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Introduction and motivation

Introduction and motivation

Classical low-rank algorithms can generate large errors of approximation.

The SVD approximation can be constructed iteratively as (affine) subspace fitting
of a set of columns.

Matrix (hierarchical) structure must be exploited to increase precision with small
cost.

Black-box fast solvers can efficiently replace classical solvers for PDE’s and integral
equations.
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Classical methods Truncated SVD

Truncated SVD

Given A ∈ Rm×n, m ≥ n, there exits orthogonal matrices U ∈ Rm×m and V ∈ Rn×n
such that

A = UΣV T = [u1 · · · um]


σ1

. . .
σn

0

 [v1 · · · vn]T .

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the singular values and uj and vj are the left and
right singular vectors associated to σj .

Cost: O(mn2).

The truncated SVD decomposition is defined as

Tk(A) := UkΣkV
T
k , (1)

where Uk := [u1 · · · uk], Σk := diag(σ1, . . . , σk) and Vk := [v1 · · · vk].

Alan Ayala (H) ALORA July 14, 2017 3 / 30



Classical methods Truncated SVD

Truncated SVD

Given A ∈ Rm×n, m ≥ n, there exits orthogonal matrices U ∈ Rm×m and V ∈ Rn×n
such that

A = UΣV T = [u1 · · · um]


σ1

. . .
σn

0

 [v1 · · · vn]T .

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the singular values and uj and vj are the left and
right singular vectors associated to σj . Cost: O(mn2).

The truncated SVD decomposition is defined as

Tk(A) := UkΣkV
T
k , (1)

where Uk := [u1 · · · uk], Σk := diag(σ1, . . . , σk) and Vk := [v1 · · · vk].

Alan Ayala (H) ALORA July 14, 2017 3 / 30



Classical methods Truncated SVD

Truncated SVD

Given A ∈ Rm×n, m ≥ n, there exits orthogonal matrices U ∈ Rm×m and V ∈ Rn×n
such that

A = UΣV T = [u1 · · · um]


σ1

. . .
σn

0

 [v1 · · · vn]T .

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the singular values and uj and vj are the left and
right singular vectors associated to σj . Cost: O(mn2).

The truncated SVD decomposition is defined as

Tk(A) := UkΣkV
T
k , (1)

where Uk := [u1 · · · uk], Σk := diag(σ1, . . . , σk) and Vk := [v1 · · · vk].

Alan Ayala (H) ALORA July 14, 2017 3 / 30



Classical methods Truncated SVD

Error of TSVD approximation

For the spectral and Frobenius norms it holds

‖Tk(A)−A‖2 = σk+1, ‖Tk(A)−A‖F =
√
σ2
k+1 + · · ·+ σ2

n.

Theorem (Eckart and Young)

Let A ∈ Rm×n , then

‖Tk(A)−A‖ = min{‖A−B‖ : B ∈ Rm×n has at most rank k} (2)

holds for any unitarily invariant norm.

Remark

Problem (2) has a unique solution when the Frobenius norm is used, provided all
σj are different.
If the spectral norm is used, the solutions are not unique since, e.g. for any
0 ≤ θ ≤ 1, B = Tk(A)− θσk+1UkV

T
k is a solution, [Gu, M., 2014].
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Classical methods Low rank approximation using pivoted QR factorization

Householder reflections

Definition (Householder reflector)

It is s a linear transformation that describes a reflection about an hyperplane
containing the origin and orthogonal to u,

Hu := I − 2

‖v‖2 vvT , (3)

where v = u− ‖u‖e is the Householder vector and e = (1, 0, · · · , 0)T .

Since Hu(u) = ‖u‖e, a complete pivoted QR factorization can be constructed via
Householder reflections, this is

AΠ = Q1 · · ·Qn︸ ︷︷ ︸
=:Q

R = QR, (4)

where Π is a permutation, Q1 = H1 and for j = {2 · · ·n}

Qj =

[
Ij 0
0 Hj

]
Ij : Identity matrix of size (j − 1)× (j − 1) .
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Classical methods Low rank approximation using pivoted QR factorization

Error of QR approximation

For a rank-k QR approximation only consider the first k reflections as follows

A = QRΠT =
k r − k

[ ]m Q11 Q12

k n− k[ ]
k R11 R12

r − k 0 R22

ΠT

= Q11

[
R11 R12

]
ΠT︸ ︷︷ ︸

=:Ak

+Q12

[
0 R22

]
ΠT︸ ︷︷ ︸

"residual"

