A new approach for curve matching with second-order Sobolev Riemannian metrics

M. Bauer, M. Bruveris, N. Charon, J. Møller-Andersen

July 14th, 2017

Sobolev metrics on the shape space of closed curves

Varifold representations and metrics

Matching algorithm

Results

The Manifold of Curves

Let $d \geq 2$. The space of closed, parametrized curves is

$$
\operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)=\left\{c \in C^{\infty}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right): c^{\prime}(\theta) \neq 0\right\} \subset C^{\infty}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)
$$

The tangent space of $\operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ at a curve c is the set of all vector fields along c,

Arclength differentiation and integration

$$
D_{s}=\frac{1}{\left|c^{\prime}\right|} \partial_{\theta}, \quad \mathrm{d} s=\left|c^{\prime}(\theta)\right| \mathrm{d} \theta
$$

The Manifold of Curves

Let $d \geq 2$. The space of closed, parametrized curves is

$$
\operatorname{lmm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)=\left\{c \in C^{\infty}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right): c^{\prime}(\theta) \neq 0\right\} \subset C^{\infty}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)
$$

The tangent space of $\operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ at a curve c is the set of all vector fields along c.

Different Parameterizations

Definition of shape space

Reparametrization Invariance

A $\operatorname{Diff}\left(\mathbb{S}^{1}\right)$-equivariant metric "above" induces a metric "below" such that π is a Riemannian submersion.

$$
G_{c}(h, k)=G_{c \circ \varphi}(h \circ \varphi, k \circ \varphi)
$$

Sobolev Metrics and Geodesic Distance

- A Sobolev metric on $\operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ is a metric of the form
$G_{c}(h, k)=\int_{\mathbb{S}^{1}} a_{0}\langle h, k\rangle+a_{1}\left\langle D_{s} h, D_{s} k\right\rangle+\cdots+a_{n}\left\langle D_{s}^{n} h, D_{s}^{n} k\right\rangle \mathrm{d} s$,
with $a_{i} \in \mathbb{R}^{+}, a_{0}>0$.

Sobolev Metrics and Geodesic Distance

- A Sobolev metric on $\operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ is a metric of the form
$G_{c}(h, k)=\int_{\mathbb{S}^{1}} a_{0}\langle h, k\rangle+a_{1}\left\langle D_{s} h, D_{s} k\right\rangle+\cdots+a_{n}\left\langle D_{s}^{n} h, D_{s}^{n} k\right\rangle \mathrm{d} s$,
with $a_{i} \in \mathbb{R}^{+}, a_{0}>0$.
- Sobolev metrics satisfy the reparametrization-equivariance property:

$$
G_{c \circ \varphi}(h \circ \varphi, k \circ \varphi)=G_{c}(h, k)
$$

for all $\varphi \in \operatorname{Diff}\left(\mathbb{S}^{1}\right)$.

Sobolev Metrics and Geodesic Distance

- A Sobolev metric on $\operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ is a metric of the form
$G_{c}(h, k)=\int_{\mathbb{S}^{1}} a_{0}\langle h, k\rangle+a_{1}\left\langle D_{s} h, D_{s} k\right\rangle+\cdots+a_{n}\left\langle D_{s}^{n} h, D_{s}^{n} k\right\rangle \mathrm{d} s$,
with $a_{i} \in \mathbb{R}^{+}, a_{0}>0$.
- Sobolev metrics satisfy the reparametrization-equivariance property:

$$
G_{c \circ \varphi}(h \circ \varphi, k \circ \varphi)=G_{c}(h, k)
$$

for all $\varphi \in \operatorname{Diff}\left(\mathbb{S}^{1}\right)$.

- They are in addition equivariant to the action on the left by the group of rigid motions:

$$
G_{R c+b}(R h, R k)=G_{c}(h, k)
$$

for all $(R, b) \in S O(d) \ltimes \mathbb{R}^{d}$

Sobolev Metrics and Geodesic Distance

The distance between two paramerized curves is then defined as the infimum over all path lengths

$$
\operatorname{dist}\left(c_{1}, c_{2}\right)=\inf _{c} \int_{0}^{1} \sqrt{G_{c}\left(c_{t}, c_{t}\right)} d t
$$

subject to $c \in C^{\infty}\left([0,1], \operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)\right)$ with $c(0)=c_{1}, c(1)=c_{2}$. This pathlength metric separates curves in $\operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ provided G is stronger than H^{1}.

