ALORA: Affine low-rank approximation

Alan Ayala

Xavier Claeys

Laura Grigori

・ロン ・日ン ・ヨン・

Inria Paris Pierre et Marie Curie University alan.ayala-obregon@inria.fr

SIAM Annual Meeting Pittsburgh, July 14, 2017

1 / 30

July 14, 2017

• Classical low-rank algorithms can generate large errors of approximation.

2 / 30

・ロト ・回ト ・モト ・モト

July 14, 2017

- Classical low-rank algorithms can generate large errors of approximation.
- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.

Ínnia

2 / 30

July 14, 2017

・ロト ・日下・ ・ ヨト・・

- Classical low-rank algorithms can generate large errors of approximation.
- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.
- Matrix (hierarchical) structure must be exploited to increase precision with small cost.

July 14, 2017

2/30

・ロン ・日ン ・ヨン・

- Classical low-rank algorithms can generate large errors of approximation.
- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.
- Matrix (hierarchical) structure must be exploited to increase precision with small cost.
- Black-box fast solvers can efficiently replace classical solvers for PDE's and integral equations.

2/30

July 14, 2017

・ロン ・日ン ・ヨン・

Truncated SVD

Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$, there exits orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$A = U\Sigma V^{T} = \begin{bmatrix} u_{1} \cdots u_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \\ & 0 \end{bmatrix} \begin{bmatrix} v_{1} \cdots v_{n} \end{bmatrix}^{T}.$$

where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$ are the singular values and u_j and v_j are the left and right singular vectors associated to σ_j .

3 / 30

July 14, 2017

イロト イヨト イヨト イヨト

Truncated SVD

Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$, there exits orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$A = U\Sigma V^{T} = \begin{bmatrix} u_{1} \cdots u_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \\ & 0 \end{bmatrix} \begin{bmatrix} v_{1} \cdots v_{n} \end{bmatrix}^{T}.$$

where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$ are the singular values and u_j and v_j are the left and right singular vectors associated to σ_j . Cost: $\mathcal{O}(mn^2)$.

3 / 30

July 14, 2017

イロト イヨト イヨト イヨト

Truncated SVD

Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$, there exits orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$A = U\Sigma V^{T} = \begin{bmatrix} u_{1} \cdots u_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \\ & 0 \end{bmatrix} \begin{bmatrix} v_{1} \cdots v_{n} \end{bmatrix}^{T}.$$

where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$ are the singular values and u_j and v_j are the left and right singular vectors associated to σ_j . Cost: $\mathcal{O}(mn^2)$.

The truncated SVD decomposition is defined as

$$\mathcal{T}_k(A) := U_k \Sigma_k V_k^T, \tag{1}$$

where $U_k := [u_1 \cdots u_k], \Sigma_k := \operatorname{diag}(\sigma_1, \dots, \sigma_k)$ and $V_k := [v_1 \cdots v_k].$

For the spectral and Frobenius norms it holds

$$\|\mathcal{T}_k(A) - A\|_2 = \sigma_{k+1}, \qquad \|\mathcal{T}_k(A) - A\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_n^2}.$$

4 / 30

イロト イヨト イヨト イヨト

July 14, 2017

For the spectral and Frobenius norms it holds

$$\|\mathcal{T}_k(A) - A\|_2 = \sigma_{k+1}, \qquad \|\mathcal{T}_k(A) - A\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_n^2}.$$

Theorem (Eckart and Young)

Let $A \in \mathbb{R}^{m \times n}$, then

$$\|\mathcal{T}_k(A) - A\| = \min\{\|A - B\|: B \in \mathbb{R}^{m \times n} \text{ has at most rank } k\}$$

holds for any unitarily invariant norm.

(2)

E

・ロト ・日下・ ・ ヨト・・

For the spectral and Frobenius norms it holds

$$\|\mathcal{T}_k(A) - A\|_2 = \sigma_{k+1}, \qquad \|\mathcal{T}_k(A) - A\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_n^2}.$$

Theorem (Eckart and Young)

Let $A \in \mathbb{R}^{m \times n}$, then

$$\|\mathcal{T}_k(A) - A\| = \min\{\|A - B\|: B \in \mathbb{R}^{m \times n} \text{ has at most rank } k\}$$
(2)

holds for any unitarily invariant norm.

Remark

• Problem (2) has a unique solution when the Frobenius norm is used, provided all σ_i are different.

For the spectral and Frobenius norms it holds

$$\|\mathcal{T}_k(A) - A\|_2 = \sigma_{k+1}, \qquad \|\mathcal{T}_k(A) - A\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_n^2}.$$

Theorem (Eckart and Young)

Let $A \in \mathbb{R}^{m \times n}$, then

$$\|\mathcal{T}_k(A) - A\| = \min\{\|A - B\|: B \in \mathbb{R}^{m \times n} \text{ has at most rank } k\}$$
(2)

holds for any unitarily invariant norm.

