
Comparing performance of s-step and pipelined GMRES
on distributed-memory multicore CPUs

Ichitaro Yamazaki∗, Mark Hoemmen†, Piotr Luszczek∗, Jack Dongarra∗

∗University of Tennessee, Knoxville, USA
†Sandia National Laboratories, Albuquerque, New Mexico, USA

SIAM Annual Meeting
Pittsburgh, Pennsylvania, 07/14/2017

pipelined s-step GMRES 1/23

Avoid or Hide Communication in Krylov (inter-process)

I Krylov is powerful method for solving large-scale linear systems
I is based on subspace projection
I generates a basis vector at each iteration

I Krylov uses SpMV (+Precon) and Orth to generate each basis vector
I P2P of SpMV and all-reduce of Orth can become bottleneck

I s-step aims to “avoid” them by generating s vectors at a time
. latency reduced by a factor of s×

I pipeline tries to “hide” them by pipeline iterations
. max speedup of 2×, but maybe more through pipelining

SpMV

allreduce P2P

s-step (s=2)

Block-orth

SpMV
GEMV

GEMV

allreduce

P2P

pipeline

pipelined s-step GMRES 2/23

Performance comparison

I distributed CPUs with multicores on node

Programming paradigm

I performance

I thread-parallelism on multicores

I non-blocking collective to progress in background

I productivity, maintainablity (and hopefully “portability”)

I hide details of thread-parallelization

I no application thread to ensure non-blocking collective

I two implementations

1. MPI’s progress thread for non-blocking collective
+ threaded comp kernels (i.e., MKL)

2. insert-task (using shared-memory QUARK runtime)

pipelined s-step GMRES 3/23

GMRES solvers

I standard

I pipelined

I s-step with standard SpMV+Precond

I P2P for each SpMV, instead of Matrix Power Kernel (MPK)

I in our experiement, main improvement from block-orth

I MPK has overheads, e.g., redundant store/comp and preconditioning

→ focus on reducing global collectives, and not on P2P

I pipelined focuses on hiding global all-reduce for Orth

I nice comparison between s-step and pipelined

I pipelined s-step
aka, pipelining with block ortho, or s-step with pipelined block orth.

SpMV
P2P

pipelined s-step GMRES 4/23

Why combine pipeline and s-step?

I s-step (without MPK):

I improvement even on small number of nodes when latency is significant

. also reduces intra-proc comm using BLAS-3

I still block synchronous

I pipeline

I hide latency

I additional computation for “Change-of-basis” (∼ 50% of Orth)
. improvement only on large number of nodes

I combine the two?

SpMV
GEMM

GEMV
allreduce

P2P
GEMM

pipelined s-step GMRES 5/23

pipelined t-step GMRES with MPI (step size t, pipeline depth `)

for j = 1, 1 + t · `, . . . ,m do

1 generate t basis vectors
for k = 1, 2, . . . , t do

SpMV with P2P and change-of-basis, i := j + k − t · ` + 1

vj+k := AM−1vj+k−1 (MPI Isend and MPI Irecv with neighbors)
generate h1:i−1,i
vj+k := (vj+k − Vi:i+k−1h1:i−1,i−1)/hi,i−1 (BLAS-2)

if j > t · ` then
k := j − t · ` + 1

2 finish block-ortho Qk:k+t−1 with MPI Wait
2.1 update R1:k+t,k:k+t−1
2.2 block orthogonalize (BLAS-3)

Qk:k+t−1 := (Vk:k+t−1 − Q1:k−1R1:k−1,k:k+t−1)R
−1
k:k+t−1,k:k+t−1

2.3 apply change-of-basis to next vector (extra computation)
generate h1:k,k
vj+1 := vj+1 − Vk:k+t−1h1:k−1,k−1)/hk,k−1 (BLAS-2)

end if

3 start block-ortho Qj+1:j+t against Q1:j with non-block reduce

R1:j+t,j:j+t := QT
1:j+1Qj+1:j+s (BLAS-3 and MPI Iallreduce)

end for

I BLAS-3 for orthogonalization

I pipelined to hide all-reduces over t` iterations

I extra computation to maintain stability (pipeline depth t · `)

pipelined s-step GMRES 6/23

Why tasks?