Induced quotient metric

On the shape space of unparametrized curves, the induced distance becomes

$$
\operatorname{dist}\left(\left[c_{1}\right],\left[c_{2}\right]\right)=\inf _{\varphi \in \operatorname{Diff}\left(\mathbb{S}^{1}\right)} \operatorname{dist}\left(c_{1}, c_{2} \circ \varphi\right)
$$

Considering the space of free immersions $\operatorname{lmm}_{f}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)=\left\{c \in \operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right) \mid c \circ \varphi=c \Rightarrow \varphi=\operatorname{Id}\right\}$ and its quotient $B_{i, f}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right) \doteq \operatorname{Imm}_{f}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right) / \operatorname{Diff}\left(\mathbb{S}^{1}\right)$, one obtains Theorem
For $d \geq 2$, a Sobolev metric with constant coefficients on $\operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ induces a metric on $B_{i, f}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ such that the projection $\pi: \operatorname{lmm}_{f}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right) \rightarrow B_{i, f}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ is a Riemannian submersion.

Computing the distance and geodesics

Finding the distance between two given unparametrized closed curves $\left[c_{1}\right]$ and $\left[c_{2}\right]$ amounts in solving the following variational problem over all paths $c(t, \cdot) \in \operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ and reparametrization functions $\varphi \in \operatorname{Diff}\left(\mathbb{S}^{1}\right)$:
$\operatorname{dist}\left(\left[c_{1}\right],\left[c_{2}\right]\right)=\inf _{c, \varphi}\left\{\int_{0}^{1} \sqrt{G_{c}\left(c_{t}, c_{t}\right)} d t, c(0)=c_{1}, c(1)=c_{2} \circ \varphi\right\}$
Numerically, the approach of [Møller-Andersen 2017] discretizes both the curves and reparametrization functions using B-splines, which involves an extra projection step on $c_{1} \circ \varphi$.

Computing the distance and geodesics

Finding the distance between two given unparametrized closed curves $\left[c_{1}\right]$ and $\left[c_{2}\right]$ amounts in solving the following variational problem over all paths $c(t, \cdot) \in \operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$ and reparametrization functions $\varphi \in \operatorname{Diff}\left(\mathbb{S}^{1}\right)$:
$\operatorname{dist}\left(\left[c_{1}\right],\left[c_{2}\right]\right)=\inf _{c, \varphi}\left\{\int_{0}^{1} \sqrt{G_{c}\left(c_{t}, c_{t}\right)} d t, c(0)=c_{1}, c(1)=c_{2} \circ \varphi\right\}$
Numerically, the approach of [Møller-Andersen 2017] discretizes both the curves and reparametrization functions using B-splines, which involves an extra projection step on $c_{1} \circ \varphi$.
Idea: reformulate the problem as a minimization over c only with a constraint of the form $\tilde{d}\left(c(1), c_{2}\right)=0$, where \tilde{d} is a parametrization-invariant distance between curves.

Sobolev metrics on the shape space of closed curves

Varifold representations and metrics

Matching algorithm

Results

Immersed curves as varifolds

Definition
A 1-dimensional (oriented) varifold of \mathbb{R}^{d} is a distribution in W^{*}, where $W \hookrightarrow C^{0}\left(\mathbb{R}^{d} \times \mathbb{S}^{d-1}\right)$ is a Banach space of test functions on $\mathbb{R}^{d} \times \mathbb{S}^{d-1}$.

Immersed curves as varifolds

Definition

A 1-dimensional (oriented) varifold of \mathbb{R}^{d} is a distribution in W^{*}, where $W \hookrightarrow C^{0}\left(\mathbb{R}^{d} \times \mathbb{S}^{d-1}\right)$ is a Banach space of test functions on $\mathbb{R}^{d} \times \mathbb{S}^{d-1}$.

