Greedy Algorithms in Compressed Sensing

Jeff Blanchard

Minitutorial: Compressed Sensing/Dimension Reduction SIAM Annual Meeting 2017, Pittsburgh, July 14, 2017

- $\bullet\,$ The problem is characterized by three parameters: s < m < n
 - n, the signal length;
 - *m*, number of (inner product) measurements;
 - s, the sparsity of the signal.
- The sampling/sensing matrix \mathcal{A} is of size $m \times n$.
- The signal $f \in \mathbb{R}^n$ is s-sparse in some sense, f = Dx with $||x||_0 = s$.
 - We'll simplify a few things by assuming D = I so that f = x.

- $\bullet\,$ The problem is characterized by three parameters: s < m < n
 - n, the signal length;
 - *m*, number of (inner product) measurements;
 - s, the sparsity of the signal.
- The sampling/sensing matrix \mathcal{A} is of size $m \times n$.
- The signal $f \in \mathbb{R}^n$ is s-sparse in some sense, f = Dx with $||x||_0 = s$.
 - We'll simplify a few things by assuming D = I so that f = x.

- $\bullet\,$ The problem is characterized by three parameters: s < m < n
 - n, the signal length;
 - *m*, number of (inner product) measurements;
 - s, the sparsity of the signal.
- The sampling/sensing matrix \mathcal{A} is of size $m \times n$.
- The signal $f \in \mathbb{R}^n$ is s-sparse in some sense, f = Dx with $||x||_0 = s$.
 - We'll simplify a few things by assuming D = I so that f = x.

- The problem is characterized by three parameters: $\ensuremath{s} < m < n$
 - n, the signal length;
 - *m*, number of (inner product) measurements;
 - *s*, the sparsity of the signal.
- The sampling/sensing matrix \mathcal{A} is of size $m \times n$.
- The signal $x \in \mathbb{R}^n$ is s-sparse, $||x||_0 = s$.
- The samples/measurements $y \in \mathbb{R}^m$ where $y = \mathcal{A}x + \xi$.

- The problem is characterized by three parameters: $\ensuremath{s} < m < n$
 - n, the signal length;
 - *m*, number of (inner product) measurements;
 - *s*, the sparsity of the signal.
- The sampling/sensing matrix \mathcal{A} is of size $m \times n$.
- The signal $x \in \mathbb{R}^n$ is s-sparse, $||x||_0 = s$.
- The samples/measurements $y \in \mathbb{R}^m$ where $y = \mathcal{A}x + \xi$.

Measure and recover a s-sparse vector with an $m\times n$ matrix:

- The problem is characterized by three parameters: $\ensuremath{s} < m < n$
 - n, the signal length;
 - *m*, number of (inner product) measurements;
 - s, the sparsity of the signal.
- The sampling/sensing matrix \mathcal{A} is of size $m \times n$.
- The signal $x \in \mathbb{R}^n$ is s-sparse, $||x||_0 = s$.
- The samples/measurements $y \in \mathbb{R}^m$ where $y = \mathcal{A}x$.

Convex Relaxations

Replace the combinatorial optimization problem with its convex envelop.

 \bullet Compressed Sensing: $\ell_1\text{-minimization}$

$$\min_{z \in \mathbb{R}^n} \|z\|_1 \text{ subject to } \mathcal{A}x = y = \mathcal{A}z$$

• Matrix Completion: nuclear norm minimization

$$\min_{Z \in \mathbb{R}^{m \times n}} \|Z\|_* \text{ subject to } \mathcal{A}(X) = y = \mathcal{A}(Z)$$

(where $\|\cdot\|_*$ is the ℓ_1 norm of the singular values)

Many algorithms to solve these optimization problems.

Convex Relaxations

Replace the combinatorial optimization problem with its convex envelop.

 \bullet Compressed Sensing: $\ell_1\text{-minimization}$

$$\min_{z \in \mathbb{R}^n} \|z\|_1 \text{ subject to } \mathcal{A}x = y = \mathcal{A}z$$

• Matrix Completion: nuclear norm minimization

$$\min_{Z \in \mathbb{R}^{m \times n}} \|Z\|_* \text{ subject to } \mathcal{A}(X) = y = \mathcal{A}(Z)$$

(where $\|\cdot\|_*$ is the ℓ_1 norm of the singular values) Many algorithms to solve these optimization problems.

Directly solve the combinatorial optimization problem by iteratively searching for the correct low dimensional model.

