## ALORA: Affine low-rank approximation

Alan Ayala

Xavier Claeys

Laura Grigori

・ロン ・日ン ・ヨン・

Inria Paris Pierre et Marie Curie University alan.ayala-obregon@inria.fr

SIAM Annual Meeting Pittsburgh, July 14, 2017



1 / 30

July 14, 2017

• Classical low-rank algorithms can generate large errors of approximation.



2 / 30

・ロト ・回ト ・モト ・モト

July 14, 2017

- Classical low-rank algorithms can generate large errors of approximation.
- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.

Ínnia

2 / 30

July 14, 2017

・ロト ・日下・ ・ ヨト・・

- Classical low-rank algorithms can generate large errors of approximation.
- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.
- Matrix (hierarchical) structure must be exploited to increase precision with small cost.



July 14, 2017

2/30

・ロン ・日ン ・ヨン・

- Classical low-rank algorithms can generate large errors of approximation.
- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.
- Matrix (hierarchical) structure must be exploited to increase precision with small cost.
- Black-box fast solvers can efficiently replace classical solvers for PDE's and integral equations.

2/30

July 14, 2017

・ロン ・日ン ・ヨン・

#### Truncated SVD

Given  $A \in \mathbb{R}^{m \times n}$ ,  $m \ge n$ , there exits orthogonal matrices  $U \in \mathbb{R}^{m \times m}$  and  $V \in \mathbb{R}^{n \times n}$  such that

$$A = U\Sigma V^{T} = \begin{bmatrix} u_{1} \cdots u_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \\ & 0 \end{bmatrix} \begin{bmatrix} v_{1} \cdots v_{n} \end{bmatrix}^{T}.$$

where  $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$  are the singular values and  $u_j$  and  $v_j$  are the left and right singular vectors associated to  $\sigma_j$ .



3 / 30

July 14, 2017

イロト イヨト イヨト イヨト

#### Truncated SVD

Given  $A \in \mathbb{R}^{m \times n}$ ,  $m \ge n$ , there exits orthogonal matrices  $U \in \mathbb{R}^{m \times m}$  and  $V \in \mathbb{R}^{n \times n}$  such that

$$A = U\Sigma V^{T} = \begin{bmatrix} u_{1} \cdots u_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \\ & 0 \end{bmatrix} \begin{bmatrix} v_{1} \cdots v_{n} \end{bmatrix}^{T}.$$

where  $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$  are the singular values and  $u_j$  and  $v_j$  are the left and right singular vectors associated to  $\sigma_j$ . Cost:  $\mathcal{O}(mn^2)$ .



3 / 30

July 14, 2017

イロト イヨト イヨト イヨト

#### Truncated SVD

Given  $A \in \mathbb{R}^{m \times n}$ ,  $m \ge n$ , there exits orthogonal matrices  $U \in \mathbb{R}^{m \times m}$  and  $V \in \mathbb{R}^{n \times n}$  such that

$$A = U\Sigma V^{T} = \begin{bmatrix} u_{1} \cdots u_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \\ & 0 \end{bmatrix} \begin{bmatrix} v_{1} \cdots v_{n} \end{bmatrix}^{T}.$$

where  $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$  are the singular values and  $u_j$  and  $v_j$  are the left and right singular vectors associated to  $\sigma_j$ . Cost:  $\mathcal{O}(mn^2)$ .

The truncated SVD decomposition is defined as

$$\mathcal{T}_k(A) := U_k \Sigma_k V_k^T, \tag{1}$$

where  $U_k := [u_1 \cdots u_k], \Sigma_k := \operatorname{diag}(\sigma_1, \dots, \sigma_k)$  and  $V_k := [v_1 \cdots v_k].$ 

For the spectral and Frobenius norms it holds

$$\|\mathcal{T}_k(A) - A\|_2 = \sigma_{k+1}, \qquad \|\mathcal{T}_k(A) - A\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_n^2}.$$



4 / 30

イロト イヨト イヨト イヨト

July 14, 2017

For the spectral and Frobenius norms it holds

$$\|\mathcal{T}_k(A) - A\|_2 = \sigma_{k+1}, \qquad \|\mathcal{T}_k(A) - A\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_n^2}.$$

Theorem (Eckart and Young)

Let  $A \in \mathbb{R}^{m \times n}$ , then

$$\|\mathcal{T}_k(A) - A\| = \min\{\|A - B\|: B \in \mathbb{R}^{m \times n} \text{ has at most rank } k\}$$

holds for any unitarily invariant norm.



(2)

E

・ロト ・日下・ ・ ヨト・・

For the spectral and Frobenius norms it holds

$$\|\mathcal{T}_k(A) - A\|_2 = \sigma_{k+1}, \qquad \|\mathcal{T}_k(A) - A\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_n^2}.$$

Theorem (Eckart and Young)

Let  $A \in \mathbb{R}^{m \times n}$ , then

$$\|\mathcal{T}_k(A) - A\| = \min\{\|A - B\|: B \in \mathbb{R}^{m \times n} \text{ has at most rank } k\}$$
(2)

holds for any unitarily invariant norm.

#### Remark

• Problem (2) has a unique solution when the Frobenius norm is used, provided all  $\sigma_i$  are different.

For the spectral and Frobenius norms it holds

$$\|\mathcal{T}_k(A) - A\|_2 = \sigma_{k+1}, \qquad \|\mathcal{T}_k(A) - A\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_n^2}.$$

Theorem (Eckart and Young)

Let  $A \in \mathbb{R}^{m \times n}$ , then

$$\|\mathcal{T}_k(A) - A\| = \min\{\|A - B\|: B \in \mathbb{R}^{m \times n} \text{ has at most rank } k\}$$
(2)

holds for any unitarily invariant norm.