.

where Q = Q1 · · ·Qk , and

‖A−Ak‖ = ‖Q12[0 R22]ΠT ‖ = ‖[0 R22]‖ = ‖R22‖. (5)

Computing Ak is typically faster than computing the TSVD.
The choice of Π is of great importance to control the error.
Note that σk(A) = σk(R).
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Classical methods Low rank approximation using pivoted QR factorization

Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)

Let us consider

R =

[
R11 R12

R21 R22

]
where R11 ∈ Rk×k has maximal volume (i.e., maximum determinant in absolute
value) among all k × k submatrices of R. Then

‖R22 −R21R
−1
11 R12‖max ≤ (k + 1)σk+1(R).

where ‖M‖max := maxi,j |M(i, j)|.

Good news: Since for a low-rank QR factorization we have R21 = 0, then

‖R22‖max ≤ (k + 1)σk+1(A).

Bad news: Finding a submatrix of maximum volume has been proven to be NP-hard,
Civril and Magdon-Ismail (2011).
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Classical methods Low rank approximation using pivoted QR factorization

Choosing the pivot using the classical column pivoting QRCP

QRCP takes as pivot the column of largest norm at each step, the error is bounded as

‖R22‖2 ≤ 2k
√
n− k σk+1(A). (6)

In general, ‖R22‖2 ≤ g(k, n) σk+1(A) ,

Figure: Different algorithms for low-rank QR approximation, Mahoney et al. (2010).
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Classical methods Low rank approximation using subspace iteration

Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm 1 [Ak] = SubspaceIter(A,Ω,k,q)

Requires: Ω ∈ Rn×l , with l ≥ k.
Returns: rank-k approximation of A.
1: Perform Y = (AAT )qAΩ.
2: Compute (economic) QR decomposition Y = QR.
3: Form B = QTA.
4: Set Ak := QTk(B).

Note that setting k = l = 1 then Algorithm 1 is the classical power method.
If Ω is a random Gaussian matrix, then setting l = 2k and q = 0, we get the
expected error [Halko, N. et al, 2014]

E‖A−Ak‖2 ≤

(
2 + 4

√
2 min{m,n}

k − 1

)
σk+1.
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Classical methods Low rank approximation using subspace iteration

Error of subspace iteration approximation

To find the error of approximation, consider the SVD of A = UΣV T and the partition

Ω̂ := V TΩ =

[ ]
l − p Ω̂1

n− l + p Ω̂2
, 0 ≤ p ≤ l − k.

If Ω̂1 is full row rank, then the error is bounded as ([Gu, M., 2014])

‖A−Ak‖2 ≤
√
σ2
k+1 + ω2‖Ω̂2‖22 ‖Ω̂

†
1‖22, (7)

where ω =
√
kσl−p+1

(
σl−p+1

σk

)2q

and Ω̂1Ω̂†1 = I.

Remark

If G is a (l − p)× l is a Gaussian matrix, then rank(G) = l − p with probability 1.
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Classical methods Low rank approximation using subspace iteration

How do the singular vectors converge?

1 We need to investigate the rate at which we are approaching to a best fitting
subspace.

2 How do we measure the distance between subspaces?
- Consider W1,W2 ∈ Rm×k with orthogonal columns.

- Let let S1 := ran(W1) and S2 := ran(W2), then

dist(S1, S2) := ‖W1W
T
1 −W2W

T
2 ‖2.

Theorem (Ayala et al., 2017)

Using the notation from Algorithm 1, Let Su = ran([u1 · · ·ul]) and Sq = ran(Q),
considering Ω̂1 nonsingular and p = 0, then

dist(Su, Sq) ≤
(
σl+1

σl

)2q+1

‖Ω̂2‖2 ‖Ω̂−1
1 ‖2,

provided σl+1 > σl.
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Geometry analysis of pivoting Choosing the best Householder reflection

Finding a good Householder vector

When choosing the pivot as one of the columns of A the questions that arise are: How close
the error is with respect to the truncated SVD?, Which choice of pivot is the optimal?.

Given A = [a1 a2 · · · an], let u ∈ Rm be any unitary vector, then

HuA = [ha1 ha2 · · · han ].

u

aj

ϕj
pj

dj

hu

haj

Hu

Figure: Householder reflection: pj and dj denote the projections of aj along and orthogonal
to u respectively.
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Geometry analysis of pivoting Choosing the best Householder reflection

Error for a rank-one approximation with arbitrary Householder vector.

