ALORA: Affine low-rank approximation

Alan Ayala Xavier Claeys Laura Grigori

Inria Paris
Pierre et Marie Curie University alan.ayala-obregon@inria.fr

SIAM Annual Meeting
Pittsburgh, July 14, 2017

Introduction and motivation

- Classical low-rank algorithms can generate large errors of approximation.三

Introduction and motivation

- Classical low-rank algorithms can generate large errors of approximation.
- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.

Introduction and motivation

- Classical low-rank algorithms can generate large errors of approximation.
- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.
- Matrix (hierarchical) structure must be exploited to increase precision with small cost.
,

Introduction and motivation

- Classical low-rank algorithms can generate large errors of approximation.
- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.
- Matrix (hierarchical) structure must be exploited to increase precision with small cost.
- Black-box fast solvers can efficiently replace classical solvers for PDE's and integral equations.

Truncated SVD

Given $A \in \mathbb{R}^{m \times n}, m \geq n$, there exits orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
A=U \Sigma V^{T}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{m}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]^{T}
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ are the singular values and u_{j} and v_{j} are the left and right singular vectors associated to σ_{j}.

Truncated SVD

Given $A \in \mathbb{R}^{m \times n}, m \geq n$, there exits orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
A=U \Sigma V^{T}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{m}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]^{T}
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ are the singular values and u_{j} and v_{j} are the left and right singular vectors associated to σ_{j}. Cost: $\mathcal{O}\left(m n^{2}\right)$.

Truncated SVD

Given $A \in \mathbb{R}^{m \times n}, m \geq n$, there exits orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
A=U \Sigma V^{T}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{m}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]^{T}
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ are the singular values and u_{j} and v_{j} are the left and right singular vectors associated to σ_{j}. Cost: $\mathcal{O}\left(m n^{2}\right)$.

The truncated SVD decomposition is defined as

$$
\begin{equation*}
\mathcal{T}_{k}(A):=U_{k} \Sigma_{k} V_{k}^{T} \tag{1}
\end{equation*}
$$

where $U_{k}:=\left[u_{1} \cdots u_{k}\right], \Sigma_{k}:=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ and $V_{k}:=\left[\begin{array}{lll}v_{1} & \cdots & v_{k}\end{array}\right]$.

Error of TSVD approximation

For the spectral and Frobenius norms it holds

$$
\left\|\mathcal{T}_{k}(A)-A\right\|_{2}=\sigma_{k+1}, \quad\left\|\mathcal{T}_{k}(A)-A\right\|_{F}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{n}^{2}} .
$$

Error of TSVD approximation

For the spectral and Frobenius norms it holds

$$
\left\|\mathcal{T}_{k}(A)-A\right\|_{2}=\sigma_{k+1}, \quad\left\|\mathcal{T}_{k}(A)-A\right\|_{F}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{n}^{2}} .
$$

Theorem (Eckart and Young)
Let $A \in \mathbb{R}^{m \times n}$, then

$$
\begin{equation*}
\left\|\mathcal{T}_{k}(A)-A\right\|=\min \left\{\|A-B\|: B \in \mathbb{R}^{m \times n} \text { has at most rank } k\right\} \tag{2}
\end{equation*}
$$

holds for any unitarily invariant norm.

Error of TSVD approximation

For the spectral and Frobenius norms it holds

$$
\left\|\mathcal{T}_{k}(A)-A\right\|_{2}=\sigma_{k+1}, \quad\left\|\mathcal{T}_{k}(A)-A\right\|_{F}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{n}^{2}} .
$$

Theorem (Eckart and Young)
Let $A \in \mathbb{R}^{m \times n}$, then

$$
\begin{equation*}
\left\|\mathcal{T}_{k}(A)-A\right\|=\min \left\{\|A-B\|: B \in \mathbb{R}^{m \times n} \text { has at most rank } k\right\} \tag{2}
\end{equation*}
$$

holds for any unitarily invariant norm.

Remark

- Problem (2) has a unique solution when the Frobenius norm is used, provided all σ_{j} are different.

Error of TSVD approximation

For the spectral and Frobenius norms it holds

$$
\left\|\mathcal{T}_{k}(A)-A\right\|_{2}=\sigma_{k+1}, \quad\left\|\mathcal{T}_{k}(A)-A\right\|_{F}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{n}^{2}} .
$$

Theorem (Eckart and Young)
Let $A \in \mathbb{R}^{m \times n}$, then

$$
\begin{equation*}
\left\|\mathcal{T}_{k}(A)-A\right\|=\min \left\{\|A-B\|: B \in \mathbb{R}^{m \times n} \text { has at most rank } k\right\} \tag{2}
\end{equation*}
$$

holds for any unitarily invariant norm.

Remark

- Problem (2) has a unique solution when the Frobenius norm is used, provided all σ_{j} are different.
- If the spectral norm is used, the solutions are not unique since, e.g. for any $0 \leq \theta \leq 1, B=\mathcal{T}_{k}(A)-\theta \sigma_{k+1} U_{k} V_{k}^{T}$ is a solution, [Gu, M., 2014].