#### Remark

- Problem (2) has a unique solution when the Frobenius norm is used, provided all  $\sigma_i$  are different.
- If the spectral norm is used, the solutions are not unique since, e.g. for any  $0 \leq \theta \leq 1, B = \mathcal{T}_k(A) - \theta \sigma_{k+1} U_k V_k^T$  is a solution, [Gu, M., 2014].

### Householder reflections

#### Definition (Householder reflector)

It is s a linear transformation that describes a reflection about an hyperplane containing the origin and orthogonal to  ${\bf u},$ 

$$\mathcal{H}_{\mathbf{u}} := I - \frac{2}{\|\mathbf{v}\|^2} \mathbf{v} \mathbf{v}^T, \tag{3}$$

where  $\mathbf{v} = \mathbf{u} - \|\mathbf{u}\|\mathbf{e}$  is the Householder vector and  $\mathbf{e} = (1, 0, \cdots, 0)^T$ .

イロト イヨト イヨト イヨト

#### Householder reflections

#### Definition (Householder reflector)

It is s a linear transformation that describes a reflection about an hyperplane containing the origin and orthogonal to  ${\bf u},$ 

$$\mathcal{H}_{\mathbf{u}} := I - \frac{2}{\|\mathbf{v}\|^2} \mathbf{v} \mathbf{v}^T, \tag{3}$$

where  $\mathbf{v} = \mathbf{u} - \|\mathbf{u}\|\mathbf{e}$  is the Householder vector and  $\mathbf{e} = (1, 0, \dots, 0)^T$ .

Since  $\mathcal{H}_{\mathbf{u}}(\mathbf{u}) = ||\mathbf{u}||\mathbf{e}$ , a complete pivoted QR factorization can be constructed via Householder reflections, this is

$$A\Pi = \underbrace{Q_1 \cdots Q_n}_{=:Q} R = QR,\tag{4}$$

イロト イヨト イヨト イヨト

where  $\Pi$  is a permutation,  $Q_1 = \mathcal{H}_1$  and for  $j = \{2 \cdots n\}$ 

$$Q_j = \begin{bmatrix} I_j & 0\\ 0 & \mathcal{H}_j \end{bmatrix}$$

 $I_j$ : Identity matrix of size  $(j-1) \times (j-1)$ .

July 14, 2017 5 / 30

For a rank-k QR approximation only consider the first k reflections as follows

$$A = QR\Pi^{T} = m \begin{bmatrix} k & r-k & k & n-k \\ Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} k & r-k & \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^{T}$$
$$= \underbrace{Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^{T}}_{=:A_{k}} + \underbrace{Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^{T}}_{\text{"residual"}}.$$

where  $Q = Q_1 \cdots Q_k$ , and

 $||A - A_k|| = ||Q_{12}[0 \quad R_{22}]\Pi^T|| = ||[0 \quad R_{22}]|| = ||R_{22}||.$ (5)



6 / 30

æ

July 14, 2017

(ロ) (四) (日) (日) (日)

For a rank-k QR approximation only consider the first k reflections as follows

$$A = QR\Pi^{T} = m \begin{bmatrix} k & r-k & k & n-k \\ Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} k & R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^{T}$$
$$= \underbrace{Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^{T}}_{=:A_{k}} + \underbrace{Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^{T}}_{\text{"residual"}}.$$

where  $Q = Q_1 \cdots Q_k$ , and

$$||A - A_k|| = ||Q_{12}[0 \quad R_{22}]\Pi^T|| = ||[0 \quad R_{22}]|| = ||R_{22}||.$$
(5)

• Computing  $A_k$  is typically faster than computing the TSVD.



July 14, 2017

6 / 30

イロト イヨト イヨト イヨ

For a rank-k QR approximation only consider the first k reflections as follows

$$A = QR\Pi^{T} = m \begin{bmatrix} k & r-k & k & n-k \\ Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} k & R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^{T}$$
$$= \underbrace{Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^{T}}_{=:A_{k}} + \underbrace{Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^{T}}_{\text{"residual"}}.$$

where  $Q = Q_1 \cdots Q_k$ , and

$$||A - A_k|| = ||Q_{12}[0 \quad R_{22}]\Pi^T|| = ||[0 \quad R_{22}]|| = ||R_{22}||.$$
(5)

- Computing  $A_k$  is typically faster than computing the TSVD.
- The choice of  $\Pi$  is of great importance to control the error.



July 14, 2017

6 / 30

・ロト ・日下・ ・ヨト・

Alan Ayala

For a rank-k QR approximation only consider the first k reflections as follows

$$A = QR\Pi^{T} = m \begin{bmatrix} k & r-k & k & n-k \\ Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} k & R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^{T}$$
$$= \underbrace{Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^{T}}_{=:A_{k}} + \underbrace{Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^{T}}_{\text{"residual"}}.$$

where  $Q = Q_1 \cdots Q_k$ , and

$$||A - A_k|| = ||Q_{12}[0 \quad R_{22}]\Pi^T|| = ||[0 \quad R_{22}]|| = ||R_{22}||.$$
(5)

・ロト ・日下・ ・ ヨト・・

July 14, 2017

6 / 30

- Computing  $A_k$  is typically faster than computing the TSVD.
- The choice of  $\Pi$  is of great importance to control the error.
- Note that  $\sigma_k(A) = \sigma_k(R)$ .

