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A PDE-ODE system

PDE : We consider the Lighthill-Whitham-Richards model which describes
the global traffic evolution :

∂tρ+ ∂x(ρ(1− ρ)) = 0, (t, x) ∈ R+ × R,
ρ(0, x) = ρ0(x), x ∈ R, (LWR)

Above, ρ = ρ(t, x) ∈ [0, 1] is the mean traffic density. The flux f is
defined by

f (ρ) = ρv(ρ) with v(ρ) = 1− ρ.

ODE : We consider the following ODE which describes the trajectory of a
vehicle :

ẏ(t) = ω(ρ(t, y(t)+))), t ∈ R+,
y(0) = y0, x ∈ R. (ODE)

The variable y denotes the bus position and ω is the velocity of the
vehicle.
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A constraint on the flux f

We assume that the vehicle is a bus and the velocity of the bus is
described by :

ω(ρ) =

{
Vb if ρ ≤ ρ∗ := 1− Vb,
v(ρ) otherwise,

(1)

with Vb ∈ (0, 1) denotes the maximal speed of the bus.

Figure: Bus and cars speed
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A constraint on the flux f

Since Vb < 1, the bus can be regarded as a moving restriction of the
road where the associated reduced flow fα is defined by fα(ρ) = ρ(1− ρ

α )
with α ∈ (0, 1). Fα denotes the maximum value of fα(ρ) with ρ ∈ (0, 1)
in the bus reference frame.

The constraint on the flux can be written as

f (ρ(t, y(t)))− ẏ(t)ρ(t, y(t)) ≤ Fα :=
α

4
(1− ẏ(t))2, t ∈ R+ (Const)

Thibault Liard, Benedetto Piccoli Stability of the solutions for scalar conservation laws with moving flux constraints



A strong coupled PDE-ODE system

We consider the following coupled PDE-ODE system
∂tρ+ ∂x(ρ(1− ρ)) = 0, (t, x) ∈ R+ × R,
ρ(0, x) = ρ0(x), x ∈ R,
f (ρ(t, y(t)))− ẏ(t)ρ(t, y(t)) ≤ Fα := α

4 (1− ẏ(t))2, t ∈ R+,
ẏ(t) = ω(ρ(t, y(t)+))), t ∈ R+,
y(0) = y0, x ∈ R.

(Syst-LWR)

ρρ̌α ρ̂α ρ∗

Vb

Fα

1α

f (ρ)
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A constraint Riemann solver Rα for (Syst-LWR)

Let R the standard Riemann solver for (LWR), i.e the (right continuous)
map (t, x) 7→ R(ρL, ρR)( x

t ) given by the standard weak entropy solution
to (LWR). The constrained Riemann solver Rα for the coupled
PDE-ODE system is defined by

If f (R(ρL, ρR)(Vb)) ≥ Fα + VbR(ρL, ρR)(Vb) then

Rα(ρL, ρR)(
x

t
) =

{
R(ρL, ρ̂α)( x

t ) if x ≤ y(t) = Vbt
R(ρ̌α, ρR)( x

t ) if x ≤ y(t) = Vbt

Otherwise,

Rα(ρL, ρR)(
x

t
) = R(ρL, ρR)(

x

t
)
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Let BV (R, [0, 1]) be the set of real-valued functions whose total variation
is bounded.

Theorem (M.L Del Monache and P. Goatin, 2014)

Let ρ0 ∈ BV (R, [0, 1]). The Cauchy problem (Syst-LWR) admits a
solution (ρ, y) ∈ C 0(R+; L1 ∩ BV (R, [0, 1]))×W 1,1(R+,R).

Theorem (T.L and B. Piccoli)

The solution (ρ, y) ∈ C 0(R+; L1(R) ∩ BV (R, [0, 1]))×W 1,1(R+,R) of
the Cauchy problem (Syst-LWR) depends in a Lipschitz continuous way
on the initial datum with respect to the L1-topology.

More precisely, let T > 0 and (ρ0, y0) and (ρ1, y1) two solutions of
(Syst-LWR) with corresponding initial data (ρ00, y

0
0 ) and (ρ10, y

1
0 ), then

there exists C > 0 such that

‖ρ1(t)− ρ0(t)‖L1(R) + |y1(t)− y0(t)| ≤ C (‖ρ10 − ρ00‖L1(R) + |y1
0 − y0

0 |),

for every t ∈ [0,T ]
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Wave-front tracking method

Let the mesh Mn = {(2−nN ∩ [0, 1])}2ni=0 ∪ {ρ∗, ρ̌α, ρ̂α} on [0, 1].

We construct a piecewise constant (ρn, yn) ∈Mn × R by the wave-front
tracking method as described below

We approximate ρ0 ∈ BV (R, [0, 1]) by a piecewise constant function
ρn0 ∈Mn

The solution (ρn, yn) solves (Syst-LWR) by means of Rα with initial
conditions (ρn0, y0) up to the first time t1 > 0 where two
dicontinuities collide or a discontinuity hits the bus trajectory. Each
rarefaction wave is splitted into a rarefaction fan formed by
rarefaction shocks that are discontinuities traveling with the
Rankine-Hugoniot speed

at t = t+1 a new Riemann problem arises and we repeat the previous
strategy replacing t = 0 and (ρn0, y0) by t = t1 and (ρn(t1, ·), y0)
respectively.
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Description of all possible interactions

ρR
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Figure: Two waves interact together producing a third wave
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ω(ρL)
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ρL

Figure: ρ∗ ≤ ρR < ρL and
ρL − ρR ≤ 2−n+1.

ρR

ω(ρL)

ω(ρR)

ρL

Figure: ρ∗ < ρR and
ρL ∈ [0, ρ̌α] ∪ [ρ̂α, ρR ].