- Basic: OMP, Hard Thresholding
- Iterative Hard Thresholding: IHT, NIHT (Blumensath & Davies), CGIHT (B., Tanner, Wei)
- Two Stage Pursuits:
 - CoSaMP: Compressive Sampling Matching Pursuit (Needell & Tropp)
 - SP: Subspace Pursuit (Dai & Milenkovic)
 - HTP: Hard Thresholding Pursuit (Foucart, Maleki, Blumensath)
- These all have sufficient conditions for guaranteed uniform recovery.
- These all have variants for row-sparse approximation.
- These all have variants for matrix completion.

Directly solve the combinatorial optimization problem by iteratively searching for the correct low dimensional model.

- Basic: OMP, Hard Thresholding
- Iterative Hard Thresholding: IHT, NIHT (Blumensath & Davies), CGIHT (B., Tanner, Wei)
- Two Stage Pursuits:
 - CoSaMP: Compressive Sampling Matching Pursuit (Needell & Tropp)
 - SP: Subspace Pursuit (Dai & Milenkovic)
 - HTP: Hard Thresholding Pursuit (Foucart, Maleki, Blumensath)
- These all have sufficient conditions for guaranteed uniform recovery.
- These all have variants for row-sparse approximation.
- These all have variants for matrix completion.

Directly solve the combinatorial optimization problem by iteratively searching for the correct low dimensional model.

- Basic: OMP, Hard Thresholding
- Iterative Hard Thresholding: IHT, NIHT (Blumensath & Davies), CGIHT (B., Tanner, Wei)
- Two Stage Pursuits:
 - CoSaMP: Compressive Sampling Matching Pursuit (Needell & Tropp)
 - SP: Subspace Pursuit (Dai & Milenkovic)
 - HTP: Hard Thresholding Pursuit (Foucart, Maleki, Blumensath)
- These all have sufficient conditions for guaranteed uniform recovery.
- These all have variants for row-sparse approximation.
- These all have variants for matrix completion.

Directly solve the combinatorial optimization problem by iteratively searching for the correct low dimensional model.

- Basic: OMP, Hard Thresholding
- Iterative Hard Thresholding: IHT, NIHT (Blumensath & Davies), CGIHT (B., Tanner, Wei)
- Two Stage Pursuits:
 - CoSaMP: Compressive Sampling Matching Pursuit (Needell & Tropp)
 - SP: Subspace Pursuit (Dai & Milenkovic)
 - HTP: Hard Thresholding Pursuit (Foucart, Maleki, Blumensath)
- These all have sufficient conditions for guaranteed uniform recovery.
- These all have variants for row-sparse approximation.
- These all have variants for matrix completion.

Image: A math a math

Directly solve the combinatorial optimization problem by iteratively searching for the correct low dimensional model.

- Basic: OMP, Hard Thresholding
- Iterative Hard Thresholding: IHT, NIHT (Blumensath & Davies), CGIHT (B., Tanner, Wei)
- Two Stage Pursuits:
 - CoSaMP: Compressive Sampling Matching Pursuit (Needell & Tropp)
 - SP: Subspace Pursuit (Dai & Milenkovic)
 - HTP: Hard Thresholding Pursuit (Foucart, Maleki, Blumensath)
- These all have sufficient conditions for guaranteed uniform recovery.
- These all have variants for row-sparse approximation.
- These all have variants for matrix completion.

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

OMP

Greedy Algorithm to iteratively build the support set one index at a time.

Previous Iteration

- x_{j-1} a s-sparse approximation
- T_{j-1} the support of x_{j-1}

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the residual
- $i_j = \arg \max \left(|r_j| \right)$ column index with greatest correlation to the residual
- $T_j = T_{j-1} \cup \{i_j\}$ updated approximate support set
- $x_j = \underset{\supp(z) \subset T_j}{\arg\min} \|y \mathcal{A}z\|_2$ optimal approximation supported on T_j

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

OMP

Greedy Algorithm to iteratively build the support set one index at a time.

Previous Iteration

- x_{j-1} a s-sparse approximation
- T_{j-1} the support of x_{j-1}

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the residual
- $i_j = \arg \max \left(|r_j| \right)$ column index with greatest correlation to the residual
- $T_j = T_{j-1} \cup \{i_j\}$ updated approximate support set
- $x_j = \underset{\supp(z) \subset T_j}{\arg\min} \|y \mathcal{A}z\|_2$ optimal approximation supported on T_j

イロン イボン イヨン イヨン

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

OMP

Greedy Algorithm to iteratively build the support set one index at a time.