イロト イヨト イヨト イヨ

# Choosing the pivot using the maximal volume criteria

#### Theorem (Goreinov and Tyrtyshnikov, 2001)

Let us consider

$$R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

where  $R_{11} \in \mathbb{R}^{k \times k}$  has maximal volume (i.e., maximum determinant in absolute value) among all  $k \times k$  submatrices of R. Then

$$\|\mathbf{R}_{22} - R_{21}R_{11}^{-1}R_{12}\|_{\max} \le (k+1)\sigma_{k+1}(R).$$

where  $||M||_{\max} := \max_{i,j} |M(i,j)|.$ 

| Al | an | Av | ala |  |
|----|----|----|-----|--|
|    |    |    |     |  |

# Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)

Let us consider

$$R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

where  $R_{11} \in \mathbb{R}^{k \times k}$  has maximal volume (i.e., maximum determinant in absolute value) among all  $k \times k$  submatrices of R. Then

$$\|\mathbf{R}_{22} - R_{21}R_{11}^{-1}R_{12}\|_{\max} \le (k+1)\sigma_{k+1}(R).$$

where  $||M||_{\max} := \max_{i,j} |M(i,j)|.$ 

Good news: Since for a low-rank QR factorization we have  $R_{21} = 0$ , then

```
\|\mathbf{R}_{22}\|_{\max} < (k+1)\sigma_{k+1}(A).
```

| A 1  |    |     |    |
|------|----|-----|----|
| - A1 | an | Aya | uа |
|      |    |     |    |

・ロト ・日ト ・ヨト ・ヨト

July 14, 2017

7 / 30

# Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)

Let us consider

$$R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

where  $R_{11} \in \mathbb{R}^{k \times k}$  has maximal volume (i.e., maximum determinant in absolute value) among all  $k \times k$  submatrices of R. Then

$$\|\mathbf{R}_{22} - R_{21}R_{11}^{-1}R_{12}\|_{\max} \le (k+1)\sigma_{k+1}(R).$$

where  $||M||_{\max} := \max_{i,j} |M(i,j)|.$ 

Good news: Since for a low-rank QR factorization we have  $R_{21} = 0$ , then

$$\|\mathbf{R}_{22}\|_{\max} \le (k+1)\sigma_{k+1}(A).$$

Bad news: Finding a submatrix of maximum volume has been proven to be NP-hard, Civril and Magdon-Ismail (2011).

| Alan Ayala | ALORA |  |
|------------|-------|--|

# Choosing the pivot using the classical column pivoting QRCP

QRCP takes as pivot the column of largest norm at each step, the error is bounded as

$$\|\mathbf{R}_{22}\|_{2} \le 2^{k} \sqrt{n-k} \,\sigma_{k+1}(A).$$
(6)

In general,  $\|\mathbf{R}_{22}\|_2 \le g(k, n) \sigma_{k+1}(A)$ ,

イロト イヨト イヨト イヨト

# Choosing the pivot using the classical column pivoting QRCP

QRCP takes as pivot the column of largest norm at each step, the error is bounded as

$$\|\mathbf{R}_{22}\|_{2} \le 2^{k} \sqrt{n-k} \,\sigma_{k+1}(A). \tag{6}$$

In general,  $\|\mathbf{R}_{22}\|_2 \le g(k, n) \sigma_{k+1}(A)$ ,

| Method          | Reference                 | g(k,n)                   | Time               |
|-----------------|---------------------------|--------------------------|--------------------|
| Pivoted QR      | [Golub, 1965]             | $\sqrt{(n-k)}2^k$        | O(mnk)             |
| High RRQR       | [Foster, 1986]            | $\sqrt{n(n-k)}2^{n-k}$   | $O(mn^2)$          |
| High RRQR       | [Chan, 1987]              | $\sqrt{n(n-k)}2^{n-k}$   | $O(mn^2)$          |
| RRQR            | [Hong and Pan, 1992]      | $\sqrt{k(n-k)+k}$        | -                  |
| Low RRQR        | [Chan and Hansen, 1994]   | $\sqrt{(k+1)n}2^{k+1}$   | $O(mn^2)$          |
| Hybrid-I RRQR   | [Chandr. and Ipsen, 1994] | $\sqrt{(k+1)(n-k)}$      | -                  |
| Hybrid-II RRQR  |                           | $\sqrt{(k+1)(n-k)}$      | -                  |
| Hybrid-III RRQR |                           | $\sqrt{(k+1)(n-k)}$      | -                  |
| Algorithm 3     | [Gu and Eisenstat, 1996]  | $\sqrt{k(n-k)+1}$        | -                  |
| Algorithm 4     |                           | $\sqrt{f^2k(n-k)+1}$     | $O(kmn \log_f(n))$ |
| DGEQPY          | [Bischof and Orti, 1998]  | $O(\sqrt{(k+1)^2(n-k)})$ | -                  |
| DGEQPX          |                           | $O(\sqrt{(k+1)(n-k)})$   | -                  |
| SPQR            | [Stewart, 1999]           | -                        | -                  |
| PT Algorithm 1  | [Pan and Tang, 1999]      | $O(\sqrt{(k+1)(n-k)})$   | -                  |
| PT Algorithm 2  |                           | $O(\sqrt{(k+1)^2(n-k)})$ | -                  |
| PT Algorithm 3  |                           | $O(\sqrt{(k+1)^2(n-k)})$ | -                  |
| Pan Algorithm 2 | [Pan, 2000]               | $O(\sqrt{k(n-k)+1})$     | -                  |

Figure: Different algorithms for low-rank QR approximation, Mahoney et al. (2010).