Householder reflections

Definition (Householder reflector)
It is s a linear transformation that describes a reflection about an hyperplane containing the origin and orthogonal to \mathbf{u},

$$
\begin{equation*}
\mathcal{H}_{\mathbf{u}}:=I-\frac{2}{\|\mathbf{v}\|^{2}} \mathbf{v} \mathbf{v}^{T} \tag{3}
\end{equation*}
$$

where $\mathbf{v}=\mathbf{u}-\|\mathbf{u}\| \mathbf{e}$ is the Householder vector and $\mathbf{e}=(1,0, \cdots, 0)^{T}$.

Householder reflections

Definition (Householder reflector)
It is s a linear transformation that describes a reflection about an hyperplane containing the origin and orthogonal to \mathbf{u},

$$
\begin{equation*}
\mathcal{H}_{\mathbf{u}}:=I-\frac{2}{\|\mathbf{v}\|^{2}} \mathbf{v v}^{T} \tag{3}
\end{equation*}
$$

where $\mathbf{v}=\mathbf{u}-\|\mathbf{u}\| \mathbf{e}$ is the Householder vector and $\mathbf{e}=(1,0, \cdots, 0)^{T}$.
Since $\mathcal{H}_{\mathbf{u}}(\mathbf{u})=\|\mathbf{u}\| \mathbf{e}$, a complete pivoted QR factorization can be constructed via Householder reflections, this is

$$
\begin{equation*}
A \Pi=\underbrace{Q_{1} \cdots Q_{n}}_{=: Q} R=Q R, \tag{4}
\end{equation*}
$$

where Π is a permutation, $Q_{1}=\mathcal{H}_{1}$ and for $j=\{2 \cdots n\}$

$$
Q_{j}=\left[\begin{array}{cc}
I_{j} & 0 \\
0 & \mathcal{H}_{j}
\end{array}\right]
$$

I_{j} : Identity matrix of size $(j-1) \times(j-1)$.

Error of QR approximation

For a rank- k QR approximation only consider the first k reflections as follows

$$
\begin{aligned}
A=Q R \Pi^{T} & \left.=\begin{array}{cc}
k & r-k
\end{array} \begin{array}{cc}
\\
m & {\left[\begin{array}{ll}
Q_{11} & Q_{12}
\end{array}\right]}
\end{array} \begin{array}{c}
k \\
r-k
\end{array} \begin{array}{cc}
\\
r-k-k \\
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right] \Pi^{T} \\
& =\underbrace{Q_{11}\left[\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right] \Pi^{T}}_{=: A_{k}}+\underbrace{Q_{12}\left[\begin{array}{ll}
0 & R_{22}
\end{array}\right] \Pi^{T}}_{\text {"residual" }}
\end{aligned}
$$

where $Q=Q_{1} \cdots Q_{k}$, and

$$
\left\|A-A_{k}\right\|=\left\|Q_{12}\left[\begin{array}{ll}
0 & R_{22}
\end{array}\right] \Pi^{T}\right\|=\left\|\left[\begin{array}{ll}
0 & R_{22} \tag{5}
\end{array}\right]\right\|=\left\|R_{22}\right\| .
$$

Error of QR approximation

For a rank- k QR approximation only consider the first k reflections as follows

$$
\begin{aligned}
A=Q R \Pi^{T} & \left.=\begin{array}{cc}
k & r-k \\
m & {\left[\begin{array}{ll}
Q_{11} & Q_{12}
\end{array}\right]}
\end{array} \begin{array}{c}
k \\
k-k
\end{array} \begin{array}{c}
k-k \\
r-k
\end{array} \begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right] \Pi^{T} \\
& =\underbrace{Q_{11}\left[\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right] \Pi^{T}}_{=: A_{k}}+\underbrace{Q_{12}\left[\begin{array}{ll}
0 & R_{22}
\end{array}\right] \Pi^{T}}_{\text {"residual" }} .
\end{aligned}
$$

where $Q=Q_{1} \cdots Q_{k}$, and

$$
\left\|A-A_{k}\right\|=\left\|Q_{12}\left[\begin{array}{ll}
0 & R_{22}
\end{array}\right] \Pi^{T}\right\|=\left\|\left[\begin{array}{ll}
0 & R_{22} \tag{5}
\end{array}\right]\right\|=\left\|R_{22}\right\| .
$$

- Computing A_{k} is typically faster than computing the TSVD.

Error of QR approximation

For a rank- k QR approximation only consider the first k reflections as follows

$$
\begin{aligned}
A=Q R \Pi^{T} & \left.=\begin{array}{cc}
k & r-k \\
m & {\left[\begin{array}{ll}
Q_{11} & Q_{12}
\end{array}\right]}
\end{array} \begin{array}{c}
k \\
k-k
\end{array} \begin{array}{c}
\\
r-k
\end{array} \begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right] \Pi^{T} \\
& =\underbrace{Q_{11}\left[\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right] \Pi^{T}}_{=: A_{k}}+\underbrace{Q_{12}\left[\begin{array}{ll}
0 & R_{22}
\end{array}\right] \Pi^{T}}_{\text {"residual" }} .
\end{aligned}
$$

where $Q=Q_{1} \cdots Q_{k}$, and

$$
\left\|A-A_{k}\right\|=\left\|Q_{12}\left[\begin{array}{ll}
0 & R_{22}
\end{array}\right] \Pi^{T}\right\|=\left\|\left[\begin{array}{ll}
0 & R_{22} \tag{5}
\end{array}\right]\right\|=\left\|R_{22}\right\| .
$$

- Computing A_{k} is typically faster than computing the TSVD.
- The choice of Π is of great importance to control the error.