Remark

- Problem (2) has a unique solution when the Frobenius norm is used, provided all σ_i are different.
- If the spectral norm is used, the solutions are not unique since, e.g. for any $0 \leq \theta \leq 1, B = \mathcal{T}_k(A) - \theta \sigma_{k+1} U_k V_k^T$ is a solution, [Gu, M., 2014].

Householder reflections

Definition (Householder reflector)

It is s a linear transformation that describes a reflection about an hyperplane containing the origin and orthogonal to ${\bf u},$

$$\mathcal{H}_{\mathbf{u}} := I - \frac{2}{\|\mathbf{v}\|^2} \mathbf{v} \mathbf{v}^T, \tag{3}$$

where $\mathbf{v} = \mathbf{u} - \|\mathbf{u}\|\mathbf{e}$ is the Householder vector and $\mathbf{e} = (1, 0, \cdots, 0)^T$.

イロト イヨト イヨト イヨト

Householder reflections

Definition (Householder reflector)

It is s a linear transformation that describes a reflection about an hyperplane containing the origin and orthogonal to ${\bf u},$

$$\mathcal{H}_{\mathbf{u}} := I - \frac{2}{\|\mathbf{v}\|^2} \mathbf{v} \mathbf{v}^T, \tag{3}$$

where $\mathbf{v} = \mathbf{u} - \|\mathbf{u}\|\mathbf{e}$ is the Householder vector and $\mathbf{e} = (1, 0, \dots, 0)^T$.

Since $\mathcal{H}_{\mathbf{u}}(\mathbf{u}) = ||\mathbf{u}||\mathbf{e}$, a complete pivoted QR factorization can be constructed via Householder reflections, this is

$$A\Pi = \underbrace{Q_1 \cdots Q_n}_{=:Q} R = QR,\tag{4}$$

イロト イヨト イヨト イヨト

where Π is a permutation, $Q_1 = \mathcal{H}_1$ and for $j = \{2 \cdots n\}$

$$Q_j = \begin{bmatrix} I_j & 0\\ 0 & \mathcal{H}_j \end{bmatrix}$$

 I_j : Identity matrix of size $(j-1) \times (j-1)$.

July 14, 2017 5 / 30

For a rank-k QR approximation only consider the first k reflections as follows

$$A = QR\Pi^{T} = m \begin{bmatrix} k & r-k & k & n-k \\ Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} k & r-k & \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^{T}$$
$$= \underbrace{Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^{T}}_{=:A_{k}} + \underbrace{Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^{T}}_{\text{"residual"}}.$$

where $Q = Q_1 \cdots Q_k$, and

 $||A - A_k|| = ||Q_{12}[0 \quad R_{22}]\Pi^T|| = ||[0 \quad R_{22}]|| = ||R_{22}||.$ (5)

6 / 30

æ

July 14, 2017

(ロ) (四) (日) (日) (日)

For a rank-k QR approximation only consider the first k reflections as follows

$$A = QR\Pi^{T} = m \begin{bmatrix} k & r-k & k & n-k \\ Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} k & R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^{T}$$
$$= \underbrace{Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^{T}}_{=:A_{k}} + \underbrace{Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^{T}}_{\text{"residual"}}.$$

where $Q = Q_1 \cdots Q_k$, and

$$||A - A_k|| = ||Q_{12}[0 \quad R_{22}]\Pi^T|| = ||[0 \quad R_{22}]|| = ||R_{22}||.$$
(5)

• Computing A_k is typically faster than computing the TSVD.

July 14, 2017

6 / 30

イロト イヨト イヨト イヨ

For a rank-k QR approximation only consider the first k reflections as follows

$$A = QR\Pi^{T} = m \begin{bmatrix} k & r-k & k & n-k \\ Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} k & R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^{T}$$
$$= \underbrace{Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^{T}}_{=:A_{k}} + \underbrace{Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^{T}}_{\text{"residual"}}.$$

where $Q = Q_1 \cdots Q_k$, and

$$||A - A_k|| = ||Q_{12}[0 \quad R_{22}]\Pi^T|| = ||[0 \quad R_{22}]|| = ||R_{22}||.$$
(5)

- Computing A_k is typically faster than computing the TSVD.
- The choice of Π is of great importance to control the error.

July 14, 2017

6 / 30

・ロト ・日下・ ・ヨト・

Alan Ayala

For a rank-k QR approximation only consider the first k reflections as follows

$$A = QR\Pi^{T} = m \begin{bmatrix} k & r-k & k & n-k \\ Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} k & R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^{T}$$
$$= \underbrace{Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^{T}}_{=:A_{k}} + \underbrace{Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^{T}}_{\text{"residual"}}.$$

where $Q = Q_1 \cdots Q_k$, and

$$||A - A_k|| = ||Q_{12}[0 \quad R_{22}]\Pi^T|| = ||[0 \quad R_{22}]|| = ||R_{22}||.$$
(5)

・ロト ・日下・ ・ ヨト・・

July 14, 2017

6 / 30

- Computing A_k is typically faster than computing the TSVD.
- The choice of Π is of great importance to control the error.
- Note that $\sigma_k(A) = \sigma_k(R)$.