Alan Ayala

# Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm 1  $[A_k] =$ SubspaceIter $(A, \Omega, k, q)$ 

**Requires:**  $\Omega \in \mathbb{R}^{n \times l}$ , with  $l \ge k$ . **Returns:** rank-k approximation of A.

- 1: Perform  $Y = (AA^T)^q A \Omega$ .
- 2: Compute (economic) QR decomposition Y = QR.
- 3: Form  $B = Q^T A$ .
- 4: Set  $A_k := Q\mathcal{T}_k(B)$ .



(ロ) (日) (日) (日) (日)

# Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm 2  $[A_k] =$ SubspaceIter $(A, \Omega, k, q)$ 

**Requires:**  $\Omega \in \mathbb{R}^{n \times l}$ , with  $l \ge k$ . **Returns:** rank-k approximation of A. 1: Perform  $Y = (AA^T)^q A\Omega$ . 2: Compute (economic) QR decomposition Y = QR. 3: Form  $B = Q^T A$ . 4: Set  $A_k := Q\mathcal{T}_k(B)$ .

• Note that setting k = l = 1 then Algorithm 1 is the classical power method.

July 14, 2017

9 / 30

イロト イヨト イヨト イヨ

# Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm 3  $[A_k] =$ SubspaceIter $(A, \Omega, k, q)$ 

**Requires:**  $\Omega \in \mathbb{R}^{n \times l}$ , with  $l \ge k$ . **Returns:** rank-k approximation of A. 1: Perform  $Y = (AA^T)^q A\Omega$ . 2: Compute (economic) QR decomposition Y = QR. 3: Form  $B = Q^T A$ . 4: Set  $A_k := Q\mathcal{T}_k(B)$ .

- Note that setting k = l = 1 then Algorithm 1 is the classical power method.
- If  $\Omega$  is a random Gaussian matrix, then setting l = 2k and q = 0, we get the expected error [Halko, N. et al, 2014]

$$\mathbb{E}\|A - A_k\|_2 \le \left(2 + 4\sqrt{\frac{2\min\{m, n\}}{k - 1}}\right)\sigma_{k+1}.$$

July 14, 2017

9 / 30

# Error of subspace iteration approximation



10 / 30

ł

July 14, 2017

イロト イヨト イヨト イヨト

Alan Ayala

# Error of subspace iteration approximation

To find the error of approximation, consider the SVD of  $A = U\Sigma V^T$  and the partition

$$\widehat{\Omega} := V^T \Omega = \begin{bmatrix} l-p \\ n-l+p \end{bmatrix} \begin{bmatrix} \widehat{\Omega}_1 \\ \widehat{\Omega}_2 \end{bmatrix}, \quad 0 \le p \le l-k.$$

If  $\widehat{\Omega}_1$  is full row rank, then the error is bounded as ([Gu, M., 2014])

$$\|A - A_k\|_2 \le \sqrt{\sigma_{k+1}^2 + \omega^2 \|\widehat{\Omega}_2\|_2^2 \|\widehat{\Omega}_1^{\dagger}\|_2^2}, \tag{7}$$
  
where  $\omega = \sqrt{k} \sigma_{l-p+1} \left(\frac{\sigma_{l-p+1}}{\sigma_k}\right)^{2q}$  and  $\widehat{\Omega}_1 \widehat{\Omega}_1^{\dagger} = I.$ 



July 14, 2017

10 / 30

・ロト ・日ト ・ヨト

## Error of subspace iteration approximation

To find the error of approximation, consider the SVD of  $A = U\Sigma V^T$  and the partition

$$\widehat{\Omega} := V^T \Omega = \begin{bmatrix} l-p \\ n-l+p \end{bmatrix} \begin{bmatrix} \widehat{\Omega}_1 \\ \widehat{\Omega}_2 \end{bmatrix}, \quad 0 \le p \le l-k.$$

If  $\widehat{\Omega}_1$  is full row rank, then the error is bounded as ([Gu, M., 2014])

$$\|A - A_k\|_2 \le \sqrt{\sigma_{k+1}^2 + \omega^2 \|\widehat{\Omega}_2\|_2^2 \|\widehat{\Omega}_1^\dagger\|_2^2},\tag{7}$$
  
where  $\omega = \sqrt{k}\sigma_{l-p+1} \left(\frac{\sigma_{l-p+1}}{\sigma_k}\right)^{2q}$  and  $\widehat{\Omega}_1 \widehat{\Omega}_1^\dagger = I.$ 

#### Remark

If G is a  $(l-p) \times l$  is a Gaussian matrix, then rank(G) = l - p with probability 1.



10 / 30

・ロト ・日下・ ・ヨト・

July 14, 2017

### How do the singular vectors converge?

• We need to investigate the rate at which we are approaching to a best fitting subspace.



11 / 30

э

July 14, 2017

・ロン ・日ン ・ヨン・

#### How do the singular vectors converge?

- We need to investigate the rate at which we are approaching to a best fitting subspace.
- <sup>2</sup> How do we measure the distance between subspaces?
  - Consider  $W_1, W_2 \in \mathbb{R}^{m \times k}$  with orthogonal columns.
  - Let let  $S_1 := ran(W_1)$  and  $S_2 := ran(W_2)$ , then

 $dist(S_1, S_2) := \|W_1 W_1^T - W_2 W_2^T\|_2.$ 



11 / 30

・ロン ・日ン ・ヨン・

July 14, 2017

#### How do the singular vectors converge?

• We need to investigate the rate at which we are approaching to a best fitting subspace.