Thibault Liard, Benedetto Piccoli Stability of the solutions for scalar conservation laws with moving flux constraints



Description of all possible interactions

ρR

ρ̌α

ρ̂α

Figure: ρL = ρ̌α and ρR ∈ [ρ̂α, 1]
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ρ̌α
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Vb
ρL

Figure: ρL = ρ̂α and ρR ∈ [ρ̌α, ρ̂α]

ρ̌αρ̂α

Vb

ρL

Figure: ρR = ρ̂α and ρL ∈ [0, ρ̌α]

ρR

ρ̌α

ρ̂α
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Figure: ρL ∈ [ρ̌α, ρ̂α] and ρR = ρ̌α
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Description of all possible interactions

ρR
Vb

Vb

ρL

Figure: ρL = [0, ρ̌α], ρR ∈ [0, ρ̌α] ∪ [ρ̂α, p
∗] and ρL + ρR < ρ∗
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Generelized tangent vectors

The couple (ρi,n(t, ·), y i,n(t)) corresponds to the wave-front tracking
approximate solution of (Syst-LWR) at time t with initial data

(ρi,n0 , y i,n
0 ) ∈ Dn

C := {(ρ, y) : [0, 1]× R→Mn × R, TV (ρ) ≤ C ). Let PC
denotes the set of piecewise constant functions with finitely many jumps.

We construct a particular path γ0 : [0, 1] 7→ PC such that
γ0(0) = (ρ1,n0 , y1,n

0 ) and γ0(1) = (ρ2,n0 , y2,n
0 ).

For every θ ∈ (0, 1), γt(θ) denotes the wave-front tracking
approximate solution at time t with initial data γ0(θ).

We obtain

‖ρ1,n(t)− ρ0,n(t)‖L1(R) + |y1,n(t)− y0,n(t)| ≤ inf
γt
‖γt‖L1(R),

and
inf
γ0
‖γ0‖L1(R) = ‖ρ1,n0 − ρ

0,n
0 ‖L1(R) + |y1,n

0 − y0,n
0 |.

To prove the main theorem, it is enough to prove that

‖γt‖L1(R) ≤ ‖γ0‖L1(R)
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Generelized tangent vectors

γt admits shifts of waves denoted by ξi (t, θ) and a shift of the bus
trajectory denoted by ξb(t, θ). Thus, for a.e θ ∈ [0, 1] and t ∈ [0,T ],

‖γt‖ =

∫ 1

0

∑
k∈K(n,t,θ)

|∆ρnk(t, θ)ξnk (t, θ)|+ |ξnb(t, θ)| dθ,

where ∆ρnk(t, θ) are the signed strengths of the corresponding waves. To
get the inequality ‖γt‖L1(R) ≤ ‖γ0‖L1(R) it is enough to have

∑
k∈K(n,T )

|∆ρnk(T )ξnk (T )|+|ξnb(T )| ≤ C

 ∑
k∈K(n,0)

|∆ρnk(0)ξnk (0)|+ |ξnb(0)|

 ,
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A backwards in time method

We fix T > 0. In the sequel, K (n, t) denotes the set of classical shocks at
time t. We fix the wave shift ξk(T ) and the bus shift ξb(T ) with
k ∈ K (n,T ).

If no interactions occurs between [t1, t2] then both shifts remain
constant over [t1, t2].

For each possible interactions at time t1, we prove that ξb(t+1 ) (resp.
ξj(t

+
1 ) with j ∈ K (n, t+1 )) can be expressed as ξb(t−1 ) and ξk(t−1 )

with k ∈ K (n, t−1 ).

Thus, for every k ∈ K (n,T ) and for every j ∈ K (n, 0), there exist
W 1

b (0),W 2
b,k(0),Wj,b(0),Wj,k(0) ∈ R4

+ such that{
ξb(T ) = W 1

b (0)ξb(0) +
∑

j∈K(n,0) Wj,b(0)∆ρj(0)ξj(0),

∆ρk(T )ξk(T ) = W 2
b,k(0)ξb(0) +

∑
j∈K(n,0) Wj,k(0)∆ρj(0)ξj(0)

(2)
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A backwards in time method

From the previous equalities, we construct explicitely weight functions
(W n

k (0))k∈K(n,0) and W n
b (0) such that∑

k∈K(n,T )

|∆ρnk(T )ξnk (T )|+|ξnb(T )| ≤
∑

k∈K(n,0)

|W n
k (0)∆ρnk(0)ξnk (0)|+|W n

b (0)ξnb(0)|,

By straighforward computations ,we have for every k ∈ K (n, 0),

max(W n
k (0),W n

b (0)) ≤ C ,

whence the desired conclusion.
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Perspectives

We can consider the generalized Aw-Rascle-Zhang (GARZ) model on
each road I defined by ∂tρ(t, x) + ∂x(ρ(t, x)v(t, x)) = 0, (t, x) ∈ R+ × I

∂tw(t, x) + v(t, x)∂x(w(t, x)) = 0, (t, x) ∈ R+ × I
v = V (ρ,w)

(GARZ)

Above,

ρ = ρ(t, x) is the mean traffic density,

w = w(t, x) describes the related driver properties to the
flow-density curves. For instance, w can represent the fraction of
special vehicles in the total traffic stream (trucks or autonomous
vehicles), the “agressivity”, the “desired spacing” or “perturbation
from equilibirum”.

v = V (ρ,w) is the velocity. Some conditions are required on V .

Replacing (LWR) by (GARZ) in (Syst-LWR), we want to find existence
and stability results for (Syst-GARZ).
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Thank you for your attention
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