Error of QR approximation

For a rank- k QR approximation only consider the first k reflections as follows

$$
\begin{aligned}
A=Q R \Pi^{T} & \left.=\begin{array}{cc}
k & r-k \\
m & {\left[\begin{array}{ll}
Q_{11} & Q_{12}
\end{array}\right]}
\end{array} \begin{array}{c}
k \\
k-k
\end{array} \begin{array}{c}
k-k \\
r-A_{k}
\end{array} \begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right] \Pi^{T} \\
& =\underbrace{Q_{11}\left[\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right] \Pi^{T}}_{\text {"residual" }}+\underbrace{Q_{12}}_{=: A_{12}\left[\begin{array}{ll}
0 & R_{22}
\end{array}\right] \Pi^{T}} .
\end{aligned}
$$

where $Q=Q_{1} \cdots Q_{k}$, and

$$
\left\|A-A_{k}\right\|=\left\|Q_{12}\left[\begin{array}{ll}
0 & R_{22}
\end{array}\right] \Pi^{T}\right\|=\left\|\left[\begin{array}{ll}
0 & R_{22} \tag{5}
\end{array}\right]\right\|=\left\|R_{22}\right\| .
$$

- Computing A_{k} is typically faster than computing the TSVD.
- The choice of Π is of great importance to control the error.
- Note that $\sigma_{k}(A)=\sigma_{k}(R)$.

Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)
Let us consider

$$
R=\left[\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right]
$$

where $R_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., maximum determinant in absolute value) among all $k \times k$ submatrices of R. Then

$$
\left\|R_{22}-R_{21} R_{11}^{-1} R_{12}\right\|_{\max } \leq(k+1) \sigma_{k+1}(R)
$$

where $\|M\|_{\max }:=\max _{i, j}|M(i, j)|$.

Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)
Let us consider

$$
R=\left[\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right]
$$

where $R_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., maximum determinant in absolute value) among all $k \times k$ submatrices of R. Then

$$
\left\|R_{22}-R_{21} R_{11}^{-1} R_{12}\right\|_{\max } \leq(k+1) \sigma_{k+1}(R)
$$

where $\|M\|_{\max }:=\max _{i, j}|M(i, j)|$.

Good news: Since for a low-rank QR factorization we have $R_{21}=0$, then

$$
\left\|R_{22}\right\|_{\max } \leq(k+1) \sigma_{k+1}(A)
$$

Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)
Let us consider

$$
R=\left[\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right]
$$

where $R_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., maximum determinant in absolute value) among all $k \times k$ submatrices of R. Then

$$
\left\|R_{22}-R_{21} R_{11}^{-1} R_{12}\right\|_{\max } \leq(k+1) \sigma_{k+1}(R)
$$

where $\|M\|_{\max }:=\max _{i, j}|M(i, j)|$.

Good news: Since for a low-rank QR factorization we have $R_{21}=0$, then

$$
\left\|R_{22}\right\|_{\max } \leq(k+1) \sigma_{k+1}(A)
$$

Bad news: Finding a submatrix of maximum volume has been proven to be NP-hard, Civril and Magdon-Ismail (2011).

Choosing the pivot using the classical column pivoting QRCP
QRCP takes as pivot the column of largest norm at each step, the error is bounded as

$$
\begin{equation*}
\left\|R_{22}\right\|_{2} \leq 2^{k} \sqrt{n-k} \sigma_{k+1}(A) . \tag{6}
\end{equation*}
$$

In general, $\left\|R_{22}\right\|_{2} \leq g(k, n) \sigma_{k+1}(A)$,

Choosing the pivot using the classical column pivoting QRCP

QRCP takes as pivot the column of largest norm at each step, the error is bounded as

$$
\begin{equation*}
\left\|R_{22}\right\|_{2} \leq 2^{k} \sqrt{n-k} \sigma_{k+1}(A) \tag{6}
\end{equation*}
$$

In general, $\left\|R_{22}\right\|_{2} \leq g(k, n) \sigma_{k+1}(A)$,

Method	Reference	$\mathrm{g}(\mathbf{k}, \mathbf{n})$	Time
Pivoted QR	[Golub, 1965]	$\sqrt{(n-k)}{ }^{k}$	$O(m n k)$
High RRQR	[Foster, 1986]	$\sqrt{n(n-k) 2^{n-k}}$	$O\left(m n^{2}\right)$
High RRQR	[Chan, 1987]	$\sqrt{n(n-k) 2^{2-k}}$	$O\left(m n^{2}\right)$
RRQR	[Hong and Pan, 1992]	$\sqrt{k(n-k)+k}$	-
Low RRQR	[Chan and Hansen, 1994]	$\sqrt{(k+1) n 2^{k+1}}$	$O\left(m n^{2}\right)$
Hybrid-I RRQR	[Chandr. and Ipsen, 1994]	$\sqrt{(k+1)(n-k)}$	-
Hybrid-II RRQR		$\sqrt{(k+1)(n-k)}$	-
Hybrid-III RRQR		$\sqrt{(k+1)(n-k)}$	-
Algorithm 3	[Gu and Eisenstat, 1996]	$\sqrt{k(n-k)+1}$	-
Algorithm 4		$\sqrt{f^{2} k(n-k)+1}$	$O\left(k m n \log _{f}(n)\right)$
DGEQPY	[Bischof and Orti, 1998]	$O\left(\sqrt{(k+1)^{2}(n-k)}\right)$	-
DGEQPX		$O(\sqrt{(k+1)(n-k))}$	-
SPQR	[Stewart, 1999]	-	-
PT Algorithm 1	[Pan and Tang, 1999]	$O(\sqrt{(k+1)(n-k))}$	-
PT Algorithm 2		$O\left(\sqrt{\left.(k+1)^{2}(n-k)\right)}\right.$	-
PT Algorithm 3		$O\left(\sqrt{\left.(k+1)^{2}(n-k)\right)}\right.$	-
Pan Algorithm 2	[Pan, 2000]	$O(\sqrt{k(n-k)+1)}$	-