**2** How do we measure the distance between subspaces?

- Consider  $W_1, W_2 \in \mathbb{R}^{m \times k}$  with orthogonal columns.
- Let let  $S_1 := ran(W_1)$  and  $S_2 := ran(W_2)$ , then

 $dist(S_1, S_2) := \|W_1 W_1^T - W_2 W_2^T\|_2.$ 

#### Theorem (Ayala et al., 2017)

Using the notation from Algorithm 1, Let  $S_u = \operatorname{ran}([u_1 \cdots u_l])$  and  $S_q = \operatorname{ran}(Q)$ , considering  $\widehat{\Omega}_1$  nonsingular and p = 0, then

$$\operatorname{dist}(S_u, S_q) \le \left(\frac{\sigma_{l+1}}{\sigma_l}\right)^{2q+1} \|\widehat{\Omega}_2\|_2 \|\widehat{\Omega}_1^{-1}\|_2,$$

provided  $\sigma_{l+1} > \sigma_l$ .

(ロ) (日) (日) (日) (日)

# Finding a good Householder vector

When choosing the pivot as one of the columns of A the questions that arise are: How close the error is with respect to the truncated SVD?, Which choice of pivot is the optimal?.

æ

イロン イヨン イヨン イヨン

# Finding a good Householder vector

When choosing the pivot as one of the columns of A the questions that arise are: How close the error is with respect to the truncated SVD?, Which choice of pivot is the optimal?.

Given  $A = [a_1 \ a_2 \ \cdots \ a_n]$ , let  $u \in \mathbb{R}^m$  be any unitary vector, then

$$\mathcal{H}_u A = \begin{bmatrix} h_{a_1} & h_{a_2} & \cdots & h_{a_n} \end{bmatrix}.$$

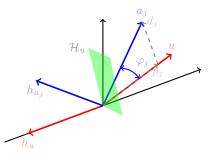


Figure: Householder reflection:  $p_j$  and  $d_j$  denote the projections of  $a_j$  along and orthogonal to u respectively.

|            | < 🗆   | ▶ ▲곱▶ ▲콜▶ | < ≣ ► _ = | 500     |
|------------|-------|-----------|-----------|---------|
| Alan Ayala | ALORA | July      | 14, 2017  | 12 / 30 |

## Error for a rank-one approximation with arbitrary Householder vector.

$$\mathcal{H}_{u}A = \begin{bmatrix} \|a_{1}\|_{2}\cos(\varphi_{1}) & \|a_{2}\|_{2}\cos(\varphi_{2}) & \cdots & \|a_{n}\|_{2}\cos(\varphi_{n}) \\ r_{1} & r_{2} & \cdots & r_{n} \end{bmatrix}, \qquad (8)$$
where  $r_{i} \in \mathbb{R}^{m-1}$ .

æ

イロト イヨト イヨト イヨト

Error for a rank-one approximation with arbitrary Householder vector.

$$\mathcal{H}_{u}A = \begin{bmatrix} \|a_{1}\|_{2}\cos(\varphi_{1}) & \|a_{2}\|_{2}\cos(\varphi_{2}) & \cdots & \|a_{n}\|_{2}\cos(\varphi_{n}) \\ r_{1} & r_{2} & \cdots & r_{n} \end{bmatrix},$$
(8)

where  $r_j \in \mathbb{R}^{m-1}$ . The rank-one matrix

$$A_{1} = \frac{u}{\|u\|_{2}} (\|a_{1}\|_{2} \cos(\varphi_{1}), \cdots, \|a_{n}\|_{2} \cos(\varphi_{n}))$$
(9)

approximates A with an error given by the norm of the residual matrix  $E := [r_1 \cdots r_n]$ . By the Pythagorean theorem  $||r_j||_2 = ||a_j||_2 \sin(\varphi_j)$ , then

$$||A - A_1||_F^2 = ||E||_F^2 = \sum_{j=1}^n ||r_j||_2^2 = \sum_{j=1}^n ||a_j||_2^2 \sin^2(\varphi_j).$$
(10)

・ロン ・日ン ・ヨン・

July 14, 2017



13 / 30

Error for a rank-one approximation with arbitrary Householder vector.

$$\mathcal{H}_{u}A = \begin{bmatrix} \|a_{1}\|_{2}\cos(\varphi_{1}) & \|a_{2}\|_{2}\cos(\varphi_{2}) & \cdots & \|a_{n}\|_{2}\cos(\varphi_{n}) \\ r_{1} & r_{2} & \cdots & r_{n} \end{bmatrix},$$
(8)

where  $r_j \in \mathbb{R}^{m-1}$ . The rank-one matrix

$$A_{1} = \frac{u}{\|u\|_{2}} (\|a_{1}\|_{2} \cos(\varphi_{1}), \cdots, \|a_{n}\|_{2} \cos(\varphi_{n}))$$
(9)

approximates A with an error given by the norm of the residual matrix  $E := [r_1 \cdots r_n]$ . By the Pythagorean theorem  $||r_j||_2 = ||a_j||_2 \sin(\varphi_j)$ , then

$$\|A - A_1\|_F^2 = \|E\|_F^2 = \sum_{j=1}^n \|r_j\|_2^2 = \sum_{j=1}^n \|a_j\|_2^2 \sin^2(\varphi_j).$$
(10)

13 / 30

July 14, 2017

Since  $d_j = a_j - p_j$ , then

$$||E||_F^2 = \sum_{j=1}^n ||d_j||_2^2.$$
(11)

Alan Ayala

Error for a rank-one approximation with arbitrary Householder vector.