Previous Iteration

- x_{j-1} a s-sparse approximation
- T_{j-1} the support of x_{j-1}

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the residual
- $i_j = \arg \max \left(|r_j| \right)$ column index with greatest correlation to the residual
- $T_j = T_{j-1} \cup \{i_j\}$ updated approximate support set
- $x_j = \underset{\supp(z) \subset T_j}{\operatorname{supp}(z) \subset T_j} \|y \mathcal{A}z\|_2$ optimal approximation supported on T_j

(日)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

OMP

Greedy Algorithm to iteratively build the support set one index at a time.

Previous Iteration

- x_{j-1} a s-sparse approximation
- T_{j-1} the support of x_{j-1}

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the residual
- $i_j = \arg \max \left(|r_j| \right)$ column index with greatest correlation to the residual
- $T_j = T_{j-1} \cup \{i_j\}$ updated approximate support set
- $x_j = \underset{\supp(z) \subset T_j}{\arg\min} \|y \mathcal{A}z\|_2$ optimal approximation supported on T_j

(ロ) (同) (三) (三) (三) (○)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

OMP

Greedy Algorithm to iteratively build the support set one index at a time.

Previous Iteration

- x_{j-1} a s-sparse approximation
- T_{j-1} the support of x_{j-1}

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the residual
- $i_j = \arg \max \left(|r_j| \right)$ column index with greatest correlation to the residual
- $T_j = T_{j-1} \cup \{i_j\}$ updated approximate support set
- $x_j = \underset{\supp(z) \in T_j}{\arg\min} \|y \mathcal{A}z\|_2$ optimal approximation supported on T_j

I naa

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

OMP Demo

・ロト ・四ト ・ヨト ・ヨト

= 990

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

Hard Thresholding: As an algorithm

Select the approximation support all at once and project.

- $T=\texttt{PrincipalSupport}_s(\mathcal{A}^*y)$ the support set of the s largest magnitude entries in \mathcal{A}^*y
- $x = \underset{\sup p(z) \subset T}{\arg \min} \|y Az\|_2$ optimal approximation supported on T and zeros all other entries.

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

Hard Thresholding: As an algorithm

Select the approximation support all at once and project.

- $T = \text{PrincipalSupport}_s(\mathcal{A}^*y)$ the support set of the s largest magnitude entries in \mathcal{A}^*y
- $x = \underset{\sup p(z) \subset T}{\arg \min} \|y Az\|_2$ optimal approximation supported on T and $\underset{\operatorname{zeros}}{\operatorname{supp}(z) \subset T}$

イロト イポト イヨト イヨト

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

Hard Thresholding: As an initialization

The remaining algorithms all initialize with a hard threshold.

- $T = \text{PrincipalSupport}_s(\mathcal{A}^*y)$ the support set of the s largest magnitude entries in \mathcal{A}^*y
- $x = \text{Threshold}(\mathcal{A}^*y, T)$ optimal approximation supported on T and zeros all other entries.

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

IHT

A gradient descent with evolving support.

Previous Iteration

• x_{j-1} a s-sparse approximation

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- $w_j = x_{j-1} + r_j$ an updated approximation (not sparse)
- $T_j = \text{PrincipalSupport}_s(w_j)$ the support set of the s largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

IHT

A gradient descent with evolving support.

Previous Iteration

• x_{j-1} a s-sparse approximation

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- $w_j = x_{j-1} + r_j$ an updated approximation (not sparse)
- $T_j = \text{PrincipalSupport}_s(w_j)$ the support set of the s largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

IHT

A gradient descent with evolving support.

Previous Iteration

• x_{j-1} a s-sparse approximation

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- $w_j = x_{j-1} + r_j$ an updated approximation (not sparse)
- $T_j = \text{PrincipalSupport}_s(w_j)$ the support set of the s largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

(日) (同) (三) (三)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

IHT

A gradient descent with evolving support.

Previous Iteration

• x_{j-1} a s-sparse approximation

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- $w_j = x_{j-1} + r_j$ an updated approximation (not sparse)
- $T_j = \text{PrincipalSupport}_s(w_j)$ the support set of the s largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

IHT

A gradient descent with evolving support.

Previous Iteration

• x_{j-1} a s-sparse approximation

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- $w_j = x_{j-1} + r_j$ an updated approximation (not sparse)
- $T_j = \text{PrincipalSupport}_s(w_j)$ the support set of the s largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

NIHT

A subspace restricted steepest descent with evolving support.

Previous Iteration

• x_{j-1} a s-sparse approximation

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- α_j a near optimal step size
- $w_j = x_{j-1} + \alpha_j r_j$ an updated approximation (not sparse)
- $T_j = \text{PrincipalSupport}_s(w_j)$ the support set of the s largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

(日)

HTP

A variant replacing thresholding with an optimal approximation.

