Low-rank matrix completion

An overview and some recent advances...
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Matrix completion
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« When is it possible to recover the original matrix?

e How can we do this efficiently?

« How many samples will we need?



Low-rank matrices
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Singular value decomposition:

M=UxvT ‘ N T(dl + dz) < dydo
degrees of freedom



Applications

Recommendation systems

Analysis of student response data

Recovery of incomplete survey data

Analysis of voting data
Localization/multidimensional scaling
Undersampled ensembles of correlated signals
Blind deconvolution

Phase recovery

Quantum state tomography



Application: Recommendation systems

The “Netflix Problem”

[M(i, j) = how much user ¢ likes movie j]

Rank 1 model: wu; = how much user 7 likes romantic movies
v; = amount of romance in movie )
M(’L, .]) — UV,

Rank 2 model: w; = how much user ¢ likes zombie movies

x; = amount of zombies in movie

M(z,7) = uivj + wiz;
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Low-rank matrix recovery

We will assume we are given
e a dy X dy matrix M with rank r
« a set of m linear measurements: y = A(M)

Examples of A include:
o samples of M on the set €2: y = Mg
o general linear measurements: y; = (A;, M) = trace(Al M)

How can we recover M ?

4 )

miniXmize ly — AX)||3

subject to rank(X) =r
N\ J




Algorithms for low-rank recovery

Let’s start with something easier!

4 )

min&mize 1Y — X||%

subject to rank(X) =1
\_ J

Still a non-convex problem, but has an easy solution...

Eckart-Young Theorem . )
Compute SVD Y = UXV ! and truncate: M = UXV?!

) } keep only r largest
> = singular values




Hard and soft thresholding

An equivalent formulation is to solve
minimize [|Y — X||% 4+ A - rank(X)

X
Ok, Op > VA

Solution given by hard thresholding: o1 = { 0. op < VX

There is also a convex optimization problem with a very
similar solution

min;(mize Y — XH% + A - || X||«+= nuclear norm
(

Uk—)\, Ukz)\

Solution given by soft thresholding: o1 = <
0, or < A

\



Nuclear norm minimization

When we are given indirect observations y = A(M ), we can
no longer efficiently solve

miniXmize ly — A(X)||5 + A - rank(X)

However, we can still efficiently solve problems like

minimize — A(X)]|?
minimize ||y — A(X)|3+ X || X]. X Iy (X112

X
subject to || X||« <7

Can be solved via convex optimization techniques:
e proximal algorithms
 iterative thresholding



Burer-Monteiro Heuristic

Since we expect the solution to be low-rank, we can save on
memory by optimizing over X = LR’ where

e LiSdy X

e Risdo X

1
In this case, one can show that || X ||, = rj{l}{l 5 (IZ17 + |1RI13)

Thus, we can alternatively solve

minimize ||y — A(LRD)|3 + 3IILIF + 2 1IRIE
This is a non-convex problem, but there are conditions under
which we can ensure that any local minimum is actually a
global minimum



Alternating minimization

Another very common strategy in practice is to solve the
factorized version of the problem

migimize [ly — ALRD)|Z + 3 ILI% + 2 1B

by alternately fixing L (or R) and solving for R (or L)

With one factor fixed, solving for the other reduces to a
simple least squares problem

Again, this is a non-convex problem, but there is now a
growing body of theoretical guarantees for this approach



Recovery from Gaussian observations

To provide any theoretical guarantees, we need to make
more concrete assumptions on A

To see what might be possible, suppose that y; = (A4;, M)
where A; has i.i.d. Gaussian entries

When m 2 r(d, + ds), a Gaussian ‘A acts as an approximate
isometry on the set of low-rank matrices

In this case, one can show that nuclear norm minimization
will recover M exactly (with high probability)!

Very sharp bounds can be established by appealing to
Gaussian widths: m > 3r(dy +dy — 1) + 1



Matrix completion

Theoretical results for matrix completion are a bit more
delicate

Not all low-rank matrices can be completed!

Sparse matrices cannot be uniquely determined by simply
observing a few entries

To avoid such problematic cases, we typically restrict our
attention to matrices M which are incoherent

. d
Define (U) := — max |[Pue|;

We will assume that M = UXV? satisfy pu(U), u(V) < o



Matrix completion

With high probability, nuclear norm minimization will result
in exact recovery provided that we observe at least
m > por(dy + do) log®(di + d2) entries selected at random

Note that we need at least m = (dy + d2)log(dy + da2) just to
ensure that we sample each column/row at least once

Similar guarantees are possible for other algorithms
(e.g., alternating minimization)

The (simplest) proofs involve the use of concentration
inequalities for sums of random matrices to construct
(approximate) “dual certificates”



Matrix completion in practice

e Quantization
- Netflix: Ratings are integers between 1 and 5
- Response data: Correct/Incorrect, Yes/No, Agree/Disagree

 Dynamics
- Netflix: Changing tastes over time
- Student response data: Students are (hopefully!) learning



The trouble with quantization
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1-bit matrix completion

Extreme case of quantization:
y = sign(Mgq)

Claim: Recovering M from vy is impossible!

> > > >
> > > >
> > > >
P

No matter how many samples we obtain, all we can learn is
whether A >0 or A <0



Is there any hope?

If we consider a noisy version of the problem, recovery
becomes feasible!

M+ Z

Fraction of positive/negative observations tells us something

about )\

Y = Sigﬂ(MQ —+ ZQ)

AN+ Z11
A+ Za
A+ Z3 1

A+ 24

A+ 219
A+ ZQ)Q
A+ 232
A+ Zy o

A+ 213
A+ Za 3
A+ Z3 3
A+ 243

A+ Z14
A+ Za 4
A+ Z3 4
A+ Zyyg

Reminiscent of “dithering” and stochastic resonance



Maximum likelihood estimation

Log-likelihood function:

F(X)= > log(f(Xiy)+ Y log(l1— f(Xij;)

(’L,j)EQ+ (7’.7 EQ—

CDF of the pre-quantization noise

/maxji(mize F(X)

~

1
subject to —HXH* <V

I X|oo <
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Gaussian model

Theorem

Assume that = || M|, < /r and |[M||. < a. We observe

y = sign(Mq + Za) where Z has iid N(0, 0?) entries. If Q is
chosen at random with E|Q| =m > (dy + d2) log(dy + d2), then
with high probability

1 —~ 5 Qo 2 /o 2 T(dl —|—d2)
T I M\\F_C(G+1)e oo

For any fixed « , optimal bound is achieved by ¢ ~ 1.3¢, in
which case the bound reduces to

1
d1do

T(dl —+ dg)

m

1M — M%< 3.10a2\/



Results in practice
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Dynamic matrix completion

Suppose that the underlying matrix is changing over time

M, = Mo wp .- = )
L | L | L |
Y1 Y2 Yn

Goal: Recover M,
Assumptions: M; = UV

Vi=Vi_1 +¢ Ez'NN(O»U%)
yi = | M; + z;]q, Zi ™ N(Oagg)



Locally weighted matrix smoothing

7 s )
max)i{mize 5 z;wz‘lyz — XQzHQ
Z:

subject to  rank(X) <r

\_ [ X[eo < )

Can give theqretical upper bound that depends on the weights
andon k = =%

2

Optimizing this bound gives us a formula for the weights:

1
1+(n—1)kK

w; X



Synthetic simulation
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Ongoing work

Promising results on real data
- Netflix
- educational data

Provable guarantees for better/practical algorithms?
Improved theory for the quantized case?

More realistic dynamic models?
- can we learn the dynamics from the data?



Thank You!

For more details and references, see arxiv:1601.06422