I fork-join in standard, and also in s-step
potential for scheduling local and boundary tasks from different steps in MPK

I pipeline may provide opportunity for runtime

. parallel execution of independent tasks

. overlap/pipeline computation and communication

SpMV
GEMV

GEMV

allreduce

P2P

I SpMV, GEMV, GEMM are distributed and threaded

pipelined s-step GMRES 7/23

QUARK implementation

I shared-memory runtime based on “insert-task” model
(similar to OpenMP)

I each process uses QUARK to schedule its comp and comm tasks
on shared-memory multicores

I comp task: implicitly split local submatrix into “tiles” (1D block row)

each task works on tiles on a separate core

I comm task: calls “blocking” MPI

P2P (MPI Isend/MPI Irecv, then MPI Wait) for SpMV and
all-reduce (MPI Allreduce) for Orth are wrapped into tasks

I some cores may be idle, but
. “priority” tag to reduce the idel time

. may be non-significant on manycores or with GPUs

I comm and comp should overlap, and

I parallel execution of independent tasks
- block size as a tuning parameter

pipelined s-step GMRES 8/23

QUARK P2P Comm wrapper for SpMV

I setup data dependencies

I one task per communication

void quark SpMV Gather(sparse desc A, Complex64 t *g) {
Task *task = Task Init(quark, core SpMV Gather quark, task flags);
. . .

// INPUT on local “underlap” tiles with vector elements to be sent
for (int k=0; k<num send blocks; k++)

Pack Arg(task, sizeof(Complex64 t)*A.mb, &g[send blocks[k+1]], INPUT);

// OUTPUT on non-local “ghost” tiles with vector elements to be received
for (int k=0; k<num recv blocks; k++)

Pack Arg(task, sizeof(Complex64 t)*A.mb, &g[recv blocks[k+1]], OUTPUT);

I data access types for process
(INPUT, OUTPUT, INOUT)

I define data-dependencies with for-loop
based on the sparsity pattern of the matrix

pipelined s-step GMRES 9/23

QUARK P2P Core routine for SpMV

I prepare buffer, MPI Isend and MPI Irecv, and then MPI Wait

void core SpMV Gather(int iter, sparse desc A, Complex64 t *g) {
for (each neighbor process, p) {

// pack local vector elements to be send
int count = num send vecs[p];
for (i=0; i<count; i++)

send buffer[send+i] = g[A.send vecs[p][i]];

// start MPI Isend

MPI Isend(&send buffer[send], count, MPI DOUBLE, p,
iter, MPI COMM WORLD, &(A.send[p][request id]));

send += count;
}
// set up MPI Irecv

. . .

// wait for MPI Isend

for (each neighbor process, p)
MPI Wait(&(A.send[p][request id]), &status);

// wait for MPI Irecv and unpack message
for (each neighbor process, p) {

MPI Wait(&(A.recv[p][request id]), &status);
for (i=0; i<count; i++)

g[A.recv vecs[p][i]] = recv buffer[send+i];
}

I same as MPI implementation

I for all-reduce: we pack, MPI Allreduce, and unpack
pipelined s-step GMRES 10/23

QUARK wrapper: SpMV + GEMV

I each task work on tiles (multiple comp tasks per SpMV)

neighborhood data dependencies (local or ghost) for tile

void quark SpMV Gemv(. . .) {
// subroutine to be executed
Task *task = Task Init(quark, CORE zspmv gemv quark, task flags);
// arguments for SpMV, y = A*x
. . .
i-th local tile of output vector
Pack Arg(task, sizeof(Complex64 t)*mb, y, INOUT | LOCALITY);

// dependency for i-th input tile on neighboring tiles
for (each neighbor tiles, k) {

int offset = neighbors[i][k+1];
Pack Arg(task, sizeof(Complex64 t)*mbk, &x[offset], INPUT);
}

// arguments for GEMV, w = Z’*y
Pack Arg(task, sizeof(Complex64 t)*mb*n,Z, INPUT);
Pack Arg(task, sizeof(Complex64 t)*mb, w, INOUT);
. . .
}

