
Learning Filter Functions in Regularisers
by Minimising Quotients
SIAM annual meeting, Pittsburgh

13 July 2017

Martin Benning1, Guy Gilboa2, Joana Sarah Grah1,2, Carola-Bibiane
Schönlieb1

1Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, United Kingdom

2Electrical Engineering Department, Technion - Israel Institute of
Technology, Haifa, Israel



There would be no talk if it had not been for...
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Motivation

Martin Benning, Guy Gilboa, and CBS. "Learning Filter Functions in
Regularisers by Minimising Quotients." PAMM 16.1 (2016): 933-936.

Idea: Learning parametrised regularisation functions by quotient
minimisation, where both wanted and unwanted outcomes are
incorporated in the model by integrating the former in the
numerator and the latter in the denominator

ĥ ∈ argmin
‖h‖2=1

J(u+; h)

J(u−; h)
, J(u; h) := ‖u ∗ h‖1,

Aim: Learn convolution kernel h that makes u+ sparse! Hope that
u+ can be represented by just a few building components, cf. works
on dictionary learning, e.g.
Bruckstein, A.M., D.L. Donoho, and M. Elad. "From sparse solutions of
systems of equations to sparse modeling of signals and images." SIAM
review 51.1 (2009): 34-81.
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Algorithm: Generalised Inverse Power Method

Matthias Hein and Thomas Bühler. "An inverse power method for
nonlinear eigenproblems with applications in 1-spectral clustering and
sparse PCA." Advances in Neural Information Processing Systems. 2010.
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Eigenproblems

Linear Eigenproblem

Af − λf = 0

F (f ) =
〈f ,Af 〉
‖f ‖22

Non-linear Eigenproblem

∂R(f )− λ∂S(f ) 3 0

assuming R, S : Rn → R≥0 convex,
Lipschitz continuous, positively

one-homogeneous and S(f ) = 0⇔ f = 0

F (f ) =
R(f )

S(f )
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Methods to Solve Eigenproblems

Linear case:
Inverse Power Method

Af k+1 = f k

⇔ Af k+1 − f k = 0

f k+1

= arg min
u

1
2
〈u,Au〉 − 〈u, f k 〉

Non-linear case:
Generalised Inverse Power Method

r(f k+1)− s(f k) = 0

r(f k+1) ∈ ∂R(f k+1), s(f k) ∈ ∂S(f k)

Optimisation problem:

f k+1 = argmin
u

R(u)− 〈u, s(f k)〉
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Algorithm: Regularisation Learning Model

ĥ ∈ argmin
‖h‖2=1

J(u+; h)

J(u−; h)





hk+
1
2 = argmin∑n

j=1 hj=0

{
J(u+; h)− µk〈h, pk〉

}

hk+1 = hk+
1
2∥∥∥hk+ 1
2
∥∥∥

2

pk+1 ∈ ∂J(u−; hk+1)

µk+1 = J(u+;hk+1)
J(u−;hk+1)
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1D Examples: First- and second-order filters
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1D Example: Increasing filter size
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1D Examples: Reconstruction

Reconstruction of a noisy signal in order to test the behaviour of
the optimal filter is obtained by solving the following constrained
optimisation problem:

û = argmin
u∈Rm

J(u; ĥ) subject to ‖u − f ‖2 ≤ ησ
√
m .
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Remark

In this setting there is indeed an even more efficient way of
finding suitable filter functions h
Simplifying the model to a variant without the need of having
a negative input function u− yields the same results, which is
a clear indicator that in the above-mentioned framework the
numerator plays a dominant role
In fact, varying the model to

ĥ ∈ argmin
h

‖u+ ∗ h‖1
‖h‖2

returns exactly the same solutions as the basic model
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Extension of the Model

ĥ ∈ argmin
‖h‖2=1

mean(h)=0

1
M

M∑
i=1

K∑
k=1

J(u+i ; hk)

1
N

N∑
j=1

K∑
k=1

J(u−j ; hk)

, J(u; h) = ‖u ∗ h‖1

h is a K -dimensional parametrisation of a regularisation
functional J; here, each hk corresponds to a convolution kernel
The signals u+ and u− are desired and undesired input signals,
respectively

Martin Benning, Guy Gilboa, Joana Sarah Grah, and CBS.
"Learning Filter Functions in Regularisers by Minimising
Quotients." Scale Space and Variational Methods in Computer
Vision, 2017, accepted.

Benning, Gilboa, Grah, Schönlieb Learning Parametrised Regularisers



Algorithm: Extended Model

ĥ ∈ argmin
h

{
F (h)

G (h)
subject to ‖h‖2 = 1 and mean(h) = 0

}





hk+
1
2 = argmin

mean(h)=0

{
F (h)− µk〈h − hk , sk〉+

∥∥h − hk
∥∥2

2

}

µk+1 = F (hk+
1
2 )

G(hk+
1
2 )

sk+1 ∈ ∂G (hk+
1
2 )

hk+1 = hk+
1
2∥∥∥hk+ 1
2
∥∥∥

2

Bresson, X., Laurent, T., Uminsky, D., Brecht, J.V.. "Convergence
and energy landscape for Cheeger cut clustering." Advances in
Neural Information Processing Systems (2012).
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Brief Convergence Analysis

Following Section 3.2 of the below paper, we show two results that
are essential for proving global convergence of our algorithm: a
descent lemma and a bound of the subgradient by the iterates gap.