$$\mathcal{H}_{u}A = \begin{bmatrix} \|a_{1}\|_{2}\cos(\varphi_{1}) & \|a_{2}\|_{2}\cos(\varphi_{2}) & \cdots & \|a_{n}\|_{2}\cos(\varphi_{n}) \\ r_{1} & r_{2} & \cdots & r_{n} \end{bmatrix},$$
(8)

where  $r_j \in \mathbb{R}^{m-1}$ . The rank-one matrix

$$A_{1} = \frac{u}{\|u\|_{2}} (\|a_{1}\|_{2} \cos(\varphi_{1}), \cdots, \|a_{n}\|_{2} \cos(\varphi_{n}))$$
(9)

approximates A with an error given by the norm of the residual matrix  $E := [r_1 \cdots r_n]$ . By the Pythagorean theorem  $||r_j||_2 = ||a_j||_2 \sin(\varphi_j)$ , then

$$|A - A_1||_F^2 = ||E||_F^2 = \sum_{j=1}^n ||r_j||_2^2 = \sum_{j=1}^n ||a_j||_2^2 \sin^2(\varphi_j).$$
(10)

・ロト ・日ト ・ヨト

July 14, 2017

13 / 30

Since  $d_j = a_j - p_j$ , then

$$||E||_F^2 = \sum_{j=1}^n ||d_j||_2^2.$$
(11)

Which choice of u minimizes this error?

Alan Ayala

ALORA

## Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points  $a_j$ 's to itself. This is the *total least-square problem*.



・ロン ・日ン ・ヨン・

# Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points  $a_j$ 's to itself. This is the *total least-square problem*.

Define the matrix

$$Y := [a_1 - g \cdots a_n - g]. \tag{12}$$

• The best fitting line of the points  $\{a_j$ 's $\}$  is given by

$$\mathcal{L} := \{ g + \mathbf{u}\tau \mid \tau \in \mathbb{R} \}.$$
(13)

・ロン ・日ン ・ヨン・

July 14, 2017

where  $g := (1/n) \sum_{j=1}^{n} a_j$  and  $u = u_1(Y)$ , [Schneider et al., 2003].



14 / 30

# Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points  $a_j$ 's to itself. This is the *total least-square problem*.

Define the matrix

$$Y := [a_1 - g \cdots a_n - g]. \tag{12}$$

• The best fitting line of the points  $\{a_j$ 's $\}$  is given by

$$\mathcal{L} := \{ g + \mathbf{u}\tau \mid \tau \in \mathbb{R} \}.$$
(13)

where  $g := (1/n) \sum_{j=1}^{n} a_j$  and  $u = u_1(Y)$ , [Schneider et al., 2003].

• If we impose the condition that the line passes through the origin, then the solution would be

$$\tilde{\mathcal{L}} := \{ \ \tilde{\boldsymbol{u}}\tau \quad | \quad \tau \in \mathbb{R} \}.$$
(14)

where  $\tilde{u} = u_1(A)$ .

### Best fitting (affine) subspace.

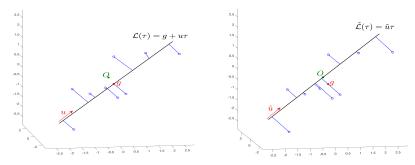


Figure: Solution of the total least-square problem (left) and its solution by imposing the condition to pass through the origin O (right).

## Best fitting (affine) subspace.

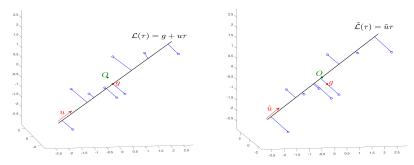


Figure: Solution of the total least-square problem (left) and its solution by imposing the condition to pass through the origin O (right).

- To approximate  $u_1(Y)$  we can use the fact that it is the principal component of  $C = YY^T$ , the *covariance matrix*.
- There exists work on PCA on trimming around affine subspaces [Croux et al., 2014].

Alan Ayala

Consider  $c = [1, \dots, 1]^T \in \mathbb{R}^m$ . Let  $u = u_1(Y) = u_1(A - gc)$  and define

$$B = A - T, \qquad T = (g - \alpha u)c, \tag{15}$$

where  $\alpha \in \mathbb{R}$ .

• Considering  $g_B = (1/n) \sum_{j=1}^n b_j$ , then clearly  $g_B = u$ .

・ロン ・四 と ・ 日 ・ ・ 日 ・

Consider  $c = [1, \dots, 1]^T \in \mathbb{R}^m$ . Let  $u = u_1(Y) = u_1(A - gc)$  and define

$$B = A - T, \qquad T = (g - \alpha u)c, \tag{15}$$

where  $\alpha \in \mathbb{R}$ .

• Considering  $g_B = (1/n) \sum_{j=1}^n b_j$ , then clearly  $g_B = u$ .

• Next, we prove that  $u_1(B) = \frac{g_B}{\|g_B\|}$  and then the best fitting line of B is

$$\mathcal{L}^{(B)} := \left\{ \begin{array}{ll} \frac{g_B}{\|g_B\|} \tau & | \quad \tau \in \mathbb{R} \right\}.$$

(日) (四) (三) (三) (三)

Consider  $c = [1, \dots, 1]^T \in \mathbb{R}^m$ . Let  $u = u_1(Y) = u_1(A - gc)$  and define

$$B = A - T, \qquad T = (g - \alpha u)c, \tag{15}$$

where  $\alpha \in \mathbb{R}$ .

• Considering  $g_B = (1/n) \sum_{j=1}^n b_j$ , then clearly  $g_B = u$ .