I data locality is crucial for performance

I “locality” tag to schedule on core close to data
I computational kernels are fused into one task

also to reduce scheduling overhead

pipelined s-step GMRES 11/23

GMRES with QUARK

for (j = 0; j<restart; j++) {
// neighborhood comm for SpMV
quark SpMV gather(. . .);

// SpMV: Q(:, j+1) := A*Q(:, j)
// GEMV: H(:, j) := Q(:, 0:j)’*Q(:, j+1));
for each local tiles do

quark SpMV Gemv(. . .);

// Orth: local and global reduce, H(1:j, j) :=
∑mt-1

k=0 T(k)
quark GeAdd reduce(. . .);

// GEMV: Q(:, j+1) -= Q(:, 1:j)*H(1:j, j)
// DOT: T(i) := Q(i, j+1)’*Q(i, j+1)
for each local tiles do

quark Gemv Dot(. . .);

// normalize: local and global reduce, H(j+1, j) :=
∑mt-1

k=0 T(i)
quark GeAdd reduce(. . .);

for each local tile do
quark laScal copy(. . .);

end for

I looks similar to MPI implementation
but is task based (parallel execution of independent tasks)

I block size as tuning parameter

pipelined s-step GMRES 12/23

2nd implementation:
non-blocking MPI collective + threaded MKL

I converted QUARK implementation

I some changes e.g., MPI Iallreduce with MPI Wait, draining pipeline

I directly call core routines without wrapper,
i.e., threaded MKL, no specialized kernels

pipelined s-step GMRES 13/23

Experiment setups

I Tsubame supercomputer at Tokyo Tech.

I two six-core Intel Xeon CPUs per node
I 80Gbps QDR InfiniBand

I threaded MKL (BLAS, LAPACK, Sparse BLAS)

MKL NUM THREADS=1 with QUARK

I MPICH 3.2 (for overlap, and may not for performance)

I MPI Iallreduce (implemented using TCP/IP) for MPI implementation

I thread support (configured with --enable-threads=multiple)

I MPI THREAD MULTIPLE support for QUARK and MPI implementations

I bind process to specific cores for both QUARK and MKL threads

I leave one spare core per process for MPI’s progress thread
with MPI implementation

I mostly simple model problems just to understand their performance

pipelined s-step GMRES 14/23

MPI benchmarks: overlap of MPI Iallreduce with comp (IMB)

#bytes tovrl[µsec] tpure[µsec] tCPU[µsec] overlap[%]
8 312.37 242.53 272.48 74.37
16 268.53 225.00 254.62 82.91
32 264.67 222.07 251.30 83.05
64 281.10 237.46 249.84 82.53
128 267.30 227.92 253.52 84.47
256 278.94 227.63 265.70 80.69

I good overlap (may be slower, and may not reflect solver)

I progress thread is enabled with one spare core per process

I GMRES reduces 1× 1 ∼ 10× 30 numerical values
8 ∼ 2400 bytes

pipelined s-step GMRES 15/23

MPI benchmark: pipelining all-reduces

#bytes 80 160 240 320 400 480 560 640
10 calls MPI Iallreduce followed by MPI Waitall, progress threads
np = 60 4.62 4.86 5.55 6.02 6.10 6.83 6.62 6.45

120 4.22 4.81 6.32 5.98 6.43 6.76 7.11 6.48

10 calls to MPI Allreduce from nt threads per process, np = 20.
nt = 2 9.74 9.66 9.77 9.42 9.75 9.32 9.61 9.25

5 8.79 8.97 8.72 9.26 8.50 10.58 10.87 10.50

- Time over one all-reduce (12 cores per node) -

I 1.00 means “perfect” pipeline (not possible due to bandwidth)

≥ 10.00 means “no” pipeline

I MPI Allreduce does not seem to pipline
(using different communicator per thread)

I MPI Iallreduce seems to do a bit better

pipelined s-step GMRES 16/23

Convergence rate on 12 processes: 5-pts 2D Laplace (nx = 512)

(2 nodes, six processes per node, one thread per process)

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

Number of restarts

R
e

la
t
iv

e

r
e

s
id

u
a

l
n

o
r
m

No Preconditioner

(ℓ = 1)
(ℓ = 2)
(ℓ = 5)
(ℓ = 2, τ = 10−5)
GMRES
(s=5)
(s=10)

