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So much data...

0bama the warrior
The Misgoverning Argentina

Economist The economic shift from West to East
Genetically modified crops blossom
The right to eat cats and dogs

The data deluge

AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT
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So much data...

Systems to handle big data might be this generation’s
moon landing

Apr. 1, 2012 - 9:00 PM PST




How can we handle all this data?

Option 1 : Build bigger computing systems
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How can we handle all this data?

Option 1 : Build bigger computing systems
** We need the resources
** Fundamental limitations
s* Wasteful (resources, energy, cost, ...)

3 MB of internet data transfer = boiling one cup of water

(https://www.katescomment.com/energy-of-downloads/)



How can we handle all this data?

Option 2 : Desigh more efficient compression methods

Enter the world of : Compressed sensing



Compressed sensing: motivation

Applications are numerous :

¢ Data storage

+** Reliable data transmission

» Collaborative filtering (e.g. Netflix predictions)
» Radar

* DNA array sequencing

* Neuroscience

* Predicting earthquakes

» Restoring damaged artwork
» Crime prediction

» Image compression

* Medical imaging

* Many, many, many more...
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Representations of High Dimensional
Data

Key Idea :
Modern data is too large-scale. Big data= Big understanding

=) |\Vathematical tools like Compressed Sensing provide
rigorous means for representing large data in efficient ways.

mm) This allows for efficient data acquisition, storage, and
analysis.



Representations of High Dimensional
Data

Key Topics :

** Mathematics of sparsity and compressed sensing
** Sampling designs
+** Reconstruction methods
¢ Quantization issues

** Inferential tasks
¢ Topic modeling
+* Clustering and classification methods
*¢* Numerical optimization



Applications

+*»* Digital Camera (Rice Univ.)

Low-cost, fast, sensitive
optical detection

)

Compressed, encoded
image data sent via RF
for reconstruction

Image encoded by DMD
and random basis

DSP




Applications

+*»* Digital Camera (Rice Univ.)

DMO+ALP Boere

Protodicde circelt




Applications

**Hyperspectral camera (InView Corp.)




Applications

** Magnetic Resonance Imaging (MRI)
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Applications

** Magnetic Resonance Imaging (MRI)

Less measurements = less time



Applications

** Magnetic Resonance Imaging (MRI)




Results of Compressed Sensing

4096 Pixels 4096 Pixels 65536 Pixels
Original 800 Measurements 1600 Measurements 6600 Measurements
(20%) (40%) (10%)



Results of Compressed Sensing

 INVIEW

“single-pixel”
Compressive
Sensing
SWIR
Camera
(1024x768)

e
N

* Target: black and white
print-out

+ [llumination: SWIR source
(no visualsource)
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Results of Compressed Sensing

Original D Repaired A

AVIS FILMS
INC.

PRESENIS PRESENTS

Corruptions Frame 1 480 x 620 pixels



Why is compression possible?
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Because most practical signals, such as images, contain much less

information than their dimension (e.g. 256x256 = 65,536 pixels)
would suggest.



Why is compression possible?

Because most practical signals, such as images, contain much less
information than their dimension (e.g. 256x256 = 65,536 pixels)
would suggest.

How to quantify this?



A believable example

This image is



A believable example

This image is

In a computer, images are represented by an array of numbers (O=black,
2555=white). images are those which are mostly zeros (black).



A little bit harder...

This image is NOT sparse...uh oh.

We call an image “compressible” if it is well approximated by a sparse image.



Ok, this one is really hard...

This image is NOT EVEN CLOSE to sparse...uh oh.



Sparsifying transformations
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** Haar wavelet transformation (Haar, 1909)
** Daubechies wavelet transformation (Daubechies, 1988)
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Sparsifying transformations

** Haar wavelet transformation (Haar, 1909)

** Daubechies wavelet transformation (Daubechies, 1988)
¢ Curvelets (Candes et.al., 2002)

¢ Shearlets (Kutyniok et.al., 2005)

** Framelets (Cai et.al., 2008
“* Omelets - "/_‘1{..'1;




Sparsifying transformations

** Mathematically, a basis or redundant frame B such that:

X =Bz, ziss-sparse (s <<d)



Sparsifying transformations

**We can thus assume the images of interest are sparse

** How do we actually compress them and then how do we
reconstruct them from that compression?

¢ Simple ad-hoc methods not feasible for practice. Need
sophisticated robust machinery, motivated by applications.



Mathematical formulation

1. Signal of interest f € C" (or CV*N)
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Mathematical formulation

[y

. Signal of interest f € C" (or CN*N)
. Sampling operator A : C" — C™.
. Samples y = Af + €.

w N

4. Problem: Reconstruct signal f from measurements y



Mathematical formulation

Measurements y = Af + &.
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Mathematical formulation

Measurements y = Af + &.

Assume f is sparse:

» In the coordinate basis: ||f]jo & |supp(f)| < s < n
» In orthonormal basis: f = Bx where |x|jo <s < n

» In other dictionary: f = Dx where ||x|lo < s < n

In practice, we encounter compressible signals.



Restricted Isometry Property

» A satisfies the Restricted Isometry Property (RIP) when there
is 0 < ¢ such that

(1=9)||fll2 < ||Af|l2 < (14 9)|[f|]2 whenever ||f]lo < s.
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m 2 slog n.



Restricted Isometry Property

» A satisfies the Restricted Isometry Property (RIP) when there
is < ¢ such that

(1=9)||fll2 < ||Af|l2 < (14 9)|[f|]2 whenever ||f]lo < s.