Figure: Different algorithms for low-rank QR approximation, Mahoney et al. (2010).

Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm $1\left[A_{k}\right]=\operatorname{SubspaceIter}(A, \Omega, k, q)$

Requires: $\Omega \in \mathbb{R}^{n \times l}$, with $l \geq k$.
Returns: rank- k approximation of A.
1: Perform $Y=\left(A A^{T}\right)^{q} A \Omega$.
2: Compute (economic) QR decomposition $Y=Q R$.
3: Form $B=Q^{T} A$.
4: Set $A_{k}:=Q \mathcal{T}_{k}(B)$.

Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm $2\left[A_{k}\right]=\operatorname{SubspaceIter}(A, \Omega, k, q)$

Requires: $\Omega \in \mathbb{R}^{n \times l}$, with $l \geq k$.
Returns: rank- k approximation of A.
1: Perform $Y=\left(A A^{T}\right)^{q} A \Omega$.
2: Compute (economic) QR decomposition $Y=Q R$.
3: Form $B=Q^{T} A$.
4: Set $A_{k}:=Q \mathcal{T}_{k}(B)$.

- Note that setting $k=l=1$ then Algorithm 1 is the classical power method.

Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm $3\left[A_{k}\right]=\operatorname{SubspaceIter}(A, \Omega, k, q)$

Requires: $\Omega \in \mathbb{R}^{n \times l}$, with $l \geq k$.
Returns: rank- k approximation of A.
1: Perform $Y=\left(A A^{T}\right)^{q} A \Omega$.
2: Compute (economic) QR decomposition $Y=Q R$.
3: Form $B=Q^{T} A$.
4: Set $A_{k}:=Q \mathcal{T}_{k}(B)$.

- Note that setting $k=l=1$ then Algorithm 1 is the classical power method.
- If Ω is a random Gaussian matrix, then setting $l=2 k$ and $q=0$, we get the expected error [Halko, N. et al, 2014]

$$
\mathbb{E}\left\|A-A_{k}\right\|_{2} \leq\left(2+4 \sqrt{\frac{2 \min \{m, n\}}{k-1}}\right) \sigma_{k+1}
$$

Error of subspace iteration approximation

Error of subspace iteration approximation

To find the error of approximation, consider the SVD of $A=U \Sigma V^{T}$ and the partition

$$
\widehat{\Omega}:=V^{T} \Omega=\begin{gathered}
l-p \\
n-l+p
\end{gathered}\left[\begin{array}{c}
\widehat{\Omega}_{1} \\
\widehat{\Omega}_{2}
\end{array}\right], \quad 0 \leq p \leq l-k .
$$

If $\widehat{\Omega}_{1}$ is full row rank, then the error is bounded as ([Gu, M., 2014])

$$
\begin{equation*}
\left\|A-A_{k}\right\|_{2} \leq \sqrt{\sigma_{k+1}^{2}+\omega^{2}\left\|\widehat{\Omega}_{2}\right\|_{2}^{2}\left\|\widehat{\Omega}_{1}^{\dagger}\right\|_{2}^{2}} \tag{7}
\end{equation*}
$$

where $\omega=\sqrt{k} \sigma_{l-p+1}\left(\frac{\sigma_{l-p+1}}{\sigma_{k}}\right)^{2 q}$ and $\widehat{\Omega}_{1} \widehat{\Omega}_{1}^{\dagger}=I$.

Error of subspace iteration approximation

To find the error of approximation, consider the SVD of $A=U \Sigma V^{T}$ and the partition

$$
\widehat{\Omega}:=V^{T} \Omega=\begin{gathered}
l-p \\
n-l+p
\end{gathered}\left[\begin{array}{c}
\widehat{\Omega}_{1} \\
\widehat{\Omega}_{2}
\end{array}\right], \quad 0 \leq p \leq l-k .
$$

If $\widehat{\Omega}_{1}$ is full row rank, then the error is bounded as ([Gu, M., 2014])

$$
\begin{equation*}
\left\|A-A_{k}\right\|_{2} \leq \sqrt{\sigma_{k+1}^{2}+\omega^{2}\left\|\widehat{\Omega}_{2}\right\|_{2}^{2}\left\|\widehat{\Omega}_{1}^{\dagger}\right\|_{2}^{2}} \tag{7}
\end{equation*}
$$

where $\omega=\sqrt{k} \sigma_{l-p+1}\left(\frac{\sigma_{l-p+1}}{\sigma_{k}}\right)^{2 q}$ and $\widehat{\Omega}_{1} \widehat{\Omega}_{1}^{\dagger}=I$.
Remark
If G is $a(l-p) \times l$ is a Gaussian matrix, then $\operatorname{rank}(G)=l-p$ with probability 1 .