イロト イヨト イヨト イヨ

Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)

Let us consider

$$R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

where $R_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., maximum determinant in absolute value) among all $k \times k$ submatrices of R. Then

$$\|\mathbf{R}_{22} - R_{21}R_{11}^{-1}R_{12}\|_{\max} \le (k+1)\sigma_{k+1}(R).$$

where $||M||_{\max} := \max_{i,j} |M(i,j)|.$

Al	an	Av	ala	

Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)

Let us consider

$$R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

where $R_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., maximum determinant in absolute value) among all $k \times k$ submatrices of R. Then

$$\|\mathbf{R}_{22} - R_{21}R_{11}^{-1}R_{12}\|_{\max} \le (k+1)\sigma_{k+1}(R).$$

where $||M||_{\max} := \max_{i,j} |M(i,j)|.$

Good news: Since for a low-rank QR factorization we have $R_{21} = 0$, then

```
\|\mathbf{R}_{22}\|_{\max} < (k+1)\sigma_{k+1}(A).
```

A 1			
- A1	an	Aya	uа

・ロト ・日ト ・ヨト ・ヨト

July 14, 2017

7 / 30

Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)

Let us consider

$$R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

where $R_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., maximum determinant in absolute value) among all $k \times k$ submatrices of R. Then

$$\|\mathbf{R}_{22} - R_{21}R_{11}^{-1}R_{12}\|_{\max} \le (k+1)\sigma_{k+1}(R).$$

where $||M||_{\max} := \max_{i,j} |M(i,j)|.$

Good news: Since for a low-rank QR factorization we have $R_{21} = 0$, then

$$\|\mathbf{R}_{22}\|_{\max} \le (k+1)\sigma_{k+1}(A).$$

Bad news: Finding a submatrix of maximum volume has been proven to be NP-hard, Civril and Magdon-Ismail (2011).

Alan Ayala	ALORA	

Choosing the pivot using the classical column pivoting QRCP

QRCP takes as pivot the column of largest norm at each step, the error is bounded as

$$\|\mathbf{R}_{22}\|_{2} \le 2^{k} \sqrt{n-k} \,\sigma_{k+1}(A).$$
(6)

In general, $\|\mathbf{R}_{22}\|_2 \le g(k, n) \sigma_{k+1}(A)$,

イロト イヨト イヨト イヨト

Choosing the pivot using the classical column pivoting QRCP

QRCP takes as pivot the column of largest norm at each step, the error is bounded as

$$\|\mathbf{R}_{22}\|_{2} \le 2^{k} \sqrt{n-k} \,\sigma_{k+1}(A). \tag{6}$$

In general, $\|\mathbf{R}_{22}\|_2 \le g(k, n) \sigma_{k+1}(A)$,

Method	Reference	g(k,n)	Time
Pivoted QR	[Golub, 1965]	$\sqrt{(n-k)}2^k$	O(mnk)
High RRQR	[Foster, 1986]	$\sqrt{n(n-k)}2^{n-k}$	$O(mn^2)$
High RRQR	[Chan, 1987]	$\sqrt{n(n-k)}2^{n-k}$	$O(mn^2)$
RRQR	[Hong and Pan, 1992]	$\sqrt{k(n-k)+k}$	-
Low RRQR	[Chan and Hansen, 1994]	$\sqrt{(k+1)n}2^{k+1}$	$O(mn^2)$
Hybrid-I RRQR	[Chandr. and Ipsen, 1994]	$\sqrt{(k+1)(n-k)}$	-
Hybrid-II RRQR		$\sqrt{(k+1)(n-k)}$	-
Hybrid-III RRQR		$\sqrt{(k+1)(n-k)}$	-
Algorithm 3	[Gu and Eisenstat, 1996]	$\sqrt{k(n-k)+1}$	-
Algorithm 4		$\sqrt{f^2k(n-k)+1}$	$O(kmn \log_f(n))$
DGEQPY	[Bischof and Orti, 1998]	$O(\sqrt{(k+1)^2(n-k)})$	-
DGEQPX		$O(\sqrt{(k+1)(n-k)})$	-
SPQR	[Stewart, 1999]	-	-
PT Algorithm 1	[Pan and Tang, 1999]	$O(\sqrt{(k+1)(n-k)})$	-
PT Algorithm 2		$O(\sqrt{(k+1)^2(n-k)})$	-
PT Algorithm 3		$O(\sqrt{(k+1)^2(n-k)})$	-
Pan Algorithm 2	[Pan, 2000]	$O(\sqrt{k(n-k)+1})$	-

Figure: Different algorithms for low-rank QR approximation, Mahoney et al. (2010).