» Sub-gaussian measurement matrices satisfy the RIP with high
probability when
m 2 slog n.

» Subsampled bounded orthogonal (e.g. Fourier) matrices have
similar property: m > slog? n.



Recovery guarantees via {1-minimization

{1-minimization Candés-Romberg-Tao '06

Let A satisfy the Restricted Isometry Property and set:
f = argmin g g|ly such that |JAf —y|2 <e,

where [[{]2 < e.



Recovery guarantees via {1-minimization

{1-minimization Candés-Romberg-Tao '06
Let A satisfy the Restricted Isometry Property and set:

f = argmin g g|ly such that |JAf —y|2 <e,
where ||€||2 < e. Then we can stably recover the signal f:

I — i1
=

If =Fll2 S e+



Greedy methods

(Jeff Blanchard)

OMP
. CoSaMP
IHT

B



Extensions of CS

Some non-trivial branches

1. Non-orthonormal bases
2. Quantization

3. Matrix completion (Mark Davenport)



Non-orthonormal sparsifying bases

Many (most) signals are sparse in highly redundant tight frames.

Oversampled DFT

Gabor frames

Curvelet frames
Undecimated wavelet frames

ONB concatenations

No o~ owbh -

Gradient



Non-orthonormal sparsifying bases
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Non-orthonormal sparsifying bases

(1-analysis

For arbitrary tight frame D, one may solve the ¢1-analysis program:

f = argmin Fe(C"HD*fNHl subject to || Af — y|j» <e.

(1-analysis Candes-Eldar-N-Randall "10

Let D be an arbitrary tight frame and let A satisfy (a variant of
the) RIP. Then the solution f to ¢i-analysis satisfies

L 1D = (D" Fl
{2 0elh

If —fl2Se




Non-orthonormal sparsifying bases

Many (most) signals are sparse in highly redundant tight frames.

Oversampled DFT

Gabor frames

Curvelet frames
Undecimated wavelet frames

ONB concatenations

No o~ owbh -

Gradient



Gradient sparsity
Natural images and smoothly varying signals are compressible in
the discrete gradient.




Gradient sparsity
Natural images and smoothly varying signals are compressible in
the discrete gradient.

The discrete directional derivatives of an image f € CV*N are

fX : (CNXN — C(N—I)XN’ (f;()_j,k — £

fi
fy : CVN — VNN () k= fik -
and the discrete gradient operator is
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Gradient sparsity
Natural images and smoothly varying signals are compressible in
the discrete gradient.

The discrete directional derivatives of an image f € CV*N are

fX : (CNXN — C(N—I)XN’ (f;()_j,k — £

fi
fy : CNXN N (CNX(N_l), (ﬂ/)J,k — f},k _
and the discrete gradient operator is
V[f] = (fx, fy)-

IVIflll1 := ||f||Tv is the total variation (TV).
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Stable signal recovery using total-variation minimization

Theorem N-Ward 13
From m > slog(N9) RIP measurements, for any f € CN’ (d > 2),

f = argmin || Z||7y  such that [A(Z) —y|2 <e,
satisfies
If = Fllrv S IVIF] = VIfls|l1 + V/se (gradient error)

and

VI = VIflslly 5}

IF = Fll 5 [552

(signal error)

This error guarantee is optimal up to log factors.



The One-Bit Sparse reconstruction problem
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The One-Bit Sparse reconstruction problem

» Standard: f € R" with ||f]lo < s acquired via nonadaptive
linear measurements (a;, f) +¢e;, i=1,...,m.

» In practice, measurements need to be quantized.
» One-Bit: extreme quantization as y = sign(Af + e), i.e.,

yi = sign({a;, ) + ei), i=1,...,m.

» Goal: find reconstruction maps A : {1} — R" such that,
assuming the f>-normalization of f,

IF = AWl < h(X)

where the oversampling factor is denoted
m

A= sin(n/s)

and h is rapidly decreasing to zero when X increases.
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Limitations of the Framework

» Power decay is optimal since

If = Aope(y)ll2 2 A7

even if supp(f) known in advance [Goyal-Vetterli-Thao '98].

» Geometric intuition

f

Sn—l



Adaptivity

Sn—l

» Remedy: adaptive choice of dithers m,...,7m, in

y;i = sign((a;, f) — 17), i=1,...,m.



Main results

Theorem Baraniuk-Foucart-N-Plan-Wootters '16

» Pre-quantization error, y; = sign({aj, f) + e — i) :
if [lelloc <eR27T (or |ef|2 < e/q||f — £ throughout),
then
|f —fT)la < R2™T = Rexp(—c))

for the convex-optimization and hard-thresholding schemes.



Main results

Theorem Baraniuk-Foucart-N-Plan-Wootters '16

» Pre-quantization error, y; = sign({(a;, f) + ¢ — 77) :
if [lelloc <eR27T (or |ef|2 < e/q||f — £ throughout),
then
|f —fT)la < R2™T = Rexp(—c))
for the convex-optimization and hard-thresholding schemes.
» Post-quantization error, y; = fisign({a;, f) + e; — 77) :
if [{i : fif = —1}| < nq throughout, then
|f —FfT)la < R2™T = Rexp(—c))

for the hard-thresholding scheme.



Thank you!

E-mail:
» deanna@math.ucla.edu
Web:

» www.math.ucla.edu/~deanna/
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