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Matrix completion



Matrix completion

• When is it possible to recover the original matrix?

• How can we do this efficiently?

• How many samples will we need?



Low-rank matrices

Singular value decomposition:

degrees of freedom



Applications

• Recommendation systems

• Analysis of student response data

• Recovery of incomplete survey data

• Analysis of voting data

• Localization/multidimensional scaling

• Undersampled ensembles of correlated signals

• Blind deconvolution

• Phase recovery

• Quantum state tomography

• …



Application: Recommendation systems

The “Netflix Problem”

Rank 1 model:

Rank 2 model:

how much user    likes movie   i j

how much user    likes romantic movies i

amount of romance in movie   j

how much user    likes zombie movies i

amount of zombies in movie   j





Low-rank matrix recovery

We will assume we are given

• a             matrix     with rank 

• a set of     linear measurements:

Examples of    include:

• samples of     on the set    :

• general linear measurements:

How can we recover     ?



Algorithms for low-rank recovery

Let’s start with something easier!

Still a non-convex problem, but has an easy solution…

Eckart-Young Theorem

Compute SVD                   and truncate:

keep only    largest 

singular values



Hard and soft thresholding

An equivalent formulation is to solve

Solution given by hard thresholding:

There is also a convex optimization problem with a very 

similar solution 

Solution given by soft thresholding:

nuclear norm



Nuclear norm minimization

When we are given indirect observations                , we can 

no longer efficiently solve

However, we can still efficiently solve problems like

Can be solved via convex optimization techniques:

• proximal algorithms

• iterative thresholding



Burer-Monteiro Heuristic

Since we expect the solution to be low-rank, we can save on 

memory by optimizing over                where 

• is

• is

In this case, one can show that

Thus, we can alternatively solve

This is a non-convex problem, but there are conditions under 

which we can ensure that any local minimum is actually a 

global minimum



Alternating minimization

Another very common strategy in practice is to solve the 

factorized version of the problem

by alternately fixing     (or    ) and solving for    (or    )

With one factor fixed, solving for the other reduces to a 

simple least squares problem

Again, this is a non-convex problem, but there is now a 

growing body of theoretical guarantees for this approach



Recovery from Gaussian observations

To provide any theoretical guarantees, we need to make 

more concrete assumptions on 

To see what might be possible, suppose that

where      has i.i.d. Gaussian entries

When                       , a Gaussian     acts as an approximate 

isometry on the set of low-rank matrices

In this case, one can show that nuclear norm minimization 

will recover      exactly (with high probability)!

Very sharp bounds can be established by appealing to 

Gaussian widths: 



Matrix completion

Theoretical results for matrix completion are a bit more 

delicate

Not all low-rank matrices can be completed!

Sparse matrices cannot be uniquely determined by simply 

observing a few entries

To avoid such problematic cases, we typically restrict our 

attention to matrices      which are incoherent

Define

We will assume that                    satisfy



Matrix completion

With high probability, nuclear norm minimization will result 

in exact recovery provided that we observe at least

entries selected at random

Note that we need at least                                         just to 

ensure that we sample each column/row at least once

Similar guarantees are possible for other algorithms 

(e.g., alternating minimization)

The (simplest) proofs involve the use of concentration 

inequalities for sums of random matrices to construct 

(approximate) “dual certificates”



Matrix completion in practice

• Quantization

– Netflix: Ratings are integers between 1 and 5

– Response data: Correct/Incorrect, Yes/No, Agree/Disagree

• Dynamics

– Netflix: Changing tastes over time

– Student response data: Students are (hopefully!) learning



The trouble with quantization



1-bit matrix completion

Extreme case of quantization:

Claim: Recovering      from    is impossible!

No matter how many samples we obtain, all we can learn is 

whether           or



Is there any hope?

If we consider a noisy version of the problem, recovery 

becomes feasible!

Fraction of positive/negative observations tells us something 

about

Reminiscent of “dithering” and stochastic resonance



Maximum likelihood estimation

Log-likelihood function:

CDF of the pre-quantization noise



Theorem

Assume that                        and                  . We observe 

where     has iid entries. If     is 

chosen at random with                                                  , then 

with high probability

For any fixed    , optimal bound is achieved by              , in 

which case the bound reduces to

Gaussian model



Results in practice



Dynamic matrix completion

Suppose that the underlying matrix is changing over time

Goal: Recover

Assumptions:



Locally weighted matrix smoothing

Can give theoretical upper bound that depends on the weights 

and on 

Optimizing this bound gives us a formula for the weights:



Synthetic simulation

Baseline one:                       

(Recovery using only     ) 

Baseline two:

(Recovery using equal weighting of                )



Ongoing work

• Promising results on real data

– Netflix 

– educational data

• Provable guarantees for better/practical algorithms?

• Improved theory for the quantized case?

• More realistic dynamic models?

– can we learn the dynamics from the data?



Thank You!

For more details and references, see arxiv:1601.06422