For any $c \in \operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$, we define $\mu_{c} \in W^{*}$ such that for all $\omega \in W$:

$$
\mu_{c}(\omega)=\int_{\mathbb{S}^{1}} \omega\left(c(\theta), \frac{c^{\prime}(\theta)}{\left|c^{\prime}(\theta)\right|}\right) d s
$$

Immersed curves as varifolds

Definition

A 1-dimensional (oriented) varifold of \mathbb{R}^{d} is a distribution in W^{*}, where $W \hookrightarrow C^{0}\left(\mathbb{R}^{d} \times \mathbb{S}^{d-1}\right)$ is a Banach space of test functions on $\mathbb{R}^{d} \times \mathbb{S}^{d-1}$.

For any $c \in \operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$, we define $\mu_{c} \in W^{*}$ such that for all $\omega \in W$:

$$
\mu_{c}(\omega)=\int_{\mathbb{S}^{1}} \omega\left(c(\theta), \frac{c^{\prime}(\theta)}{\left|c^{\prime}(\theta)\right|}\right) d s
$$

One can check that for any $\varphi \in \operatorname{Diff}^{+}\left(\mathbb{S}^{1}\right), \mu_{c o \varphi}=\mu_{c}$

Immersed curves as varifolds (oriented)

This leads to the diagram

Immersed curves as varifolds (unoriented)

If, in addition, W is restricted to a space of antipodal-symmetric functions, i.e $\forall \omega \in W, \omega(x,-u)=\omega(x, u)$ for all $(x, u) \in \mathbb{R}^{d} \times \mathbb{S}^{d-1}$, then:

The varifold distance on unparametrized curves

Principle: obtain an induced distance between curves from a simple metric on the varifold space W^{*}.

The varifold distance on unparametrized curves

Principle: obtain an induced distance between curves from a simple metric on the varifold space W^{*}.

We construct a particular class of test function space W as follows:

- Let $k_{\text {pos }}(x, y) \doteq \rho\left(|x-y|^{2}\right)$ for $x, y \in \mathbb{R}^{d}$ be a continuous radial positive kernel on \mathbb{R}^{d}.
- Let $k_{t a n}(u, v) \doteq \gamma(u \cdot v)$ for $u, v \in \mathbb{S}^{d-1}$ be a continuous zonal positive kernel on \mathbb{S}^{d-1}.
- Define $k(x, u, y, v) \doteq \rho\left(|x-y|^{2}\right) \cdot \gamma(u \cdot v)$. Then k is a continuous positive kernel on $\mathbb{R}^{d} \times \mathbb{S}^{d-1}$. We define W to be the Reproducing Kernel Hilbert Space (RKHS) associated to k. By construction $W \hookrightarrow C^{0}\left(\mathbb{R}^{d} \times \mathbb{S}^{d-1}\right)$.

The varifold distance on unparametrized curves

We can now define for all $c_{1}, c_{2} \in \operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$:
$d^{\operatorname{Var}}\left(c_{1}, c_{2}\right)^{2}=\left\|\mu_{c_{1}}-\mu_{c_{2}}\right\|_{W^{*}}^{2}=\left\|\mu_{c_{1}}\right\|_{W^{*}}^{2}-2\left\langle\mu_{c_{1}}, \mu_{c_{2}}\right\rangle_{W^{*}}+\left\|\mu_{c_{2}}\right\|_{W^{*}}^{2}$ and thanks to the reproducing kernel property, we have explicitly:
$\left\langle\mu_{c_{1}}, \mu_{c_{2}}\right\rangle W^{*}=\int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} \rho\left(\left|c_{1}\left(\theta_{1}\right)-c_{2}\left(\theta_{2}\right)\right|^{2}\right) \gamma\left(\frac{c_{1}^{\prime}\left(\theta_{1}\right)}{\left|c_{1}^{\prime}\left(\theta_{1}\right)\right|} \cdot \frac{c_{2}^{\prime}\left(\theta_{2}\right)}{\left|c_{2}^{\prime}\left(\theta_{2}\right)\right|}\right) d s_{1} d s_{2}$