HuA =

[
‖a1‖2 cos(ϕ1) ‖a2‖2 cos(ϕ2) · · · ‖an‖2 cos(ϕn)

r1 r2 · · · rn

]
, (8)

where rj ∈ Rm−1.

The rank-one matrix

A1 =
u

‖u‖2
(‖a1‖2 cos(ϕ1), · · · , ‖an‖2 cos(ϕn)) (9)

approximates A with an error given by the norm of the residual matrix
E := [r1 · · · rn]. By the Pythagorean theorem ‖rj‖2 = ‖aj‖2 sin(ϕj), then

‖A−A1‖2F = ‖E‖2F =

n∑
j=1

‖rj‖22 =

n∑
j=1

‖aj‖22 sin2(ϕj). (10)

Since dj = aj − pj , then

‖E‖2F =

n∑
j=1

‖dj‖22. (11)

Which choice of u minimizes this error?
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Geometry analysis of pivoting Setting the optimization problem

Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared
orthogonal distances from the points aj ’s to itself. This is the total least-square
problem.

Define the matrix
Y := [a1 − g · · · an − g]. (12)

The best fitting line of the points {aj ’s} is given by

L := { g + uτ | τ ∈ R}. (13)

where g := (1/n)
∑n
j=1 aj and u = u1(Y ), [Schneider et al., 2003].

If we impose the condition that the line passes through the origin, then the
solution would be

L̃ := { ũτ | τ ∈ R}. (14)

where ũ = u1(A).
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Geometry analysis of pivoting Setting the optimization problem

Best fitting (affine) subspace.

Figure: Solution of the total least-square problem (left) and its solution by imposing the
condition to pass through the origin O (right).

To approximate u1(Y ) we can use the fact that it is the principal component of
C = Y Y T , the covariance matrix .
There exists work on PCA on trimming around affine subspaces [Croux et al.,
2014].
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Geometry analysis of pivoting Shifted Low-rank approximation

Error approximation for ALORA

Consider c = [1, · · · , 1]T ∈ Rm. Let u = u1(Y ) = u1(A− gc) and define

B = A− T, T = (g − αu)c, (15)

where α ∈ R.
Considering gB = (1/n)

∑n
j=1 bj , then clearly gB = u.

Next, we prove that u1(B) = gB
‖gB‖

and then the best fitting line of B is

L(B) :=

{
gB
‖gB‖

τ | τ ∈ R
}
.

Lemma

Let r = rank(Y ) α ∈ R, then rank(B) = r and

uj(B) = uj(Y ) ∀j ∈ {1 · · · r}.

σ1(B) =
√
σ1(Y )2 + nα2 and v1(B) = (αc+ σ1(Y )v1(Y ))/σ1(B).

σj(B) = σj(Y ) and vj(B) = vj(Y ) ∀j ∈ {2 · · · r}.
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Geometry analysis of pivoting Setting the optimization problem

Lemma

Let Bk be a rank-k approximation of B such that

‖B −Bk‖2 ≤ g(k, n)σk+1(B),

where g is a function of k and n. Define Ak+1 = Bk + T , then

‖A−Ak+1‖2 ≤ g(k, n)σk+1(A).

Corollary

σk+1(B) ≤ σk+1(A) ≤ σk(B). (16)

Alan Ayala (H) ALORA July 14, 2017 17 / 30



Geometry analysis of pivoting Setting the optimization problem

Lemma

Let Bk be a rank-k approximation of B such that

‖B −Bk‖2 ≤ g(k, n)σk+1(B),

where g is a function of k and n. Define Ak+1 = Bk + T , then

‖A−Ak+1‖2 ≤ g(k, n)σk+1(A).

Corollary

σk+1(B) ≤ σk+1(A) ≤ σk(B). (16)

Alan Ayala (H) ALORA July 14, 2017 17 / 30



Geometry analysis of pivoting Setting the optimization problem

Error approximation for ALORA

Lemma

Consider Al = Bl−1 + T , where Bl−1 is a rank l − 1 approximation of B, then

‖A−Al‖2 ≤ g(l, n, C)σl+1(A),

where C == (A− g)(A− g)T is the covariance matrix and

g(l, n, C) =

√√√√√r + s
√

n−l
l

r − s
√

l
n−l

with r = tr(C)
n

and s =

√
tr(C2)
n
− r2.