Alan Ayala

Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm 1 $[A_k] =$ SubspaceIter (A, Ω, k, q)

Requires: $\Omega \in \mathbb{R}^{n \times l}$, with $l \ge k$. **Returns:** rank-k approximation of A.

- 1: Perform $Y = (AA^T)^q A \Omega$.
- 2: Compute (economic) QR decomposition Y = QR.
- 3: Form $B = Q^T A$.
- 4: Set $A_k := Q\mathcal{T}_k(B)$.

(ロ) (日) (日) (日) (日)

Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm 2 $[A_k] =$ SubspaceIter (A, Ω, k, q)

Requires: $\Omega \in \mathbb{R}^{n \times l}$, with $l \ge k$. **Returns:** rank-k approximation of A. 1: Perform $Y = (AA^T)^q A\Omega$. 2: Compute (economic) QR decomposition Y = QR. 3: Form $B = Q^T A$. 4: Set $A_k := Q\mathcal{T}_k(B)$.

• Note that setting k = l = 1 then Algorithm 1 is the classical power method.

July 14, 2017

9 / 30

イロト イヨト イヨト イヨ

Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm 3 $[A_k] =$ SubspaceIter (A, Ω, k, q)

Requires: $\Omega \in \mathbb{R}^{n \times l}$, with $l \ge k$. **Returns:** rank-k approximation of A. 1: Perform $Y = (AA^T)^q A\Omega$. 2: Compute (economic) QR decomposition Y = QR. 3: Form $B = Q^T A$. 4: Set $A_k := Q\mathcal{T}_k(B)$.

- Note that setting k = l = 1 then Algorithm 1 is the classical power method.
- If Ω is a random Gaussian matrix, then setting l = 2k and q = 0, we get the expected error [Halko, N. et al, 2014]

$$\mathbb{E}\|A - A_k\|_2 \le \left(2 + 4\sqrt{\frac{2\min\{m, n\}}{k - 1}}\right)\sigma_{k+1}.$$

July 14, 2017

9 / 30

Error of subspace iteration approximation

10 / 30

ł

July 14, 2017

イロト イヨト イヨト イヨト

Alan Ayala

Error of subspace iteration approximation

To find the error of approximation, consider the SVD of $A = U\Sigma V^T$ and the partition

$$\widehat{\Omega} := V^T \Omega = \begin{bmatrix} l-p \\ n-l+p \end{bmatrix} \begin{bmatrix} \widehat{\Omega}_1 \\ \widehat{\Omega}_2 \end{bmatrix}, \quad 0 \le p \le l-k.$$

If $\widehat{\Omega}_1$ is full row rank, then the error is bounded as ([Gu, M., 2014])

$$\|A - A_k\|_2 \le \sqrt{\sigma_{k+1}^2 + \omega^2 \|\widehat{\Omega}_2\|_2^2 \|\widehat{\Omega}_1^{\dagger}\|_2^2}, \tag{7}$$

where $\omega = \sqrt{k} \sigma_{l-p+1} \left(\frac{\sigma_{l-p+1}}{\sigma_k}\right)^{2q}$ and $\widehat{\Omega}_1 \widehat{\Omega}_1^{\dagger} = I.$

July 14, 2017

10 / 30

・ロト ・日ト ・ヨト

Error of subspace iteration approximation

To find the error of approximation, consider the SVD of $A = U\Sigma V^T$ and the partition

$$\widehat{\Omega} := V^T \Omega = \begin{bmatrix} l-p \\ n-l+p \end{bmatrix} \begin{bmatrix} \widehat{\Omega}_1 \\ \widehat{\Omega}_2 \end{bmatrix}, \quad 0 \le p \le l-k.$$

If $\widehat{\Omega}_1$ is full row rank, then the error is bounded as ([Gu, M., 2014])

$$\|A - A_k\|_2 \le \sqrt{\sigma_{k+1}^2 + \omega^2 \|\widehat{\Omega}_2\|_2^2 \|\widehat{\Omega}_1^\dagger\|_2^2},\tag{7}$$

where $\omega = \sqrt{k}\sigma_{l-p+1} \left(\frac{\sigma_{l-p+1}}{\sigma_k}\right)^{2q}$ and $\widehat{\Omega}_1 \widehat{\Omega}_1^\dagger = I.$

Remark

If G is a $(l-p) \times l$ is a Gaussian matrix, then rank(G) = l - p with probability 1.

10 / 30

・ロト ・日下・ ・ヨト・

July 14, 2017

How do the singular vectors converge?

• We need to investigate the rate at which we are approaching to a best fitting subspace.

11 / 30

э

July 14, 2017

・ロン ・日ン ・ヨン・

How do the singular vectors converge?