How do the singular vectors converge?
(1) We need to investigate the rate at which we are approaching to a best fitting subspace.

How do the singular vectors converge?
(1) We need to investigate the rate at which we are approaching to a best fitting subspace.
(2) How do we measure the distance between subspaces?

- Consider $W_{1}, W_{2} \in \mathbb{R}^{m \times k}$ with orthogonal columns.
- Let let $S_{1}:=\operatorname{ran}\left(W_{1}\right)$ and $S_{2}:=\operatorname{ran}\left(W_{2}\right)$, then

$$
\operatorname{dist}\left(S_{1}, S_{2}\right):=\left\|W_{1} W_{1}^{T}-W_{2} W_{2}^{T}\right\|_{2}
$$

How do the singular vectors converge?
(1) We need to investigate the rate at which we are approaching to a best fitting subspace.
(2) How do we measure the distance between subspaces?

- Consider $W_{1}, W_{2} \in \mathbb{R}^{m \times k}$ with orthogonal columns.
- Let let $S_{1}:=\operatorname{ran}\left(W_{1}\right)$ and $S_{2}:=\operatorname{ran}\left(W_{2}\right)$, then

$$
\operatorname{dist}\left(S_{1}, S_{2}\right):=\left\|W_{1} W_{1}^{T}-W_{2} W_{2}^{T}\right\|_{2}
$$

Theorem (Ayala et al., 2017)
Using the notation from Algorithm 1, Let $S_{u}=\operatorname{ran}\left(\left[u_{1} \cdots u_{l}\right]\right)$ and $S_{q}=\operatorname{ran}(Q)$, considering $\widehat{\Omega}_{1}$ nonsingular and $p=0$, then

$$
\operatorname{dist}\left(S_{u}, S_{q}\right) \leq\left(\frac{\sigma_{l+1}}{\sigma_{l}}\right)^{2 q+1}\left\|\widehat{\Omega}_{2}\right\|_{2}\left\|\widehat{\Omega}_{1}^{-1}\right\|_{2}
$$

provided $\sigma_{l+1}>\sigma_{l}$.

Finding a good Householder vector

When choosing the pivot as one of the columns of A the questions that arise are: How close the error is with respect to the truncated SVD?, Which choice of pivot is the optimal?.

Finding a good Householder vector

When choosing the pivot as one of the columns of A the questions that arise are: How close the error is with respect to the truncated SVD?, Which choice of pivot is the optimal?.

Given $A=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right]$, let $u \in \mathbb{R}^{m}$ be any unitary vector, then

$$
\mathcal{H}_{u} A=\left[\begin{array}{llll}
h_{a_{1}} & h_{a_{2}} & \cdots & h_{a_{n}}
\end{array}\right] .
$$

Figure: Householder reflection: p_{j} and d_{j} denote the projections of a_{j} along and orthogonal to u respectively.

Error for a rank-one approximation with arbitrary Householder vector.

$$
\mathcal{H}_{u} A=\left[\begin{array}{cccc}
\left\|a_{1}\right\|_{2} \cos \left(\varphi_{1}\right) & \left\|a_{2}\right\|_{2} \cos \left(\varphi_{2}\right) & \cdots & \left\|a_{n}\right\|_{2} \cos \left(\varphi_{n}\right) \tag{8}\\
r_{1} & r_{2} & \cdots & r_{n}
\end{array}\right],
$$

where $r_{j} \in \mathbb{R}^{m-1}$.

Error for a rank-one approximation with arbitrary Householder vector.

$$
\mathcal{H}_{u} A=\left[\begin{array}{cccc}
\left\|a_{1}\right\|_{2} \cos \left(\varphi_{1}\right) & \left\|a_{2}\right\|_{2} \cos \left(\varphi_{2}\right) & \cdots & \left\|a_{n}\right\|_{2} \cos \left(\varphi_{n}\right) \tag{8}\\
r_{1} & r_{2} & \cdots & r_{n}
\end{array}\right]
$$

where $r_{j} \in \mathbb{R}^{m-1}$. The rank-one matrix

$$
\begin{equation*}
A_{1}=\frac{u}{\|u\|_{2}}\left(\left\|a_{1}\right\|_{2} \cos \left(\varphi_{1}\right), \cdots,\left\|a_{n}\right\|_{2} \cos \left(\varphi_{n}\right)\right) \tag{9}
\end{equation*}
$$

approximates A with an error given by the norm of the residual matrix $E:=\left[r_{1} \cdots r_{n}\right]$. By the Pythagorean theorem $\left\|r_{j}\right\|_{2}=\left\|a_{j}\right\|_{2} \sin \left(\varphi_{j}\right)$, then

$$
\begin{equation*}
\left\|A-A_{1}\right\|_{F}^{2}=\|E\|_{F}^{2}=\sum_{j=1}^{n}\left\|r_{j}\right\|_{2}^{2}=\sum_{j=1}^{n}\left\|a_{j}\right\|_{2}^{2} \sin ^{2}\left(\varphi_{j}\right) \tag{10}
\end{equation*}
$$