Proof.

Use Theorem 3.1 from [Merikosky et al., 1983] on matrix C.
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Geometry analysis of pivoting Setting the optimization problem

Affine low rank approximation (ALORA)

Algorithm 4 [Ak+1] = ALORA(A,k)

Require: A = [a1 a2 · · · an] ∈ Rm×n.
Returns: rank k + 1 approximation of A.

1: g = (1/n)
∑n
j=1 aj , c = [1 · · · 1] ∈ R1×n.

2: u := first singular vector of Y .
3: α = g(1)/u(1).
4: T = (g − αu)c.
5: Compute Bk: a rank-k approximation of B = Y + αuc.
6: Ak+1 = T +Bk

Ensure: ‖A−Ak+1‖2 ≤ σk(A)

Note that if the directions of the fitting lines are computed using a rank-revealing
QR algorithm, then ALORA will produce a translated QR factorization.
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Numerical Experiments Low rank-approximation error

Approximation error using ALORA with QRCP

Using QRCP to approximate the direction of the best fitting line, then ALORA
yields a QRCP factorization plus a rank-one translation matrix.

Figure: Low-rank approximation of a random matrix with slowly decreasing singular values
(left), and the Kahan matrix (right), size m = n = 256.
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Numerical Experiments Low rank-approximation error

ALORA with QRCP

For matrices with slowly decreasing singular values, typically the first part of the
spectrum is better approximated by ALORA.

Figure: Low-rank approximation of matrices GKS (left), and Baart1 (right), size
m = n = 256.
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Numerical Experiments Low rank-approximation error

Approximation error using ALORA with Subspace Iteration

Using Subspace iteration (Alg. 1 with p = 2, q = 1), to approximate the
direction of the best fitting line, then ALORA improves the convergence error.
The error get smaller while increasing p or q in Alg. 1.

Figure: Low-rank approximation of matrices GKS (left), and Baart1 (right), size
m = n = 256.
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Numerical Experiments Low rank-approximation error

Approximation of singular values

For QRCP (top) we plot |R(i,i)|
σi

.

For ALORA (bottom) we plot |R
(B)(i,i)|
σi

.
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Numerical Experiments Parallel implementation

Reduction with tournament pivoting

Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a m-by-10
matrix using 3 processors.

The umber of messages (two) is independent of the number of columns and it is
obviously optimal.
We use this reduction to in general select approximative directions instead of
pivot columns.

Alan Ayala (H) ALORA July 14, 2017 24 / 30



Numerical Experiments Parallel implementation

Reduction with tournament pivoting

Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a m-by-10
matrix using 3 processors.
The umber of messages (two) is independent of the number of columns and it is
obviously optimal.

We use this reduction to in general select approximative directions instead of
pivot columns.

Alan Ayala (H) ALORA July 14, 2017 24 / 30



Numerical Experiments Parallel implementation

Reduction with tournament pivoting

Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a m-by-10
matrix using 3 processors.
The umber of messages (two) is independent of the number of columns and it is
obviously optimal.
We use this reduction to in general select approximative directions instead of
pivot columns.

Alan Ayala (H) ALORA July 14, 2017 24 / 30



Numerical Experiments Parallel implementation

PALORA: Parallel ALORA using QRCP.
CALRQR: Low-rank version of CARRQR.
PDGEKQP: A low-rank version of the ScaLapack routine PDGEQP.

Figure: Low-rank approximation of matrices GKS (left), and Phillips (right), size
m = n = 512.
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Numerical Experiments Modified ALORA for integral equations.

ALORA_IE: modified ALORA for integral equations

We create a (hierarchical) partition of the domain.
In such a way that the matrix corresponding to each subdomain has a best
fitting line which direction can be approximated with its gravity center.
Take advantage of the rapidly decreasing singular values.
Construct a linear cost Householder reflection.
Example: Consider the inner Dirichlet problem Au = f

Au(x) =
1

4π

∫
Γ

u(y)

|x− y|dsy.

Defined over a 3D domain Γ.
1 Discretize the equation by the classical Boundary element method and get the

linear system Ax = b.
2 Factorize A using QRCP, ALORA_IE, and the Adaptive Cross Approximation

(ACA) algorithm.
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