- We need to investigate the rate at which we are approaching to a best fitting subspace.
- ² How do we measure the distance between subspaces?
 - Consider $W_1, W_2 \in \mathbb{R}^{m \times k}$ with orthogonal columns.
 - Let let $S_1 := ran(W_1)$ and $S_2 := ran(W_2)$, then

 $dist(S_1, S_2) := \|W_1 W_1^T - W_2 W_2^T\|_2.$

11 / 30

・ロン ・日ン ・ヨン・

July 14, 2017

How do the singular vectors converge?

• We need to investigate the rate at which we are approaching to a best fitting subspace.

2 How do we measure the distance between subspaces?

- Consider $W_1, W_2 \in \mathbb{R}^{m \times k}$ with orthogonal columns.
- Let let $S_1 := ran(W_1)$ and $S_2 := ran(W_2)$, then

 $dist(S_1, S_2) := \|W_1 W_1^T - W_2 W_2^T\|_2.$

Theorem (Ayala et al., 2017)

Using the notation from Algorithm 1, Let $S_u = \operatorname{ran}([u_1 \cdots u_l])$ and $S_q = \operatorname{ran}(Q)$, considering $\widehat{\Omega}_1$ nonsingular and p = 0, then

$$\operatorname{dist}(S_u, S_q) \le \left(\frac{\sigma_{l+1}}{\sigma_l}\right)^{2q+1} \|\widehat{\Omega}_2\|_2 \|\widehat{\Omega}_1^{-1}\|_2,$$

provided $\sigma_{l+1} > \sigma_l$.

(ロ) (日) (日) (日) (日)

Finding a good Householder vector

When choosing the pivot as one of the columns of A the questions that arise are: How close the error is with respect to the truncated SVD?, Which choice of pivot is the optimal?.

æ

イロン イヨン イヨン イヨン

Finding a good Householder vector

When choosing the pivot as one of the columns of A the questions that arise are: How close the error is with respect to the truncated SVD?, Which choice of pivot is the optimal?.

Given $A = [a_1 \ a_2 \ \cdots \ a_n]$, let $u \in \mathbb{R}^m$ be any unitary vector, then

$$\mathcal{H}_u A = \begin{bmatrix} h_{a_1} & h_{a_2} & \cdots & h_{a_n} \end{bmatrix}.$$

Figure: Householder reflection: p_j and d_j denote the projections of a_j along and orthogonal to u respectively.

	< 🗆	▶ ▲곱▶ ▲콜▶	< ≣ ► _ =	500
Alan Ayala	ALORA	July	14, 2017	12 / 30

Error for a rank-one approximation with arbitrary Householder vector.

$$\mathcal{H}_{u}A = \begin{bmatrix} \|a_{1}\|_{2}\cos(\varphi_{1}) & \|a_{2}\|_{2}\cos(\varphi_{2}) & \cdots & \|a_{n}\|_{2}\cos(\varphi_{n}) \\ r_{1} & r_{2} & \cdots & r_{n} \end{bmatrix}, \qquad (8)$$
where $r_{i} \in \mathbb{R}^{m-1}$.

æ

イロト イヨト イヨト イヨト

Error for a rank-one approximation with arbitrary Householder vector.

$$\mathcal{H}_{u}A = \begin{bmatrix} \|a_{1}\|_{2}\cos(\varphi_{1}) & \|a_{2}\|_{2}\cos(\varphi_{2}) & \cdots & \|a_{n}\|_{2}\cos(\varphi_{n}) \\ r_{1} & r_{2} & \cdots & r_{n} \end{bmatrix},$$
(8)

where $r_j \in \mathbb{R}^{m-1}$. The rank-one matrix

$$A_{1} = \frac{u}{\|u\|_{2}} (\|a_{1}\|_{2} \cos(\varphi_{1}), \cdots, \|a_{n}\|_{2} \cos(\varphi_{n}))$$
(9)

approximates A with an error given by the norm of the residual matrix $E := [r_1 \cdots r_n]$. By the Pythagorean theorem $||r_j||_2 = ||a_j||_2 \sin(\varphi_j)$, then

$$||A - A_1||_F^2 = ||E||_F^2 = \sum_{j=1}^n ||r_j||_2^2 = \sum_{j=1}^n ||a_j||_2^2 \sin^2(\varphi_j).$$
(10)

・ロン ・日ン ・ヨン・

July 14, 2017

13 / 30

Error for a rank-one approximation with arbitrary Householder vector.