Error for a rank-one approximation with arbitrary Householder vector.

$$
\mathcal{H}_{u} A=\left[\begin{array}{cccc}
\left\|a_{1}\right\|_{2} \cos \left(\varphi_{1}\right) & \left\|a_{2}\right\|_{2} \cos \left(\varphi_{2}\right) & \cdots & \left\|a_{n}\right\|_{2} \cos \left(\varphi_{n}\right) \tag{8}\\
r_{1} & r_{2} & \cdots & r_{n}
\end{array}\right]
$$

where $r_{j} \in \mathbb{R}^{m-1}$. The rank-one matrix

$$
\begin{equation*}
A_{1}=\frac{u}{\|u\|_{2}}\left(\left\|a_{1}\right\|_{2} \cos \left(\varphi_{1}\right), \cdots,\left\|a_{n}\right\|_{2} \cos \left(\varphi_{n}\right)\right) \tag{9}
\end{equation*}
$$

approximates A with an error given by the norm of the residual matrix $E:=\left[r_{1} \cdots r_{n}\right]$. By the Pythagorean theorem $\left\|r_{j}\right\|_{2}=\left\|a_{j}\right\|_{2} \sin \left(\varphi_{j}\right)$, then

$$
\begin{equation*}
\left\|A-A_{1}\right\|_{F}^{2}=\|E\|_{F}^{2}=\sum_{j=1}^{n}\left\|r_{j}\right\|_{2}^{2}=\sum_{j=1}^{n}\left\|a_{j}\right\|_{2}^{2} \sin ^{2}\left(\varphi_{j}\right) \tag{10}
\end{equation*}
$$

Since $d_{j}=a_{j}-p_{j}$, then

$$
\begin{equation*}
\|E\|_{F}^{2}=\sum_{j=1}^{n}\left\|d_{j}\right\|_{2}^{2} \tag{11}
\end{equation*}
$$

Error for a rank-one approximation with arbitrary Householder vector.

$$
\mathcal{H}_{u} A=\left[\begin{array}{cccc}
\left\|a_{1}\right\|_{2} \cos \left(\varphi_{1}\right) & \left\|a_{2}\right\|_{2} \cos \left(\varphi_{2}\right) & \cdots & \left\|a_{n}\right\|_{2} \cos \left(\varphi_{n}\right) \tag{8}\\
r_{1} & r_{2} & \cdots & r_{n}
\end{array}\right]
$$

where $r_{j} \in \mathbb{R}^{m-1}$. The rank-one matrix

$$
\begin{equation*}
A_{1}=\frac{u}{\|u\|_{2}}\left(\left\|a_{1}\right\|_{2} \cos \left(\varphi_{1}\right), \cdots,\left\|a_{n}\right\|_{2} \cos \left(\varphi_{n}\right)\right) \tag{9}
\end{equation*}
$$

approximates A with an error given by the norm of the residual matrix $E:=\left[r_{1} \cdots r_{n}\right]$. By the Pythagorean theorem $\left\|r_{j}\right\|_{2}=\left\|a_{j}\right\|_{2} \sin \left(\varphi_{j}\right)$, then

$$
\begin{equation*}
\left\|A-A_{1}\right\|_{F}^{2}=\|E\|_{F}^{2}=\sum_{j=1}^{n}\left\|r_{j}\right\|_{2}^{2}=\sum_{j=1}^{n}\left\|a_{j}\right\|_{2}^{2} \sin ^{2}\left(\varphi_{j}\right) \tag{10}
\end{equation*}
$$

Since $d_{j}=a_{j}-p_{j}$, then

$$
\begin{equation*}
\|E\|_{F}^{2}=\sum_{j=1}^{n}\left\|d_{j}\right\|_{2}^{2} \tag{11}
\end{equation*}
$$

Which choice of u minimizes this error?

Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points a_{j} 's to itself. This is the total least-square problem.

Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points a_{j} 's to itself. This is the total least-square problem.

Define the matrix

$$
\begin{equation*}
Y:=\left[a_{1}-g \cdots a_{n}-g\right] . \tag{12}
\end{equation*}
$$

- The best fitting line of the points $\left\{a_{j}\right.$'s $\}$ is given by

$$
\begin{equation*}
\mathcal{L}:=\{g+u \tau \quad \mid \quad \tau \in \mathbb{R}\} . \tag{13}
\end{equation*}
$$

where $g:=(1 / n) \sum_{j=1}^{n} a_{j}$ and $u=u_{1}(Y)$, [Schneider et al., 2003].

Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points a_{j} 's to itself. This is the total least-square problem.

Define the matrix

$$
\begin{equation*}
Y:=\left[a_{1}-g \cdots a_{n}-g\right] . \tag{12}
\end{equation*}
$$

- The best fitting line of the points $\left\{a_{j}\right.$'s $\}$ is given by

$$
\begin{equation*}
\mathcal{L}:=\{g+u \tau \quad \mid \quad \tau \in \mathbb{R}\} . \tag{13}
\end{equation*}
$$

where $g:=(1 / n) \sum_{j=1}^{n} a_{j}$ and $u=u_{1}(Y)$, [Schneider et al., 2003].

