SIAM Annual Meeting 2017

Chaos and learning in spiking neural networks

Carson C Chow Laboratory of Biological Modeling NIDDK/NIH, Bethesda, MD

National Institute of Diabetes and Digestive and Kidney Diseases

How does brain give rise to complex behavior?

National Geographic

Cortex homogeneous at microscopic level

How Neurons Communicate

Scientific American

Neurons "spike"

Spiking correlated to behavior

100 ms

Churchland and Shenoy, 2007

Spiking is variable

ISI CV ~ 1

Fano Factor ~ 1

Poisson process

Buracas et al. 1998

Spiking variability correlated to behavior

Churchland et al. 2010

Neurons are reliable

Fig. 1. Reliability of firing patterns of cortical neurons evoked by constant and fluctuating current. (**A**) In this example, a superthreshold dc current pulse (150 pA, 900 ms; middle) evoked trains of action potentials (approximately 14 Hz) in a regular-firing layer-5 neuron. Responses are shown superimposed (first 10 trials, top) and as a raster plot of spike times over spike times (25 consecutive trials, bottom). (**B**) The same cell as in (A) was again stimulated repeatedly, but this time with a fluctuating stimulus [Gaussian white noise, $\mu_s = 150$ pA, $\sigma_s = 100$ pA, $\tau_s = 3$ ms; see (14)].

Mainen and Sejnowski, 1995

Softy-Koch "Paradox", 1993

Spiking variable Neurons reliable Open Questions Remain

Answer: Balanced State

Van Vreeswijk and Sompolinsky, 1996 & 1998

Connections strong and sparse, Chaotic state is a fixed point

Network

Synapse

What is the dynamical repertoire of a network of spiking neurons?

Neuron phase model

$$\frac{d\theta}{dt} = 1 - \cos\theta + I(1 + \cos\theta)$$

Theta neuron

AKA ERMENTROUT-KOPELL CANONICAL MODEL

Network

 $\theta_i = 1 - \cos \theta_i + (I + u_i)(1 + \cos \theta_i)$

Synapse $\dot{u}_{i} = -\beta u_{i} + \beta \sum_{j,s} w_{ij} \delta(t - t_{j}^{s}(\theta_{j})$ $t_{j}^{s} = \{t \mid \theta_{j}(t) = \pi, \dot{\theta}_{j} > 0\}$

$$w_{ij} \sim N(0, \sigma^2/N)$$
 Random coupling

$$\sigma = 0, I = 0.01, \beta = 0.1$$

$$N = 200$$

$$\int_{0}^{0} \int_{0}^{0} \int_{0}^{$$

$\frac{Column \ sum \ corrected}{\sqrt{Network} \ model}$

$$\dot{\theta}_i = 1 - \cos \theta_i + (I + u_i)(1 + \cos \theta_i)$$

$$\dot{u}_i + \beta u_i = \beta \sum_{j,s} \left(w_{ij} \left(-\frac{1}{N} \sum_k w_{ik} \right) \right) \delta(t - t_j^s(\theta_j))$$

 $\sigma = 1.0$

.....

.....

.....

.

....

...

.

.... . ..

.

50 40 •• •• -----. ----- ----- -30 Neuron 20 •• • ------.........

.

.

....

....

.....

......

..

.

....

••• •••

10

. ..

.....

.....

...

.

...

..

.

• •

••

.....

••

•••••

....

.

..

..

••

......

....

 $\sigma = 1.2$

FF 1.4

 $\sigma = 2.0$

FF 1.7

Can also use adaptation instead of sum correction

$$\theta_i = 1 - \cos \theta_i + (I + u_i - a_i)(1 + \cos \theta_i)$$

$$\dot{u}_i + \beta u_i = \beta \sum_{j,s} w_{ij} \delta(t - t_j^s(\theta_j))$$

$$\tau \dot{a}_i = u_i - a_i$$

٠

Only needs local information

Network revisited

$$\theta_i = 1 - \cos \theta_i + (I + u_i)(1 + \cos \theta_i)$$

$$\dot{u}_i + \beta u_i = \beta \sum_{j,s} \left(w_{ij} - \frac{\lambda}{N} \sum_k w_{ik} \right) \delta(t - t_j^s(\theta_j))$$

Empirical density $\eta_j(\theta, t) = \delta(\theta - \theta_j(t))$

$$\sum_{s} \delta(t - t_{j}^{s}) = \eta_{j}(\pi, t) \dot{\theta}_{j}|_{\theta_{j} = \pi} = 2\eta_{j}(\pi, t)$$
 Spiking rate

$$\dot{\boldsymbol{u}}_{\boldsymbol{i}}(\boldsymbol{t}) \boldsymbol{\beta} \boldsymbol{u}_{\boldsymbol{\beta}} \boldsymbol{u}_{\boldsymbol{i}}(\boldsymbol{t}) \sum_{j,s} 2 \left(\boldsymbol{\beta} \boldsymbol{u}_{\boldsymbol{j}} - \boldsymbol{w}_{\boldsymbol{i}} \boldsymbol{\lambda}_{\boldsymbol{j}} + \boldsymbol{w}_{\boldsymbol{i}} \boldsymbol{\lambda}_{\boldsymbol{j}} + \boldsymbol{w}_{\boldsymbol{i}} \boldsymbol{\lambda}_{\boldsymbol{j}} + \boldsymbol{w}_{\boldsymbol{i}} \boldsymbol{\lambda}_{\boldsymbol{j}} + \boldsymbol{w}_{\boldsymbol{i}} \boldsymbol{\lambda}_{\boldsymbol{j}} \right) = \boldsymbol{0}$$