Previous Iteration

• x_{j-1} a s-sparse approximation

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- α_j a near optimal step size
- $w_j = x_{j-1} + \alpha_j r_j$ an updated approximation (not sparse)
- $T_j = \text{PrincipalSupport}_s(w_j)$ the support set of the s largest magnitude entries in w_j
- $x_j = \underset{\supp(z) \in T_j}{\arg\min} \|y Az\|_2$ optimal approximation supported on T_j

(ロ) (同) (三) (三) (三) (○)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

CoSaMP

A different, two-stage approach.

Previous Iteration

- x_{j-1} a s-sparse approximation
- T_{j-1} the support set of x_{j-1}

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- $\Omega_j = \text{PrincipalSupport}_s(r_j) \cup T_{j-1}$ intermediate expanded subspace
- $w_j = rgmin_{\sup p(z) \in \Omega_j} \|y \mathcal{A}z\|_2$ optimal approximation supported on Ω_j
- T_j = PrincipalSupport_s(w_j) the support set of the s largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

・ロト ・回ト ・ヨト ・ヨト

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

CoSaMP

A different, two-stage approach.

Previous Iteration

- x_{j-1} a s-sparse approximation
- T_{j-1} the support set of x_{j-1}

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- $\Omega_j = \text{PrincipalSupport}_s(r_j) \cup T_{j-1}$ intermediate expanded subspace
- $w_j = rgmin_{\sup p(z) \in \Omega_j} \|y \mathcal{A}z\|_2$ optimal approximation supported on Ω_j
- T_j = PrincipalSupport_s(w_j) the support set of the s largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

(ロ) (同) (E) (E) (E)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

CoSaMP

A different, two-stage approach.

Previous Iteration

- x_{j-1} a s-sparse approximation
- T_{j-1} the support set of x_{j-1}

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- $\Omega_j = \text{PrincipalSupport}_s(r_j) \cup T_{j-1}$ intermediate expanded subspace
- $w_j = \underset{\sup (z) \in \Omega_j}{\arg \min} \|y Az\|_2$ optimal approximation supported on Ω_j
- T_j = PrincipalSupport_s(w_j) the support set of the s largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

CoSaMP

A different, two-stage approach.

Previous Iteration

- x_{j-1} a s-sparse approximation
- T_{j-1} the support set of x_{j-1}

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- $\Omega_j = \text{PrincipalSupport}_s(r_j) \cup T_{j-1}$ intermediate expanded subspace
- $w_j = \underset{\supp(z) \in \Omega_j}{\arg\min} \|y \mathcal{A}z\|_2$ optimal approximation supported on Ω_j
- T_j = PrincipalSupport_s(w_j) the support set of the s largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

Performance Comparisons: recovery phase transitions

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

Performance Comparisons: algorithm selection maps

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

What did we learn?

• Why is NIHT ever faster than HTP or CSMPSP?

- NIHT finds the correct support with less computational expenditure.
- When the support is correct, HTP and CSMPSP have highly advantageous convergence rates.
- When the support is incorrect, the CG projection incorporates unnecessary computation.
- Can we combine the advantages of all the algorithms into one algorithm?

- ∢ ∩ ¬ >

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

What did we learn?

- Why is NIHT ever faster than HTP or CSMPSP?
 - NIHT finds the correct support with less computational expenditure.
 - When the support is correct, HTP and CSMPSP have highly advantageous convergence rates.
 - When the support is incorrect, the CG projection incorporates unnecessary computation.
- Can we combine the advantages of all the algorithms into one algorithm?

< D > < A >

Basic Algorithms Iterative Hard Thresholding C**GIHT** Empirical Results

What did we learn?

- Why is NIHT ever faster than HTP or CSMPSP?
 - NIHT finds the correct support with less computational expenditure.
 - When the support is correct, HTP and CSMPSP have highly advantageous convergence rates.
 - When the support is incorrect, the CG projection incorporates unnecessary computation.
- Can we combine the advantages of all the algorithms into one algorithm?

< 口 > < 同 >

Basic Algorithms Iterative Hard Thresholding C**GIHT** Empirical Results

NIHT

A subspace restricted steepest descent with evolving support.

Previous Iteration

• x_{j-1} a k-sparse approximation

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- α_j a near optimal step size
- $w_j = x_{j-1} + \alpha_j r_j$ an updated approximation (not sparse)
- $T_j = \text{PrincipalSupport}_s(w_j)$ the support set of the k largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

CGIHT

A subspace restricted conjugate gradient search with evolving support.

