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The Manifold of Curves

Let d ≥ 2. The space of closed, parametrized curves is

Imm(S1,Rd) = {c ∈ C∞(S1,Rd) : c ′(θ) 6= 0} ⊂ C∞(S1,Rd) .

The tangent space of Imm(S1,Rd) at a curve c is the set of all
vector fields along c ,

Tc Imm(S1,Rd) =

h :

TRd

p
��

S1 c //

h

==

Rd

 ∼=
{
h ∈ C∞(S1,Rd)

}
.

Arclength differentiation and integration

Ds =
1

|c ′|
∂θ , ds = |c ′(θ)| dθ .



The Manifold of Curves
Let d ≥ 2. The space of closed, parametrized curves is

Imm(S1,Rd) = {c ∈ C∞(S1,Rd) : c ′(θ) 6= 0} ⊂ C∞(S1,Rd) .

The tangent space of Imm(S1,Rd) at a curve c is the set of all
vector fields along c .
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Different Parameterizations

c
//

d //

c , d : S1 → R2, c = d ◦ ϕ, ϕ ∈ Diff(S1)



Definition of shape space

Imm(S1,Rd)

��
Imm(S1,Rd)/Diff(S1) = Bi (S1,Rd)



Reparametrization Invariance

Imm(S1,Rd)

π
��

Imm(S1,Rd)/Diff(S1)

A Diff(S1)-equivariant metric
“above” induces a metric “be-
low” such that π is a Riemannian
submersion.

Gc(h, k) = Gc◦ϕ(h ◦ ϕ, k ◦ ϕ)



Sobolev Metrics and Geodesic Distance

I A Sobolev metric on Imm(S1,Rd) is a metric of the form

Gc(h, k) =

∫
S1

a0〈h, k〉+ a1〈Dsh,Dsk〉+ · · ·+ an〈Dn
s h,D

n
s k〉 ds ,

with ai ∈ R+, a0 > 0.

I Sobolev metrics satisfy the reparametrization-equivariance
property:

Gc◦ϕ(h ◦ ϕ, k ◦ ϕ) = Gc(h, k)

for all ϕ ∈ Diff(S1).

I They are in addition equivariant to the action on the left by
the group of rigid motions:

GRc+b(Rh,Rk) = Gc(h, k)

for all (R, b) ∈ SO(d) nRd
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Sobolev Metrics and Geodesic Distance

The distance between two paramerized curves is then defined as
the infimum over all path lengths

dist(c1, c2) = inf
c

∫ 1

0

√
Gc(ct , ct) dt

subject to c ∈ C∞([0, 1], Imm(S1,Rd)) with c(0) = c1, c(1) = c2.
This pathlength metric separates curves in Imm(S1,Rd) provided
G is stronger than H1.



Induced quotient metric

On the shape space of unparametrized curves, the induced distance
becomes

dist([c1], [c2]) = inf
ϕ∈Diff(S1)

dist(c1, c2 ◦ ϕ)

Considering the space of free immersions
Immf (S1,Rd) = {c ∈ Imm(S1,Rd) | c ◦ ϕ = c ⇒ ϕ = Id} and its
quotient Bi ,f (S1,Rd)

.
= Immf (S1,Rd)/Diff(S1), one obtains

Theorem
For d ≥ 2, a Sobolev metric with constant coefficients on
Imm(S1,Rd) induces a metric on Bi ,f (S1,Rd) such that the
projection π : Immf (S1,Rd)→ Bi ,f (S1,Rd) is a Riemannian
submersion.



Computing the distance and geodesics

Finding the distance between two given unparametrized closed
curves [c1] and [c2] amounts in solving the following variational
problem over all paths c(t, ·) ∈ Imm(S1,Rd) and reparametrization
functions ϕ ∈ Diff(S1):

dist([c1], [c2]) = inf
c,ϕ

{∫ 1

0

√
Gc(ct , ct) dt , c(0) = c1, c(1) = c2 ◦ ϕ

}
Numerically, the approach of [Møller-Andersen 2017] discretizes
both the curves and reparametrization functions using B-splines,
which involves an extra projection step on c1 ◦ ϕ.