- If we impose the condition that the line passes through the origin, then the solution would be

$$
\begin{equation*}
\tilde{\mathcal{L}}:=\{\tilde{u} \tau \quad \mid \quad \tau \in \mathbb{R}\} . \tag{14}
\end{equation*}
$$

where $\tilde{u}=u_{1}(A)$.

Best fitting (affine) subspace.

Figure: Solution of the total least-square problem (left) and its solution by imposing the condition to pass through the origin O (right).

Best fitting (affine) subspace.

Figure: Solution of the total least-square problem (left) and its solution by imposing the condition to pass through the origin O (right).

- To approximate $u_{1}(Y)$ we can use the fact that it is the principal component of $C=Y Y^{T}$, the covariance matrix.
- There exists work on PCA on trimming around affine subspaces [Croux et al., 2014].

Error approximation for ALORA
Consider $c=[1, \cdots, 1]^{T} \in \mathbb{R}^{m}$. Let $u=u_{1}(Y)=u_{1}(A-g c)$ and define

$$
\begin{equation*}
B=A-T, \quad T=(g-\alpha u) c, \tag{15}
\end{equation*}
$$

where $\alpha \in \mathbb{R}$.

- Considering $g_{B}=(1 / n) \sum_{j=1}^{n} b_{j}$, then clearly $g_{B}=u$.

Error approximation for ALORA

Consider $c=[1, \cdots, 1]^{T} \in \mathbb{R}^{m}$. Let $u=u_{1}(Y)=u_{1}(A-g c)$ and define

$$
\begin{equation*}
B=A-T, \quad T=(g-\alpha u) c \tag{15}
\end{equation*}
$$

where $\alpha \in \mathbb{R}$.

- Considering $g_{B}=(1 / n) \sum_{j=1}^{n} b_{j}$, then clearly $g_{B}=u$.
- Next, we prove that $u_{1}(B)=\frac{g_{B}}{\left\|g_{B}\right\|}$ and then the best fitting line of B is

$$
\mathcal{L}^{(B)}:=\left\{\left.\frac{g_{B}}{\left\|g_{B}\right\|} \tau \quad \right\rvert\, \quad \tau \in \mathbb{R}\right\} .
$$

Error approximation for ALORA

Consider $c=[1, \cdots, 1]^{T} \in \mathbb{R}^{m}$. Let $u=u_{1}(Y)=u_{1}(A-g c)$ and define

$$
\begin{equation*}
B=A-T, \quad T=(g-\alpha u) c \tag{15}
\end{equation*}
$$

where $\alpha \in \mathbb{R}$.

- Considering $g_{B}=(1 / n) \sum_{j=1}^{n} b_{j}$, then clearly $g_{B}=u$.
- Next, we prove that $u_{1}(B)=\frac{g_{B}}{\left\|g_{B}\right\|}$ and then the best fitting line of B is

$$
\mathcal{L}^{(B)}:=\left\{\left.\frac{g_{B}}{\left\|g_{B}\right\|} \tau \quad \right\rvert\, \quad \tau \in \mathbb{R}\right\} .
$$

Lemma
Let $r=\operatorname{rank}(Y) \alpha \in R$, then $\operatorname{rank}(B)=r$ and

$$
\begin{gathered}
u_{j}(B)=u_{j}(Y) \quad \forall j \in\{1 \cdots r\} \\
\sigma_{1}(B)=\sqrt{\sigma_{1}(Y)^{2}+n \alpha^{2}} \quad \text { and } \quad v_{1}(B)=\left(\alpha c+\sigma_{1}(Y) v_{1}(Y)\right) / \sigma_{1}(B) . \\
\sigma_{j}(B)=\sigma_{j}(Y) \quad \text { and } \quad v_{j}(B)=v_{j}(Y) \quad \forall j \in\{2 \cdots r\} .
\end{gathered}
$$

Lemma

Let B_{k} be a rank- k approximation of B such that

$$
\left\|B-B_{k}\right\|_{2} \leq g(k, n) \sigma_{k+1}(B)
$$

where g is a function of k and n. Define $A_{k+1}=B_{k}+T$, then

$$
\left\|A-A_{k+1}\right\|_{2} \leq g(k, n) \sigma_{k+1}(A)
$$

Lemma
Let B_{k} be a rank-k approximation of B such that

$$
\left\|B-B_{k}\right\|_{2} \leq g(k, n) \sigma_{k+1}(B)
$$

where g is a function of k and n. Define $A_{k+1}=B_{k}+T$, then

$$
\left\|A-A_{k+1}\right\|_{2} \leq g(k, n) \sigma_{k+1}(A)
$$

Corollary

$$
\begin{equation*}
\sigma_{k+1}(B) \leq \sigma_{k+1}(A) \leq \sigma_{k}(B) \tag{16}
\end{equation*}
$$

Error approximation for ALORA

Lemma
Consider $A_{l}=B_{l-1}+T$, where B_{l-1} is a rank $l-1$ approximation of B, then

$$
\left\|A-A_{l}\right\|_{2} \leq g(l, n, C) \sigma_{l+1}(A)
$$

where $C=(A-g)(A-g)^{T}$ is the covariance matrix and

$$
g(l, n, C)=\sqrt{\frac{r+s \sqrt{\frac{n-l}{l}}}{r-s \sqrt{\frac{l}{n-l}}}}
$$

with $r=\frac{\operatorname{tr}(C)}{n}$ and $s=\sqrt{\frac{\operatorname{tr}\left(C^{2}\right)}{n}-r^{2}}$.

