling
* Speedups are smaller on small graphs with large p

» 2-9x faster than work-inefficient implementation
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VI = 121M
Fl =368




Experiments: Delta-Stepping
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Number of threads

Across all inputs:
» 18-32x self-relative speedup, 17-30x speedup over DIMACS solver

* 1.1-1.7x faster than best existing implementation of Delta-Stepping

» 1.8-5.2x faster than (work-inefficient) Bellman-Ford




Experiments: Hyperlink Graphs

Hyperlink graphs extracted from Common Crawl Corpus

Graph V| |E]| |E|(symmetrized)
HL2014 1.7B 64B 124B
HL2012 3.5B 128B 2258

» Previous analyses use supercomputers [1] or external memory [2]

* Able to process in main-memory of 1TB machine by compressing

[1] Slota et al., 2015, Supercomputing for Web Graph Analytics

[2] Zheng et al., 2015, FlashGraph: Processing Billion-Node Graphs on
an Array of Commodity SSDs




Experiments: Hyperlink Graphs

Graph k-core wBFS Set Cover
HL2014 97.2 9.02 45.1
HL2012 206 — 104

Running time in seconds on 72 cores with hyperthreading

* 23-43x speedup across applications
» Compression is crucial
» Julienne/Ligra codes run without any modifications

* Can't run other codes on these graphs without significant effort
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