Idea: reformulate the problem as a minimization over c only with a
constraint of the form d̃(c(1), c2) = 0, where d̃ is a
parametrization-invariant distance between curves.
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Immersed curves as varifolds

Definition
A 1-dimensional (oriented) varifold of Rd is a distribution in W ∗,
where W ↪→ C 0(Rd × Sd−1) is a Banach space of test functions
on Rd × Sd−1.

For any c ∈ Imm(S1,Rd), we define µc ∈W ∗ such that for all
ω ∈W :

µc(ω) =

∫
S1

ω

(
c(θ),

c ′(θ)

|c ′(θ)|

)
ds

One can check that for any ϕ ∈ Diff+(S1), µc◦ϕ = µc
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Immersed curves as varifolds (oriented)

This leads to the diagram

Imm(S1,Rd) W ∗

Imm(S1,Rd)/Diff+(S1)

µ

π+
[µ]



Immersed curves as varifolds (unoriented)

If, in addition, W is restricted to a space of antipodal-symmetric
functions, i.e ∀ω ∈W , ω(x ,−u) = ω(x , u) for all
(x , u) ∈ Rd × Sd−1, then:

Imm(S1,Rd) W ∗

Imm(S1,Rd)/Diff(S1)

µ

π
[µ]



The varifold distance on unparametrized curves

Principle: obtain an induced distance between curves from a simple
metric on the varifold space W ∗.

We construct a particular class of test function space W as
follows:

• Let kpos(x , y)
.

= ρ(|x − y |2) for x , y ∈ Rd be a continuous
radial positive kernel on Rd .

• Let ktan(u, v)
.

= γ(u · v) for u, v ∈ Sd−1 be a continuous
zonal positive kernel on Sd−1.

• Define k(x , u, y , v)
.

= ρ(|x − y |2).γ(u · v). Then k is a
continuous positive kernel on Rd × Sd−1. We define W to be
the Reproducing Kernel Hilbert Space (RKHS) associated
to k . By construction W ↪→ C 0(Rd × Sd−1).
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The varifold distance on unparametrized curves

We can now define for all c1, c2 ∈ Imm(S1,Rd):

dVar(c1, c2)2 = ‖µc1−µc2‖2
W ∗ = ‖µc1‖2

W ∗−2〈µc1 , µc2〉W ∗+‖µc2‖2
W ∗

and thanks to the reproducing kernel property, we have explicitly:

〈µc1 , µc2〉W ∗ =

∫
S1

∫
S1

ρ(|c1(θ1)−c2(θ2)|2)γ

(
c ′1(θ1)

|c ′1(θ1)|
· c ′2(θ2)

|c ′2(θ2)|

)
ds1ds2
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• dVar is invariant to positive reparametrization and defines a
pseudo-distance on Imm(S1,Rd)/Diff+(S1).

• If kpos is a c0-universal kernel and γ(1) > 0 then dVar is a
distance on the space of embedded unparametrized curves
Emb(S1,Rd)/Diff+(S1).

• dVar is equivariant to rigid motions:
dVar(Rc1 + b,Rc2 + b) = dVar(c1, c2).
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A relaxed variational problem

Geodesics are the minimizers of the energy functional

E (c) =

∫ 1

0
Gc(ct , ct) dt, s.t. c(0) = c1, c(1) = c2.

We can compute the distance on shape space by minimizing

min
c

E (c) s.t. c(0) = c1, d
Var(c(1), c2) = 0.

For simplicity we consider the relaxed functional

min
c,c(0)=c1

E (c) + λdVar(c(1), c2)2

for fixed λ. This should solve the problem as λ→∞.



Discretization

We use B-splines in time (t) and space (θ) of order nt and nθ,

c(t, θ) =
Nt∑
i=1

Nθ∑
j=1

ci ,jBi (t)Cj(θ) .