$$\mathcal{H}_{u}A = \begin{bmatrix} \|a_{1}\|_{2}\cos(\varphi_{1}) & \|a_{2}\|_{2}\cos(\varphi_{2}) & \cdots & \|a_{n}\|_{2}\cos(\varphi_{n}) \\ r_{1} & r_{2} & \cdots & r_{n} \end{bmatrix},$$
(8)

where $r_j \in \mathbb{R}^{m-1}$. The rank-one matrix

$$A_{1} = \frac{u}{\|u\|_{2}} (\|a_{1}\|_{2} \cos(\varphi_{1}), \cdots, \|a_{n}\|_{2} \cos(\varphi_{n}))$$
(9)

approximates A with an error given by the norm of the residual matrix $E := [r_1 \cdots r_n]$. By the Pythagorean theorem $||r_j||_2 = ||a_j||_2 \sin(\varphi_j)$, then

$$\|A - A_1\|_F^2 = \|E\|_F^2 = \sum_{j=1}^n \|r_j\|_2^2 = \sum_{j=1}^n \|a_j\|_2^2 \sin^2(\varphi_j).$$
(10)

13 / 30

July 14, 2017

Since $d_j = a_j - p_j$, then

$$||E||_F^2 = \sum_{j=1}^n ||d_j||_2^2.$$
(11)

Alan Ayala

Error for a rank-one approximation with arbitrary Householder vector.

$$\mathcal{H}_{u}A = \begin{bmatrix} \|a_{1}\|_{2}\cos(\varphi_{1}) & \|a_{2}\|_{2}\cos(\varphi_{2}) & \cdots & \|a_{n}\|_{2}\cos(\varphi_{n}) \\ r_{1} & r_{2} & \cdots & r_{n} \end{bmatrix},$$
(8)

where $r_j \in \mathbb{R}^{m-1}$. The rank-one matrix

$$A_{1} = \frac{u}{\|u\|_{2}} (\|a_{1}\|_{2} \cos(\varphi_{1}), \cdots, \|a_{n}\|_{2} \cos(\varphi_{n}))$$
(9)

approximates A with an error given by the norm of the residual matrix $E := [r_1 \cdots r_n]$. By the Pythagorean theorem $||r_j||_2 = ||a_j||_2 \sin(\varphi_j)$, then

$$|A - A_1||_F^2 = ||E||_F^2 = \sum_{j=1}^n ||r_j||_2^2 = \sum_{j=1}^n ||a_j||_2^2 \sin^2(\varphi_j).$$
(10)

・ロト ・日ト ・ヨト

July 14, 2017

13 / 30

Since $d_j = a_j - p_j$, then

$$||E||_F^2 = \sum_{j=1}^n ||d_j||_2^2.$$
(11)

Which choice of u minimizes this error?

Alan Ayala

ALORA

Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points a_j 's to itself. This is the *total least-square problem*.

・ロン ・日ン ・ヨン・

Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points a_j 's to itself. This is the *total least-square problem*.

Define the matrix

$$Y := [a_1 - g \cdots a_n - g]. \tag{12}$$

• The best fitting line of the points $\{a_j$'s $\}$ is given by

$$\mathcal{L} := \{ g + \mathbf{u}\tau \mid \tau \in \mathbb{R} \}.$$
(13)

・ロン ・日ン ・ヨン・

July 14, 2017

where $g := (1/n) \sum_{j=1}^{n} a_j$ and $u = u_1(Y)$, [Schneider et al., 2003].

14 / 30

Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points a_j 's to itself. This is the *total least-square problem*.

Define the matrix

$$Y := [a_1 - g \cdots a_n - g]. \tag{12}$$

• The best fitting line of the points $\{a_j$'s $\}$ is given by

$$\mathcal{L} := \{ g + \mathbf{u}\tau \mid \tau \in \mathbb{R} \}.$$
(13)

where $g := (1/n) \sum_{j=1}^{n} a_j$ and $u = u_1(Y)$, [Schneider et al., 2003].

• If we impose the condition that the line passes through the origin, then the solution would be

$$\tilde{\mathcal{L}} := \{ \ \tilde{\boldsymbol{u}}\tau \quad | \quad \tau \in \mathbb{R} \}.$$
(14)

where $\tilde{u} = u_1(A)$.

Best fitting (affine) subspace.

Figure: Solution of the total least-square problem (left) and its solution by imposing the condition to pass through the origin O (right).

Best fitting (affine) subspace.

Figure: Solution of the total least-square problem (left) and its solution by imposing the condition to pass through the origin O (right).

- To approximate $u_1(Y)$ we can use the fact that it is the principal component of $C = YY^T$, the *covariance matrix*.
- There exists work on PCA on trimming around affine subspaces [Croux et al., 2014].

Alan Ayala

Consider $c = [1, \dots, 1]^T \in \mathbb{R}^m$. Let $u = u_1(Y) = u_1(A - gc)$ and define

$$B = A - T, \qquad T = (g - \alpha u)c, \tag{15}$$

where $\alpha \in \mathbb{R}$.

• Considering $g_B = (1/n) \sum_{j=1}^n b_j$, then clearly $g_B = u$.