The varifold distance on unparametrized curves

We can now define for all $c_{1}, c_{2} \in \operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$:
$d^{\mathrm{Var}}\left(c_{1}, c_{2}\right)^{2}=\left\|\mu_{c_{1}}-\mu_{c_{2}}\right\|_{W^{*}}^{2}=\left\|\mu_{c_{1}}\right\|_{W^{*}}^{2}-2\left\langle\mu_{c_{1}}, \mu_{c_{2}}\right\rangle_{W^{*}}+\left\|\mu_{c_{2}}\right\|_{W^{*}}^{2}$
and thanks to the reproducing kernel property, we have explicitly:
$\left\langle\mu_{c_{1}}, \mu_{c_{2}}\right\rangle_{W^{*}}=\int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} \rho\left(\left|c_{1}\left(\theta_{1}\right)-c_{2}\left(\theta_{2}\right)\right|^{2}\right) \gamma\left(\frac{c_{1}^{\prime}\left(\theta_{1}\right)}{\left|c_{1}^{\prime}\left(\theta_{1}\right)\right|} \cdot \frac{c_{2}^{\prime}\left(\theta_{2}\right)}{\left|c_{2}^{\prime}\left(\theta_{2}\right)\right|}\right) d s_{1} d s_{2}$

- $d^{\mathrm{V} a r}$ is invariant to positive reparametrization and defines a pseudo-distance on $\operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right) / \operatorname{Diff}^{+}\left(\mathbb{S}^{1}\right)$.
- If $k_{p o s}$ is a c^{0}-universal kernel and $\gamma(1)>0$ then $d^{V a r}$ is a distance on the space of embedded unparametrized curves $\operatorname{Emb}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right) / \operatorname{Diff}^{+}\left(\mathbb{S}^{1}\right)$.
- d^{Var} is equivariant to rigid motions:
$d^{\operatorname{Var}}\left(R c_{1}+b, R c_{2}+b\right)=d^{\operatorname{Var}}\left(c_{1}, c_{2}\right)$.

The varifold distance on unparametrized curves

We can now define for all $c_{1}, c_{2} \in \operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right)$:
$d^{\operatorname{Var}}\left(c_{1}, c_{2}\right)^{2}=\left\|\mu_{c_{1}}-\mu_{c_{2}}\right\|_{W^{*}}^{2}=\left\|\mu_{c_{1}}\right\|_{W^{*}}^{2}-2\left\langle\mu_{c_{1}}, \mu_{c_{2}}\right\rangle_{W^{*}}+\left\|\mu_{c_{2}}\right\|_{W^{*}}^{2}$ and thanks to the reproducing kernel property, we have explicitly:
$\left\langle\mu_{c_{1}}, \mu_{c_{2}}\right\rangle_{W^{*}}=\int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} \rho\left(\left|c_{1}\left(\theta_{1}\right)-c_{2}\left(\theta_{2}\right)\right|^{2}\right) \gamma\left(\frac{c_{1}^{\prime}\left(\theta_{1}\right)}{\left|c_{1}^{\prime}\left(\theta_{1}\right)\right|} \cdot \frac{c_{2}^{\prime}\left(\theta_{2}\right)}{\left|c_{2}^{\prime}\left(\theta_{2}\right)\right|}\right) d s_{1} d s_{2}$

- d^{Var} is invariant to all reparametrization and defines a pseudo-distance on $\operatorname{Imm}\left(\mathbb{S}^{1}, \mathbb{R}^{\boldsymbol{d}}\right) / \operatorname{Diff}\left(\mathbb{S}^{1}\right)$ if $\gamma(-t)=t$.
- If $k_{\text {pos }}$ is a c^{0}-universal kernel, $\gamma(1)>0$ and $\gamma(-t)=t$ then d^{Var} is a distance on the space of embedded unparametrized curves $\operatorname{Emb}\left(\mathbb{S}^{1}, \mathbb{R}^{d}\right) / \operatorname{Diff}\left(\mathbb{S}^{1}\right)$.
- d^{Var} is equivariant to rigid motions:
$d^{\operatorname{Var}}\left(R c_{1}+b, R c_{2}+b\right)=d^{\operatorname{Var}}\left(c_{1}, c_{2}\right)$.