• Next, we prove that  $u_1(B) = \frac{g_B}{\|g_B\|}$  and then the best fitting line of B is  $C^{(B)} := \begin{cases} g_B \\ g_B \\$ 

$$\mathcal{L}^{(B)} := \left\{ \frac{g_B}{\|g_B\|} \tau \mid \tau \in \mathbb{R} \right\}.$$

Lemma

Let  $r = \operatorname{rank}(Y) \ \alpha \in R$ , then  $\operatorname{rank}(B) = r$  and

 $u_j(B) = u_j(Y) \qquad \forall j \in \{1 \cdots r\}.$ 

 $\sigma_1(B) = \sqrt{\sigma_1(Y)^2 + n\alpha^2} \quad \text{and} \quad v_1(B) = (\alpha c + \sigma_1(Y)v_1(Y))/\sigma_1(B).$ 

$$\sigma_j(B) = \sigma_j(Y) \quad \text{and} \quad v_j(B) = v_j(Y) \quad \forall j \in \{2 \cdots r\}.$$

### Lemma

Let  $B_k$  be a rank-k approximation of B such that

$$||B - B_k||_2 \le g(k, n)\sigma_{k+1}(B),$$

where g is a function of k and n. Define  $A_{k+1} = B_k + T$ , then

$$||A - A_{k+1}||_2 \le g(k, n)\sigma_{k+1}(A).$$

17 / 30

臣

July 14, 2017

イロン イヨン イヨン イヨン

#### Lemma

Let  $B_k$  be a rank-k approximation of B such that

$$||B - B_k||_2 \le g(k, n)\sigma_{k+1}(B),$$

where g is a function of k and n. Define  $A_{k+1} = B_k + T$ , then

 $||A - A_{k+1}||_2 \le g(k, n)\sigma_{k+1}(A).$ 

### Corollary

$$\sigma_{k+1}(B) \le \sigma_{k+1}(A) \le \sigma_k(B). \tag{16}$$

イロト イヨト イヨト イヨト

17 / 30

æ

| A | lan | Ay | a | la |
|---|-----|----|---|----|
|   |     |    |   |    |

#### Lemma

Consider  $A_l = B_{l-1} + T$ , where  $B_{l-1}$  is a rank l-1 approximation of B, then

$$||A - A_l||_2 \le g(l, n, C)\sigma_{l+1}(A),$$

where  $C == (A - g)(A - g)^T$  is the covariance matrix and

$$g(l, n, C) = \sqrt{\frac{r + s\sqrt{\frac{n-l}{l}}}{r - s\sqrt{\frac{l}{n-l}}}}$$

with  $r = \frac{\operatorname{tr}(C)}{n}$  and  $s = \sqrt{\frac{\operatorname{tr}(C^2)}{n} - r^2}$ .



18 / 30

・ロン ・日ン ・ヨン・

#### Lemma

Consider  $A_l = B_{l-1} + T$ , where  $B_{l-1}$  is a rank l-1 approximation of B, then

$$||A - A_l||_2 \le g(l, n, C)\sigma_{l+1}(A),$$

where  $C == (A - g)(A - g)^T$  is the covariance matrix and

$$g(l, n, C) = \sqrt{\frac{r + s\sqrt{\frac{n-l}{l}}}{r - s\sqrt{\frac{l}{n-l}}}}$$

with 
$$r = \frac{\operatorname{tr}(C)}{n}$$
 and  $s = \sqrt{\frac{\operatorname{tr}(C^2)}{n} - r^2}$ 

### Proof.

Use Theorem 3.1 from [Merikosky et al., 1983] on matrix C.

・ロト ・日下・ ・ ヨト・・

# Affine low rank approximation (ALORA)

### Algorithm 4 $[A_{k+1}] = \text{ALORA}(A,k)$

**Require:**  $A = [a_1 \ a_2 \ \cdots \ a_n] \in \mathbb{R}^{m \times n}$ . **Returns:** rank k + 1 approximation of A.

1: 
$$g = (1/n) \sum_{j=1}^{n} a_j$$
,  $c = [1 \cdots 1] \in \mathbb{R}^{1 \times n}$ .  
2:  $u := \text{first singular vector of } Y$ .  
3:  $\alpha = g(1)/u(1)$ .  
4:  $T = (g - \alpha u)c$ .  
5: Compute  $B_k$ : a rank-k approximation of  $B = Y + \alpha uc$ .  
6:  $A_{k+1} = T + B_k$   
Ensure:  $||A - A_{k+1}||_2 \le \sigma_k(A)$ 

Note that if the directions of the fitting lines are computed using a rank-revealing QR algorithm, then ALORA will produce a translated QR factorization.



19 / 30

(ロ) (日) (日) (日) (日)

## Approximation error using ALORA with QRCP

• Using QRCP to approximate the direction of the best fitting line, then ALORA yields a QRCP factorization plus a rank-one translation matrix.

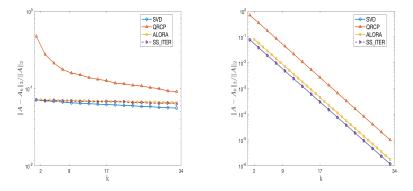


Figure: Low-rank approximation of a random matrix with slowly decreasing singular values (left), and the Kahan matrix (right), size m = n = 256.

| Alan Ayala |  |
|------------|--|
|------------|--|

July 14, 2017 20 / 30

# ALORA with QRCP

• For matrices with slowly decreasing singular values, typically the first part of the spectrum is better approximated by ALORA.