Network mean

$$\eta(t) = \frac{1}{N} \sum_{j} \eta_j(t)$$

Neurons are conserved

Exists in weak sense

 $\partial_t \eta_i(\theta, t) + \partial_\theta F_i(\theta, u_i) \eta_i(\theta, t) = 0$

$$F_i = 1 - \cos \theta_i + (I + u_i)(1 + \cos \theta_i)$$

Regularize by integrating (averaging)

Reformulated network

 $\partial_t \eta_i(\theta, t) + \partial_\theta F_i(\theta, u_i) \eta_i(\theta, t) = 0$

$$\dot{u}_i(t) + \beta u_i(t) - 2\beta \sum_j w_{ij}(\eta_j(\pi, t) - \lambda \eta(\pi, t)) = 0$$

Disorder to noise

 $\partial_t \eta_i(\theta, t) + \partial_\theta F_i(\theta, u_i) \eta_i(\theta, t) = 0$

$$\dot{u}_i(t) + \beta u_i(t) = z_i(t)$$

$$z_i(t) = 2\beta \sum_j w_{ij}(\eta_j(\pi, t) - \lambda \eta(\pi, t))$$

$$P[w_{ij}] = \prod_{ij} \sqrt{\frac{N}{2\pi\sigma^2}} e^{-\frac{Nw_{ij}^2}{2\sigma^2}}$$

$$P[w_{ij}]dw_{ij} \rightarrow P[z(t)][dz(t)]$$

Reformulated network

 $\partial_t \eta_i(\theta, t) + \partial_\theta F_i(\theta, u_i) \eta_i(\theta, t) = 0$ $\dot{u}_i + \beta u_i = z_i(t)$

 $E[z_i(t)] = 0$

 $\operatorname{Cov}[z_i(t), z_i(s)] = 4\beta^2 \sigma^2 \int dt ds \, \frac{1}{N} \sum_j \left[\eta_j(\pi, t) - \lambda \eta(\pi, t)\right] \left[\eta_j(\pi, s) - \lambda \eta(\pi, s)\right]$

Network covariance

1st order expansion

1st order expansion

1st order expansion

OU approximation

Can we train w_{ij} so network does what we want?

Network

$$\dot{\theta}_i = 1 - \cos \theta_i + (I + u_i)(1 + \cos \theta_i)$$

$$\dot{u}_{i} = \sum_{j} \beta w_{ij} r_{j} \sum_{j,s} w_{ij} \delta(t - t_{j}^{s}(\theta_{j}))$$
$$\dot{r}_{j} = -\beta r_{j} + \beta \sum_{s} \delta(t - t_{j}^{s}(\theta_{j}))$$

Goal: Train $w_{ij}\xspace$ so u and r follow targets

Learning

$$C_u(\mathbf{w}) = (\hat{\mathbf{u}} - \mathbf{u}(\mathbf{w}))^2$$

Minimize over w

$$C_r(\mathbf{w}) = (\hat{\mathbf{r}} - \mathbf{r}(\mathbf{w}))^2$$

$$\hat{\mathbf{f}}_{\text{Targets}}$$

Super hard in general

since
$$\mathbf{u}(\mathbf{w}) = \mathbf{wr}$$
 Linear in w
and $\mathbf{r}(\mathbf{w}) \approx \frac{1}{\pi} \sqrt{\mathbf{wr}}$ Quasi-static approx

Recursive least squares or FORCE learning

Learning innate trajectories

Pre-training

Post-training

Extends Laje and Buonomano (2013) to spiking networks

Chaotic trajectories from another system

Periodic functions

MMM	Mamm	mphhan	mmmmm	MMM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MMMM	www.ww	MM MM	MMMM	www. WWW WW	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
www.www.www.www.www.www.www.www.www.ww	mmmm	mmmmm	mi mm hhh	MMMMMMM	mmm
MMM MM	mm .mm mm	m. M. M. Marine	MMMMM	mm	www.www.www
mmmm	~~~ <u>~~~~~</u> ~~~~	mmmmm	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		mm
Man Man Man	Mr.MMMM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MMMMWV	mmm	MMMM
MMMM	mm	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MM MMM	www.wwwwwwwwwwwwwwwwwwwwww	MMMMMMM
mmmmmm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MMMM	500ms 1mV

Stochastic OU process

Arbitrary combinations

Multiple targets in one network

Real cortical neurons

Universal Dynamical System?

$$\partial_t \eta_i(\theta, t) + \partial_\theta F_i(\theta, u_i) \eta_i(\theta, t) = 0$$

$$\dot{u}_i(t) + \beta u_i(t) - 2\beta \sum_j w_{ij} \eta_j(\pi, t) = 0$$
$$\mathbf{u}(t) = \mathbf{w}\varphi(u(t))$$

Conjecture: network can approximate an arbitrary set of continuous functions*

*under a mild set of conditions

Acknowledgments

Christopher Kim

Shashaank Vattikuti Siwei Qiu Ben Cohen Carly Houghton

Intramural research program of the NIH/NIDDK

National Institute of Diabetes and Digestive and Kidney Diseases

Slides to appear on sciencehouse.wordpress.com