Sobolev metrics on the shape space of closed curves

Varifold representations and metrics

Matching algorithm

Results

A relaxed variational problem

Geodesics are the minimizers of the energy functional

$$
E(c)=\int_{0}^{1} G_{c}\left(c_{t}, c_{t}\right) d t, \quad \text { s.t. } \quad c(0)=c_{1}, c(1)=c_{2}
$$

We can compute the distance on shape space by minimizing

$$
\min _{c} E(c) \quad \text { s.t. } \quad c(0)=c_{1}, d^{\mathrm{Var}}\left(c(1), c_{2}\right)=0
$$

For simplicity we consider the relaxed functional

$$
\min _{c, c(0)=c_{1}} E(c)+\lambda d^{\operatorname{Var}}\left(c(1), c_{2}\right)^{2}
$$

for fixed λ. This should solve the problem as $\lambda \rightarrow \infty$.

Discretization

We use B-splines in time (t) and space (θ) of order n_{t} and n_{θ},

$$
c(t, \theta)=\sum_{i=1}^{N_{t}} \sum_{j=1}^{N_{\theta}} c_{i, j} B_{i}(t) C_{j}(\theta)
$$

Advantages:

- Analytic expressions for derivatives are available.
- Can control global smoothness

$$
B_{i} \in C^{n_{t}-1}([0,1]), C_{j} \in C^{n_{\theta}-1}([0,2 \pi]) .
$$

- The basis functions B_{i}, C_{j} have local support.

Drawbacks:

- Reparametrization $(c, \varphi) \mapsto c \circ \varphi$ does not preserve order of B-spline.

Discretization - Varifold distance

We write $c(1)(\theta)=\sum_{j=1}^{N_{\theta}} c_{N_{t}, j} C_{j}(\theta)$ and $c_{2}(\theta)=\sum_{j=1}^{N_{\theta}} \tilde{c}_{j} C_{j}(\theta)$ with the derivatives:

$$
c(1)^{\prime}(\theta)=\sum_{j=1}^{N_{\theta}} c_{N_{t}, j} C_{j}^{\prime}(\theta), \quad c_{2}^{\prime}(\theta)=\sum_{j=1}^{N_{\theta}} \tilde{c}_{j} C_{j}^{\prime}(\theta)
$$

With $u_{1}(\theta)=c(1)^{\prime}(\theta) /\left|c(1)^{\prime}(\theta)\right|, \quad u_{2}(\theta)=c_{2}^{\prime}(\theta) /\left|c_{2}^{\prime}(\theta)\right|:$

$$
\begin{aligned}
& d^{\operatorname{Var}}\left(c(1), c_{2}\right)^{2}=\left\|\mu_{c_{1}}\right\|_{W^{*}}^{2}-2\left\langle\mu_{c_{1}}, \mu_{c_{2}}\right\rangle W^{*}+\left\|\mu_{c_{2}}\right\|_{W^{*}}^{2} \\
& =\int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} \rho\left(\left|c(1)\left(\theta_{1}\right)-c(1)\left(\theta_{2}\right)\right|^{2}\right) \gamma\left(u_{1}\left(\theta_{1}\right) \cdot u_{1}\left(\theta_{2}\right)\right) d s_{1} d s_{2} \\
& -2 \int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} \rho\left(\left|c(1)\left(\theta_{1}\right)-c_{2}\left(\theta_{2}\right)\right|^{2}\right) \gamma\left(u_{1}\left(\theta_{1}\right) \cdot u_{2}\left(\theta_{2}\right)\right) d s_{1} d s_{2} \\
& +\int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} \rho\left(\left|c_{2}\left(\theta_{1}\right)-c_{2}\left(\theta_{2}\right)\right|^{2}\right) \gamma\left(u_{2}\left(\theta_{1}\right) \cdot u_{2}\left(\theta_{2}\right)\right) d s_{1} d s_{2}
\end{aligned}
$$

Discretization - Varifold distance

$$
\begin{aligned}
& d^{\operatorname{Var}}\left(c(1), c_{2}\right)^{2}=\left\|\mu_{c_{1}}\right\|_{W^{*}}^{2}-2\left\langle\mu_{c_{1}}, \mu_{c_{2}}\right\rangle W^{*}+\left\|\mu_{c_{2}}\right\|_{W^{*}}^{2} \\
& =\int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} \rho\left(\left|c(1)\left(\theta_{1}\right)-c(1)\left(\theta_{2}\right)\right|^{2}\right) \gamma\left(u_{1}\left(\theta_{1}\right) \cdot u_{1}\left(\theta_{2}\right)\right) d s_{1} d s_{2}-2 \ldots
\end{aligned}
$$