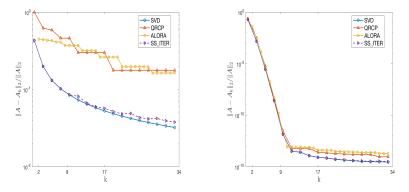


Figure: Low-rank approximation of matrices GKS (left), and Baart1 (right), size m = n = 256.

## Approximation error using ALORA with Subspace Iteration

- Using Subspace iteration (Alg. 1 with p = 2, q = 1), to approximate the direction of the best fitting line, then ALORA improves the convergence error.
- The error get smaller while increasing p or q in Alg. 1.

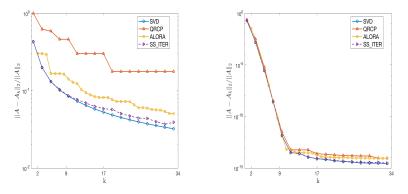


Figure: Low-rank approximation of matrices GKS (left), and Baart1 (right), size m = n = 256.

| A | lan | Ay | ra. | la |
|---|-----|----|-----|----|
|   |     |    |     |    |

• • • • • • • • • • •

### Approximation of singular values



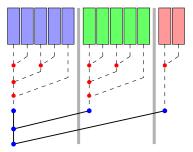
- For QRCP (top) we plot  $\frac{|R(i,i)|}{\sigma_i}$ .
- For ALORA (bottom) we plot  $\frac{|R^{(B)}(i,i)|}{\sigma_i}$ .

July 14, 2017 23 / 30

э

・ロト ・日ト ・ヨト・

## Reduction with tournament pivoting



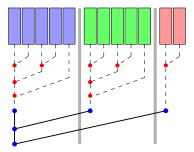
• Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a *m*-by-10 matrix using 3 processors.

24 / 30

July 14, 2017

・ロト ・日下 ・ヨン

## Reduction with tournament pivoting



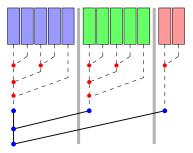
- Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a *m*-by-10 matrix using 3 processors.
- The umber of messages (two) is independent of the number of columns and it is obviously optimal.

24 / 30

July 14, 2017

Image: A math a math

## Reduction with tournament pivoting



- Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a *m*-by-10 matrix using 3 processors.
- The umber of messages (two) is independent of the number of columns and it is obviously optimal.
- We use this reduction to in general select approximative *directions* instead of *pivot columns*.

July 14, 2017

24 / 30

- PALORA: Parallel ALORA using QRCP.
- CALRQR: Low-rank version of CARRQR.
- PDGEKQP: A low-rank version of the ScaLapack routine PDGEQP.

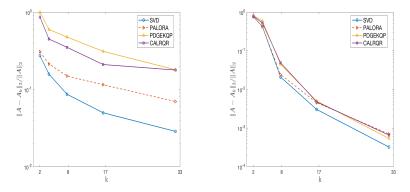


Figure: Low-rank approximation of matrices GKS (left), and Phillips (right), size m = n = 512.

## ALORA\_IE: modified ALORA for integral equations

- We create a (hierarchical) partition of the domain.
- In such a way that the matrix corresponding to each subdomain has a best fitting line which direction can be approximated with its gravity center.
- Take advantage of the rapidly decreasing singular values.
- Construct a linear cost Householder reflection.
- Example: Consider the inner Dirichlet problem Au = f

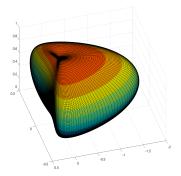
$$\mathcal{A}u(x) = \frac{1}{4\pi} \int_{\Gamma} \frac{u(y)}{|x-y|} ds_y.$$

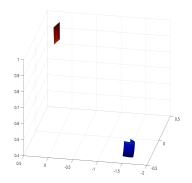
Defined over a 3D domain  $\Gamma$ .

- Discretize the equation by the classical Boundary element method and get the linear system Ax = b.
- Factorize A using QRCP, ALORA\_IE, and the Adaptive Cross Approximation (ACA) algorithm.

26 / 30

・ロン ・日ン ・ヨン・

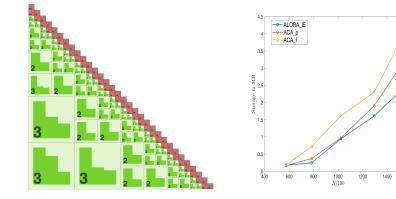




・ロト ・四ト ・ヨト ・ヨト



27 / 30





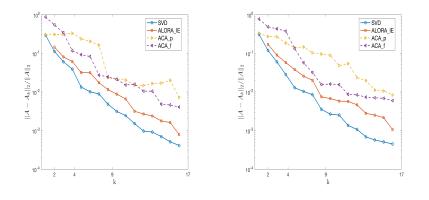
28 / 30

æ

July 14, 2017

1600

(日) (四) (王) (王) (王)



29 / 30

æ

July 14, 2017

・ロト ・回 ・ ・ ヨト ・ ヨ

### References

- Demmel, J. W. and Grigori, L. and Gu, M. and Xiang, H. Communication avoiding rank revealing QR factorization with column pivoting, 2015.
- Gu, M.

Subspace Iteration Randomization and Singular Value Problems, 2014.

- Ayala, A. and Claeys X. and Grigori, L. ALORA: Affine low-rank approximation, 2017.

Schneider, P. and Eberly, D. Geometric Tools for Computer Graphics, 2003.

Merikosky, J. and Styan, G. and Wolkowicz, H. Bounds for Ratios of Eigenvalues Using Traces, 1983.

### Halko, N. et al.

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, 2011.



30 / 30

・ロン ・日ン ・ヨン・