Previous Iteration

- x_{j-1} a k-sparse approximation
- p_{j-1} the previous search direction

Current Iteration

- $r_j = \mathcal{A}^*(y \mathcal{A}x_{j-1})$ the steepest descent direction
- β_j a conjugate orthogonalization weight
- $p_j = r_j + \beta_j p_{j-1}$ a conjugate search direction
- α_j a near optimal step size
- $w_j = x_{j-1} + \alpha_j p_j$ an updated approximation (not sparse)
- $T_j = \text{PrincipalSupport}_s(w_j)$ the support set of the k largest magnitude entries in w_j
- $x_j = \text{Threshold}(w_j, T_j)$ retains the values on T_j and zeros all other entries (hard thresholding)

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

Performance Comparisons: recovery phase transitions

Compressed Sensing

Left: $y = \mathcal{A}x$.

Right: y = Ax + e with $||e||_2 = \epsilon ||y||_2$.

< D > < A >

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

Performance Comparisons: recovery phase transitions

Compressed Sensing

Left: $y = \mathcal{A}x$.

< □ > < 同 >

Empirical Results

Performance Comparisons: recovery phase transitions

Row Sparse Approximation

Left: Y = AX.

Right: Y = AX + E with $||E||_F = \epsilon ||Y||_F$.

Image: A math a math

Empirical Results

Performance Comparisons: algorithm selection maps

Row Sparse Approximation

Left: Y = AX.

Right: Y = AX + E with $||E||_F = \epsilon ||Y||_F$.

A.

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

Performance Comparisons: matrix completion

Matrix Completion

 $y=\mathcal{A}(X)$ with $\mathcal A$ entry sensing. Left: recovery phase transitions. Right: average recovery time.

< □ > < 同 >

-

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

GAGA: GPU Accelerated Greedy Algorithms for Compressed Sensing with Jared Tanner (Oxford) www.gaga4cs.org

- Fast GPU implementations of greedy algorithms executed from Matlab.
- DCT, Sparse, Dense sensing matrices.
- Several random vector ensembles.
- NIHT, HTP, CSMPSP, CGIHT, ...
- Solve problems up to 2^{20} in fractions of a second. $(40 \times -60 \times \text{ acceleration})$
- Robust testing suite.
- Freely available for research.
- Extension to matrix completion in progress.
- Requires CUDA capable NVIDIA GPU.
- Does NOT require parallel processing toolbox.

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

GAGA: GPU Accelerated Greedy Algorithms for Compressed Sensing with Jared Tanner (Oxford) www.gaga4cs.org

- Fast GPU implementations of greedy algorithms executed from Matlab.
- DCT, Sparse, Dense sensing matrices.
- Several random vector ensembles.
- NIHT, HTP, CSMPSP, CGIHT, ...
- Solve problems up to 2^{20} in fractions of a second. $(40 \times -60 \times \text{ acceleration})$
- Robust testing suite.
- Freely available for research.
- Extension to matrix completion in progress.
- Requires CUDA capable NVIDIA GPU.
- Does NOT require parallel processing toolbox.

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

References

www.gaga4cs.org

• www.math.grinnell.edu/~blanchaj

- GPU Accelerated Greedy Algorithms for Compressed Sensing. Blanchard & Tanner, Math. Prog. Comp., 5(3): 267-304, 2013
- Performance Comparisons of Greedy Algorithms for Compressed Sensing. Blanchard & Tanner, Num. Lin. Alg. App., 22(2): 254-282, 2015
- Conjugate Gradient Iterative Hard Thresholding for compressed sensing and matrix completion. Blanchard, Tanner, & Wei, Information and Inference, 4(4): 289-327, 2015
- Conjugate Gradient Iterative Hard Thresholding: observed noise stability for compressed sensing. Blanchard, Tanner, & Wei, IEEE Trans. Sig. Proc., 63(2): 528-537, 2015

Basic Algorithms Iterative Hard Thresholding CGIHT Empirical Results

References

- www.gaga4cs.org
- www.math.grinnell.edu/~blanchaj
- GPU Accelerated Greedy Algorithms for Compressed Sensing. Blanchard & Tanner, Math. Prog. Comp., 5(3): 267-304, 2013
- Performance Comparisons of Greedy Algorithms for Compressed Sensing. Blanchard & Tanner, Num. Lin. Alg. App., 22(2): 254-282, 2015
- Conjugate Gradient Iterative Hard Thresholding for compressed sensing and matrix completion. Blanchard, Tanner, & Wei, Information and Inference, 4(4): 289-327, 2015
- Conjugate Gradient Iterative Hard Thresholding: observed noise stability for compressed sensing. Blanchard, Tanner, & Wei, IEEE Trans. Sig. Proc., 63(2): 528-537, 2015