Error approximation for ALORA

Lemma
Consider $A_{l}=B_{l-1}+T$, where B_{l-1} is a rank $l-1$ approximation of B, then

$$
\left\|A-A_{l}\right\|_{2} \leq g(l, n, C) \sigma_{l+1}(A)
$$

where $C=(A-g)(A-g)^{T}$ is the covariance matrix and

$$
g(l, n, C)=\sqrt{\frac{r+s \sqrt{\frac{n-l}{l}}}{r-s \sqrt{\frac{l}{n-l}}}}
$$

with $r=\frac{\operatorname{tr}(C)}{n}$ and $s=\sqrt{\frac{\operatorname{tr}\left(C^{2}\right)}{n}-r^{2}}$.

Proof.
Use Theorem 3.1 from [Merikosky et al., 1983] on matrix C.

Affine low rank approximation (ALORA)

Algorithm $4\left[A_{k+1}\right]=\operatorname{ALORA}(A, k)$

Require: $A=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right] \in \mathbb{R}^{m \times n}$.
Returns: rank $k+1$ approximation of A.
1: $g=(1 / n) \sum_{j=1}^{n} a_{j}, c=[1 \cdots 1] \in \mathbb{R}^{1 \times n}$.
2: $u:=$ first singular vector of Y.
3: $\alpha=g(1) / u(1)$.
4: $T=(g-\alpha u) c$.
5: Compute B_{k} : a rank- k approximation of $B=Y+\alpha u c$.
6: $A_{k+1}=T+B_{k}$
Ensure: $\left\|A-A_{k+1}\right\|_{2} \leq \sigma_{k}(A)$

Note that if the directions of the fitting lines are computed using a rank-revealing QR algorithm, then ALORA will produce a translated QR factorization.

Approximation error using ALORA with QRCP

- Using QRCP to approximate the direction of the best fitting line, then ALORA yields a QRCP factorization plus a rank-one translation matrix.

Figure: Low-rank approximation of a random matrix with slowly decreasing singular values (left), and the Kahan matrix (right), size $m=n=256$.

ALORA with QRCP

- For matrices with slowly decreasing singular values, typically the first part of the spectrum is better approximated by ALORA.

Figure: Low-rank approximation of matrices GKS (left), and Baart1 (right), size $m=n=256$.

Approximation error using ALORA with Subspace Iteration

- Using Subspace iteration (Alg. 1 with $p=2, q=1$), to approximate the direction of the best fitting line, then ALORA improves the convergence error.
- The error get smaller while increasing p or q in Alg. 1 .

Figure: Low-rank approximation of matrices GKS (left), and Baart1 (right), size $m=n=256$.

Approximation of singular values

- For QRCP (top) we plot $\frac{\lfloor R(i, i) \mid}{\sigma_{i}}$.
- For ALORA (bottom) we plot $\frac{\left|R^{(B)}(i, i)\right|}{\sigma_{i}}$.

Reduction with tournament pivoting

- Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a m-by-10 matrix using 3 processors.

Reduction with tournament pivoting

- Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a m-by-10 matrix using 3 processors.
- The umber of messages (two) is independent of the number of columns and it is obviously optimal.

Reduction with tournament pivoting

- Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a m-by-10 matrix using 3 processors.
- The umber of messages (two) is independent of the number of columns and it is obviously optimal.
- We use this reduction to in general select approximative directions instead of pivot columns.
- PALORA: Parallel ALORA using QRCP.
- CALRQR: Low-rank version of CARRQR.
- PDGEKQP: A low-rank version of the ScaLapack routine PDGEQP.

Figure: Low-rank approximation of matrices GKS (left), and Phillips (right), size $m=n=512$.

ALORA_IE: modified ALORA for integral equations

- We create a (hierarchical) partition of the domain.
- In such a way that the matrix corresponding to each subdomain has a best fitting line which direction can be approximated with its gravity center.
- Take advantage of the rapidly decreasing singular values.
- Construct a linear cost Householder reflection.
- Example: Consider the inner Dirichlet problem $\mathcal{A} u=f$

$$
\mathcal{A} u(x)=\frac{1}{4 \pi} \int_{\Gamma} \frac{u(y)}{|x-y|} d s_{y} .
$$

Defined over a 3D domain Γ.
(1) Discretize the equation by the classical Boundary element method and get the linear system $A x=b$.
(2) Factorize A using QRCP, ALORA_IE, and the Adaptive Cross Approximation (ACA) algorithm.

"́záa
INENTEURS DU NONDE NUMERIQUE

References

Demmel, J. W. and Grigori, L. and Gu, M. and Xiang, H.
Communication avoiding rank revealing $Q R$ factorization with column pivoting, 2015.

- Gu, M.

Subspace Iteration Randomization and Singular Value Problems, 2014.
R Ayala, A. and Claeys X. and Grigori, L.
ALORA: Affine low-rank approximation, 2017.
Schneider, P. and Eberly, D.
Geometric Tools for Computer Graphics, 2003.
R Merikosky, J. and Styan, G. and Wolkowicz, H.
Bounds for Ratios of Eigenvalues Using Traces, 1983.
Halko, N. et al.
Finding structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions, 2011.