Advantages:

I Analytic expressions for derivatives are available.

I Can control global smoothness

Bi ∈ Cnt−1([0, 1]), Cj ∈ Cnθ−1([0, 2π]) .

I The basis functions Bi , Cj have local support.

Drawbacks:

I Reparametrization (c , ϕ) 7→ c ◦ ϕ does not preserve order of
B-spline.



Discretization - Varifold distance

We write c(1)(θ) =
∑Nθ

j=1 cNt ,jCj(θ) and c2(θ) =
∑Nθ

j=1 c̃jCj(θ)
with the derivatives:

c(1)′(θ) =

Nθ∑
j=1

cNt ,jC
′
j (θ), c ′2(θ) =

Nθ∑
j=1

c̃jC
′
j (θ)

With u1(θ) = c(1)′(θ)/|c(1)′(θ)|, u2(θ) = c ′2(θ)/|c ′2(θ)|:

dVar(c(1), c2)2 = ‖µc1‖2
W ∗ − 2〈µc1 , µc2〉W ∗ + ‖µc2‖2

W ∗

=

∫
S1

∫
S1

ρ(|c(1)(θ1)− c(1)(θ2)|2)γ (u1(θ1) · u1(θ2)) ds1ds2

− 2

∫
S1

∫
S1

ρ(|c(1)(θ1)− c2(θ2)|2)γ (u1(θ1) · u2(θ2)) ds1ds2

+

∫
S1

∫
S1

ρ(|c2(θ1)− c2(θ2)|2)γ (u2(θ1) · u2(θ2)) ds1ds2



Discretization - Varifold distance

dVar(c(1), c2)2 = ‖µc1‖2
W ∗ − 2〈µc1 , µc2〉W ∗ + ‖µc2‖2

W ∗

=

∫
S1

∫
S1

ρ(|c(1)(θ1)− c(1)(θ2)|2)γ (u1(θ1) · u1(θ2)) ds1ds2 − 2 . . .

• No closed form expression for the integrals: these are
approximated using quadrature methods.

• Gradient w.r.t the (cNt ,j)j=1,...,Nθ is computed by chain rule.

• In the experiments, we use ρ(s) = e−
s2

σ2 (Gaussian kernel),
γ(s) = s2 (Binet kernel).



The inexact matching functional

The discretized optimization problem becomes:

min
cij

E (cij) + λdVar(c(1), c2)2

I Limited memory quasi-Newton method: L-BFGS (HANSO
library)

I Initialization by constant path (ci ,j = c0)

I (Optional) Multi-grid and multiscale speed-up

I We can also recover a rotation/translation invariant distance
by also optimizing over (R, b) ∈ SO(d) nRd :

min
cij,R,b

E (cij) + λdVar(c(1),Rc2 + b)2
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A simple example

Parametrized H2 Unparametrized H2 Varifold H2



Influence of λ

3 minimizers for λ = 0.3, 1 and 5. Target curve in blue.



Intrinsic vs extrinsic models

Self-intersections can appear in this model:
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Intrinsic vs extrinsic models

Unlike with extrinsic deformation frameworks like LDDMM
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Shape clustering

54 shapes from the Surrey fish database



Shape clustering

Spectral clustering based on the estimated pairwise H2 distances:



Shape clustering

Spectral clustering based on the pairwise varifold metric (modulo
rigid motions):



Mosquito wings: PCA analysis

-2 -1 0 1 2 3

-2

-1

0

1



Conclusions and outlook

I We have proposed a new mathematical and numerical
formulation of the distance/geodesic estimation problem for
Sobolev metrics on unparametrized curves.

I This allows to do non-linear statistical analysis on shape
spaces.

I The method is robust and decently fast.

Ongoing and future work

I Extend the approach to other Riemannian metrics on curves.

I The method is easier to generalize to surfaces.

I Augmented Lagrangian method in the space of varifolds in
order to select λ automatically.

I Scale invariance.
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