5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Block Jacobi Preconditioner

R
e

la
t
iv

e

r
e

s
id

u
a

l
n

o
r
m

Number of restarts

I all solvers converge equivalently in term of iteration counts
even with preconditioner

I for remaining slides,
20 restart cycles of GMRES(30) (Newton basis, no precond)

pipelined s-step GMRES 17/23

Convergence rate on 12 processes: 5-pts 2D Laplace (nx = 512)

(2 nodes, six processes per node, one thread per process)

0 1 2 3 4 5 6 7
10

−3

10
−2

10
−1

10
0

Time (s)

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

No Preconditioner

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0
Block Jacobi Preconditioner

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

Time (s)

(ℓ = 1)
(ℓ = 2)
(ℓ = 5)
(ℓ = 2, τ = 10−5)
GMRES
(s=5)
(s=10)

I all solvers converge equivalently in term of iteration counts
even with preconditioner

I for remaining slides,
20 restart cycles of GMRES(30) (Newton basis, no precond)

pipelined s-step GMRES 18/23

Performance comparison: 5-pts 2D Laplace (nx = 1024)

(six processes per node, one thread per process)

60 120 180 240 300

Number of processes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

T
im

e
 (

s
)

60 120 180 240 300

Number of processes

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
p
e
e
d
u
p

I s-step reduces both intra and inter comm

I pipeline improves GMRES and

is expected to improves s-step at a larger scale

I combining two may obtain the best performance at a large-scale

pipelined s-step GMRES 19/23

Performance comparison: 27-pts 3D problems (nx = 128)

number of processes
` s 60 120 180 240

GMRES
– – 2.10 (1.00) 1.25 (1.00) 0.88 (1.00) 0.64 (1.00)

pipelined
2 – 2.36 (0.89) 1.36 (0.92) 0.88 (1.00) 0.68 (1.00)
5 – 2.32 (0.91) 1.27 (0.98) 0.84 (1.05) 0.65 (1.05)
10 – 2.20 (0.95) 1.19 (1.05) 0.83 (1.06) 0.61 (1.11)

s-step
– 5 1.85 (1.14) 1.06 (1.18) 0.74 (1.19) 0.49 (1.38)
– 10 1.75 (1.20) 1.04 (1.20) 0.70 (1.26) 0.47 (1.45)

pipelined s-step
2 5 2.03 (1.03) 1.13 (1.11) 0.78 (1.13) 0.51 (1.33)

- Time in seconds (speedups over GMRES) -

I lower speedups compared to 2D problems (heavier SpMV)

pipelined s-step GMRES 20/23

Performance comparison: U. of Florida Matrix collection

n (M) nnz
n time pipelined s-step pipelined s-step

G3 Circuit 1.6 4.8 0.43 1.31 1.48 1.55
thermal2 1.2 7.0 0.43 1.54 1.60 1.65
atmosmodd 1.3 6.9 0.74 1.78 1.95 1.99

- Speedups over GMRES (240 processes) –

I s-step reduces both intra and inter comm

I pipeline improves GMRES and

is expected to improves s-step at a larger scale

I combining two may obtain the best performance at a large-scale

pipelined s-step GMRES 21/23

Thread-parallelization: threaded MKL+MPI or QUARK?
(1 process/socket)

20 40 60 80 100

Number of processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
im

e
 (

s
)

MPI implementation

20 40 60 80 100

Number of processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
im

e
 (

s
)

QUARK implementation

I QUARK could utilize cores better
obtained higher performance on small number of processes

I but seems to lose its advantage on a larger number of processes
scheduling overhead, pipelining?

pipelined s-step GMRES 22/23

Final slide

I Studied two implementations of pipelined s-step GMRES

Current work: DOE ECP PEEKS project

I ECP applications on Exascale architectures
much heavier SpMV, running with manycores/accelerators

I Implementaion

I Trillinos components (Tpetra, Teuchos, Kokkos)

collaboration with Sandia’s solver group

I Other solvers (CG, BiCGStab, and Lanczos)

I Performance

I Other MPIs (e.g., Intel MPI, OpenMPI)

I Other machines with GPUs/manycores on a node
(e.g., Titan, Cori, Theta)

pipelined s-step GMRES 23/23