Jérôme Bolte, Shoham Sabach, and Marc Teboulle. "Proximal
alternating linearized minimization for nonconvex and nonsmooth
problems." Mathematical Programming 146.1-2 (2014): 459-494.
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Brief Convergence Analysis

Lemma
Let F and G be proper, lower semi-continuous and convex
functions. Then the iterates of our algorithm satisfy

µk+
1
2 +

1

G (hk+
1
2 )
‖hk+ 1

2 − hk‖2 ≤ µk ,

if we further assume G (hk+
1
2 ) 6= 0 for all k ∈ N.

Main ingredients for proof:
Write down first line of the algorithm (minimisation problem)
for minimiser hk+

1
2 , estimate upper bound inserting hk

Use convexity of G
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Brief Convergence Analysis

Lemma
Let F and G be proper, lower semi-continuous and convex
functions, and let G be differentiable with L-Lipschitz-continuous
gradient, i.e. ‖∇G (h1)−∇G (h2)‖2 ≤ L‖h1 − h2‖2 for all h1 and
h2 and a fixed constant L.

Then the iterates of our algorithm satisfy

‖rk+ 1
2 − µk+ 1

2∇G (xk+
1
2 )‖2 ≤ (2+ C k+ 1

2L)‖hk+ 1
2 − hk‖2 ,

for some constant C k+ 1
2 , rk+

1
2 ∈ ∂F (hk+ 1

2 ) and
µk+

1
2 := µk+1 = F (hk+

1
2 )/G (hk+

1
2 ).
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Brief Convergence Analysis

Note: Now we assume that G is smooth and has a
Lipschitz-continuous gradient ∇G . Neither of those assumptions is
fulfilled for the one-norm.

→ Replace one-norm by Huber one-norm, i.e. replace modulus in
one-norm by Huber function

φγ(x) =

{
x2

2 , |x | ≤ γ
γ
(
|x | − γ

2

)
, |x | > γ

.
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Brief Convergence Analysis

Main ingredients for proof:
Write down optimality condition for inner minimisation
problem in the first line of the algorithm
Use differentiability of G
Add zero
Triangle inequality
Exploit Lipschitz-continuity of G
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1D Example: Multiple u+ and u− as Input
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1D Example: TV-TV2 Infimal Convolution

Given a known decomposition u+ = v + w , i.e. u+ consists of a
smooth part v and a piecewise constant part w , we minimise with
respect to h:

‖h1 ∗ v‖1 + ‖h2 ∗ (u+ − v)‖1
‖h1 ∗ u−‖1 + ‖h2 ∗ u−‖1
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2D Example: Piecewise-constant images
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2D Example: Piecewise-constant images
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2D Example: Nullspace Property
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2D Example: Rectangle reconstruction
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2D Example: Removing diagonals
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2D Examples: Distinguishing between shapes, angles, scales
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2D Examples: Distinguishing between shapes, angles, scales
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2D Examples: Denoising performance of filters
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Infimal Convolution Model

Learning

min
hi

‖hi ∗ ui‖1
1

n−1
∑
j 6=i

‖hi ∗ uj‖1
, i = 1, . . . , n

Reconstruction

inf
u=u1+···+un

n∑

j=1

‖hj ∗ uj‖1
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Infimal Convolution Model
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Infimal Convolution Model
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MNIST classification

To conclude this talk we want to discuss the incorporation of misfit
data in the context of a basic digit classification task

27 of 32
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MNIST classification

Setup: we pick two digit classes, lets say 0 and 3, and learn the four
filter functions

h0 = arg min
khk2=1

kh ⇤ U0k1 and h3 = arg min
khk2=1

kh ⇤ U3k1

as well as

h̃0 = arg min
khk2=1

kh ⇤ U0k1

kh ⇤ U3k1
and h̃3 = arg min

khk2=1

kh ⇤ U3k1

kh ⇤ U0k1
.

Here U0 2 R784⇥5923 and U3 2 R784⇥6131 are training-data matrices
that contain images of hand-written zeros, respectively threes, only.

28 of 32
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MNIST classification

Classification results:

min (kh0 ⇤ utestk1, kh3 ⇤ utestk1)
! 77.7387 % success rate

min
⇣
kh̃0 ⇤ utestk1, kh̃3 ⇤ utestk1

⌘

! 95.1759 % success rate

29 of 32
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Conclusions & Outlook

Conclusions

I Incorporation of misfit information into simple learning process

I Quotient minimisation yields generalised Eigenvalue problem

I Potential applications in signal decomposition and classification

Outlook

I Quotients of more sophisticated models

I Multiple classes of fit- and misfit-training-data

I More sophisticated applications
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Thank you very much for your attention!

Are there any questions?

http://www.damtp.cam.ac.uk/research/cia/

cbs31@cam.ac.uk

http://www.damtp.cam.ac.uk/research/cia/
cbs31@cam.ac.uk