・ロン ・四 と ・ 日 ・ ・ 日 ・

Consider $c = [1, \dots, 1]^T \in \mathbb{R}^m$. Let $u = u_1(Y) = u_1(A - gc)$ and define

$$B = A - T, \qquad T = (g - \alpha u)c, \tag{15}$$

where $\alpha \in \mathbb{R}$.

• Considering $g_B = (1/n) \sum_{j=1}^n b_j$, then clearly $g_B = u$.

• Next, we prove that $u_1(B) = \frac{g_B}{\|g_B\|}$ and then the best fitting line of B is

$$\mathcal{L}^{(B)} := \left\{ \begin{array}{ll} \frac{g_B}{\|g_B\|} \tau & | \quad \tau \in \mathbb{R} \right\}.$$

(日) (四) (三) (三) (三)

Consider $c = [1, \dots, 1]^T \in \mathbb{R}^m$. Let $u = u_1(Y) = u_1(A - gc)$ and define

$$B = A - T, \qquad T = (g - \alpha u)c, \tag{15}$$

where $\alpha \in \mathbb{R}$.

• Considering $g_B = (1/n) \sum_{j=1}^n b_j$, then clearly $g_B = u$.

• Next, we prove that $u_1(B) = \frac{g_B}{\|g_B\|}$ and then the best fitting line of B is $C^{(B)} := \begin{cases} g_B \\ g_B \\$

$$\mathcal{L}^{(B)} := \left\{ \frac{g_B}{\|g_B\|} \tau \mid \tau \in \mathbb{R} \right\}.$$

Lemma

Let $r = \operatorname{rank}(Y) \ \alpha \in R$, then $\operatorname{rank}(B) = r$ and

 $u_j(B) = u_j(Y) \qquad \forall j \in \{1 \cdots r\}.$

 $\sigma_1(B) = \sqrt{\sigma_1(Y)^2 + n\alpha^2} \quad \text{and} \quad v_1(B) = (\alpha c + \sigma_1(Y)v_1(Y))/\sigma_1(B).$

$$\sigma_j(B) = \sigma_j(Y) \quad \text{and} \quad v_j(B) = v_j(Y) \quad \forall j \in \{2 \cdots r\}.$$

Lemma

Let B_k be a rank-k approximation of B such that

$$||B - B_k||_2 \le g(k, n)\sigma_{k+1}(B),$$

where g is a function of k and n. Define $A_{k+1} = B_k + T$, then

$$||A - A_{k+1}||_2 \le g(k, n)\sigma_{k+1}(A).$$

17 / 30

臣

July 14, 2017

イロン イヨン イヨン イヨン

Lemma

Let B_k be a rank-k approximation of B such that

$$||B - B_k||_2 \le g(k, n)\sigma_{k+1}(B),$$

where g is a function of k and n. Define $A_{k+1} = B_k + T$, then

 $||A - A_{k+1}||_2 \le g(k, n)\sigma_{k+1}(A).$

Corollary

$$\sigma_{k+1}(B) \le \sigma_{k+1}(A) \le \sigma_k(B). \tag{16}$$

イロト イヨト イヨト イヨト

17 / 30

æ

A	lan	Ay	a	la

Lemma

Consider $A_l = B_{l-1} + T$, where B_{l-1} is a rank l-1 approximation of B, then

$$||A - A_l||_2 \le g(l, n, C)\sigma_{l+1}(A),$$

where $C == (A - g)(A - g)^T$ is the covariance matrix and

$$g(l, n, C) = \sqrt{\frac{r + s\sqrt{\frac{n-l}{l}}}{r - s\sqrt{\frac{l}{n-l}}}}$$

with $r = \frac{\operatorname{tr}(C)}{n}$ and $s = \sqrt{\frac{\operatorname{tr}(C^2)}{n} - r^2}$.

18 / 30

・ロン ・日ン ・ヨン・

Lemma

Consider $A_l = B_{l-1} + T$, where B_{l-1} is a rank l-1 approximation of B, then

$$||A - A_l||_2 \le g(l, n, C)\sigma_{l+1}(A),$$

where $C == (A - g)(A - g)^T$ is the covariance matrix and

$$g(l, n, C) = \sqrt{\frac{r + s\sqrt{\frac{n-l}{l}}}{r - s\sqrt{\frac{l}{n-l}}}}$$

with
$$r = \frac{\operatorname{tr}(C)}{n}$$
 and $s = \sqrt{\frac{\operatorname{tr}(C^2)}{n} - r^2}$

Proof.

Use Theorem 3.1 from [Merikosky et al., 1983] on matrix C.

・ロト ・日下・ ・ ヨト・・

Affine low rank approximation (ALORA)

Algorithm 4 $[A_{k+1}] = \text{ALORA}(A,k)$

Require: $A = [a_1 \ a_2 \ \cdots \ a_n] \in \mathbb{R}^{m \times n}$. **Returns:** rank k + 1 approximation of A.