- No closed form expression for the integrals: these are approximated using quadrature methods.
- Gradient w.r.t the $\left(c_{N_{t}, j}\right)_{j=1, \ldots, N_{\theta}}$ is computed by chain rule.
- In the experiments, we use $\rho(s)=e^{-\frac{s^{2}}{\sigma^{2}}}$ (Gaussian kernel), $\gamma(s)=s^{2}$ (Binet kernel).

The inexact matching functional

The discretized optimization problem becomes:

$$
\min _{c_{i j}} E\left(c_{i j}\right)+\lambda d^{\operatorname{Var}}\left(c(1), c_{2}\right)^{2}
$$

The inexact matching functional

The discretized optimization problem becomes:

$$
\min _{c_{i j}} E\left(c_{i j}\right)+\lambda d^{\operatorname{Var}}\left(c(1), c_{2}\right)^{2}
$$

- Limited memory quasi-Newton method: L-BFGS (HANSO library)
- Initialization by constant path $\left(c_{i, j}=c_{0}\right)$
- (Optional) Multi-grid and multiscale speed-up
- We can also recover a rotation/translation invariant distance by also optimizing over $(R, b) \in S O(d) \ltimes \mathbb{R}^{d}$:

$$
\min _{c_{i j, R, b}} E\left(c_{i j}\right)+\lambda d^{\mathrm{Var}}\left(c(1), R c_{2}+b\right)^{2}
$$

Sobolev metrics on the shape space of closed curves

Varifold representations and metrics

Matching algorithm

Results

A simple example

Parametrized H^{2}

Unparametrized H^{2}

Varifold H^{2}

Influence of λ

3 minimizers for $\lambda=0.3,1$ and 5 . Target curve in blue.

Intrinsic vs extrinsic models

Self-intersections can appear in this model:

Intrinsic vs extrinsic models

Self-intersections can appear in this model:

Intrinsic vs extrinsic models

Self-intersections can appear in this model:

Intrinsic vs extrinsic models

Self-intersections can appear in this model:

Intrinsic vs extrinsic models

Self-intersections can appear in this model:

Intrinsic vs extrinsic models

Self-intersections can appear in this model:

Intrinsic vs extrinsic models

Self-intersections can appear in this model:

Intrinsic vs extrinsic models

Self-intersections can appear in this model:

Intrinsic vs extrinsic models

Unlike with extrinsic deformation frameworks like LDDMM

$\mathrm{t}=0$
$t=0.3$
$t=0.6$
$t=1$
Var-LDDMM

Intrinsic vs extrinsic models

Shape clustering

54 shapes from the Surrey fish database

Shape clustering

Spectral clustering based on the estimated pairwise H^{2} distances:

Cluster no 1

Cluster no 5

NOCORO

Cluster no 2
$\cdots c \cos$

Cluster no 6
\sim R

$$
\sim_{\infty}^{\infty}
$$

Cluster no 3

$$
\sim \sim<\sim \sim \infty
$$

$$
\sim \infty<\infty<\infty<\infty
$$

Cluster no 7

Cluster no 4

Noss

Shape clustering

Spectral clustering based on the pairwise varifold metric (modulo rigid motions):

Cluster no 5

Cluster no 4
$\sim \infty<\infty<\infty<\infty<\infty<\infty$

$\rightarrow \sim \sim \sim \sim \infty$

Cluster no 7

Mosquito wings: PCA analysis

Conclusions and outlook

- We have proposed a new mathematical and numerical formulation of the distance/geodesic estimation problem for Sobolev metrics on unparametrized curves.
- This allows to do non-linear statistical analysis on shape spaces.
- The method is robust and decently fast.

Ongoing and future work

- Extend the approach to other Riemannian metrics on curves.
- The method is easier to generalize to surfaces.
- Augmented Lagrangian method in the space of varifolds in order to select λ automatically.
- Scale invariance.