1:
$$g = (1/n) \sum_{j=1}^{n} a_j$$
, $c = [1 \cdots 1] \in \mathbb{R}^{1 \times n}$.
2: $u := \text{first singular vector of } Y$.
3: $\alpha = g(1)/u(1)$.
4: $T = (g - \alpha u)c$.
5: Compute B_k : a rank-k approximation of $B = Y + \alpha uc$.
6: $A_{k+1} = T + B_k$
Ensure: $||A - A_{k+1}||_2 \le \sigma_k(A)$

Note that if the directions of the fitting lines are computed using a rank-revealing QR algorithm, then ALORA will produce a translated QR factorization.

19 / 30

(ロ) (日) (日) (日) (日)

Approximation error using ALORA with QRCP

• Using QRCP to approximate the direction of the best fitting line, then ALORA yields a QRCP factorization plus a rank-one translation matrix.

Figure: Low-rank approximation of a random matrix with slowly decreasing singular values (left), and the Kahan matrix (right), size m = n = 256.

Alan Ayala	
------------	--

July 14, 2017 20 / 30

ALORA with QRCP

• For matrices with slowly decreasing singular values, typically the first part of the spectrum is better approximated by ALORA.

Figure: Low-rank approximation of matrices GKS (left), and Baart1 (right), size m = n = 256.

Approximation error using ALORA with Subspace Iteration

- Using Subspace iteration (Alg. 1 with p = 2, q = 1), to approximate the direction of the best fitting line, then ALORA improves the convergence error.
- The error get smaller while increasing p or q in Alg. 1.

Figure: Low-rank approximation of matrices GKS (left), and Baart1 (right), size m = n = 256.

A	lan	Ay	ra.	la

• • • • • • • • • • •

Approximation of singular values

- For QRCP (top) we plot $\frac{|R(i,i)|}{\sigma_i}$.
- For ALORA (bottom) we plot $\frac{|R^{(B)}(i,i)|}{\sigma_i}$.

July 14, 2017 23 / 30

э

・ロト ・日ト ・ヨト・

Reduction with tournament pivoting

• Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a *m*-by-10 matrix using 3 processors.

24 / 30

July 14, 2017

・ロト ・日下 ・ヨン

Reduction with tournament pivoting

- Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a *m*-by-10 matrix using 3 processors.
- The umber of messages (two) is independent of the number of columns and it is obviously optimal.

24 / 30

July 14, 2017

Image: A math a math

Reduction with tournament pivoting

- Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a *m*-by-10 matrix using 3 processors.
- The umber of messages (two) is independent of the number of columns and it is obviously optimal.
- We use this reduction to in general select approximative *directions* instead of *pivot columns*.

July 14, 2017

24 / 30

- PALORA: Parallel ALORA using QRCP.
- CALRQR: Low-rank version of CARRQR.
- PDGEKQP: A low-rank version of the ScaLapack routine PDGEQP.

Figure: Low-rank approximation of matrices GKS (left), and Phillips (right), size m = n = 512.

ALORA_IE: modified ALORA for integral equations

- We create a (hierarchical) partition of the domain.
- In such a way that the matrix corresponding to each subdomain has a best fitting line which direction can be approximated with its gravity center.
- Take advantage of the rapidly decreasing singular values.
- Construct a linear cost Householder reflection.
- Example: Consider the inner Dirichlet problem Au = f

$$\mathcal{A}u(x) = \frac{1}{4\pi} \int_{\Gamma} \frac{u(y)}{|x-y|} ds_y.$$

Defined over a 3D domain Γ .

- Discretize the equation by the classical Boundary element method and get the linear system Ax = b.
- Factorize A using QRCP, ALORA_IE, and the Adaptive Cross Approximation (ACA) algorithm.

26 / 30

・ロン ・日ン ・ヨン・

・ロト ・四ト ・ヨト ・ヨト

27 / 30

28 / 30

æ

July 14, 2017

1600

(日) (四) (王) (王) (王)

29 / 30

æ

July 14, 2017

・ロト ・回 ・ ・ ヨト ・ ヨ

References

- Demmel, J. W. and Grigori, L. and Gu, M. and Xiang, H. Communication avoiding rank revealing QR factorization with column pivoting, 2015.
- Gu, M.

Subspace Iteration Randomization and Singular Value Problems, 2014.

- Ayala, A. and Claeys X. and Grigori, L. ALORA: Affine low-rank approximation, 2017.

Schneider, P. and Eberly, D. Geometric Tools for Computer Graphics, 2003.

Merikosky, J. and Styan, G. and Wolkowicz, H. Bounds for Ratios of Eigenvalues Using Traces, 1983.

Halko, N. et al.

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, 2011.

30 / 30

・ロン ・日ン ・ヨン・