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Statistics: Three inference paradigms in statistics

1. Frequentist inference
Procedures evaluated based on repeated sampling
Parameters: assumed fixed, but unknown
Pre-experimental set-up

2. Likelihood inference
Assume a sampling model (the likelihood)
Parameters: assumed fixed, but unknown
Post-experimental set-up

3. Bayesian inference
Assume a sampling model (the likelihood) and a prior distribution
for the parameters
Parameters: assumed to be random variables with distributions
Post-experimental set-up
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Motivation

Classification of modeling approaches
Mathematical Statistical
Deterministic Stochastic
Mechanistic Phenomenological
Process Pattern

Traditional approach:
choose between a mathematical or a statistical approach

Modern approach:
combine the advantages of mathematical and statistical
models
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History

There is a long history of combining the advantages of mathematical
and statistical models.

Many of the speakers at UQ18 exemplify these ideas.

Some useful references:

Classic references by L. M. Berliner:

I ”Statistics, Probability and Chaos,” Statistical Science (1992)
I “Likelihood and Bayesian Prediction of Chaotic Systems”

JASA (1991).

Recent review:
“Statistical inference for dynamical systems: A review”
K. McGoff, S. Mukherjee, N. Pillai, Statistics Surveys (2015)

Statistical methods: Computational Statistics
G. Givens and J. Hoeting, 2013, Wiley, 2nd edition.
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Motivating example

Ecology of infectious diseases
Explores the relationships between 
1. Diseases: Parasitic, bacterial, viral infectious
2. Hosts:  animal and human 
3. Their environment
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Motivating example

Challenges in the ecology of infectious diseases
Data can be messy and sparse
You have to find the animals who are sick, they don’t visit the
nearest health clinic
You need knowledge of mathematical biology
You need to able to synthesize a broad range of statistical
methods

Sounds like fun!
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Motivating example:

Deer (female) with 

Chronic Wasting Disease

Healthy deer (male)

Chronic Wasting Disease
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Motivating example:
CWD Transmission

Chronic wasting disease (CWD) is a 100% fatal contagious
disease that affects cervids: deer, elk and moose.
It is important to understand the transmission mechanisms of
CWD.
Several deterministic epidemic models were proposed by Miller,
Hobbs & Tavener (2006) in an effort to understand the
transmission of CWD.
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Motivating example:
CWD Transmission
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Motivating example:
CWD Transmission

The observed data:
Deer were held at the Colorado Division of Wildlife in Fort Collins
Annual observations of cumulative mortality from two CWD
epidemics in captive mule deer
No live-animal test, vaccine, or treatment for CWD existed prior to
2008.
Epidemic 1: 1974 to 1985
Epidemic 2: 1992 to 2001 (in a new deer herd)
21 observations over time
The dataset also includes

I annual number of new deer added to the herd
I per capita losses due to natural deaths and removals
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Motivating example
CWD Transmission

Mathematical model for Chronic Wasting Disease

Susceptible 
Deer

Infected
Deer

Dead 
Deer

SIR model (Susceptible-Infected-Recovered)
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Motivating example
CWD Transmission
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Motivating example
CWD Transmission
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Fig 2: SIR Model:  Only the Dead category is observed
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Motivating example
CWD Transmission
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Motivating example:
CWD Transmission

We develop a type of Susceptible-Infected-Recovered (SIR) model for
disease transmission where the state variables are described by a set
of differential equations.

Consider the state vector X(t) = (S(t), I(t),C(t))T , where
S is the number of susceptible animals,
I is the number of infected animals,
C is the cumulative number of deaths from CWD over time.

Only C is observed and the other two state variables, S and I, are
unobserved.

Motivating example J. Hoeting April 2018 17



Motivating example:
Direct transmission ODE model for CWD

dS = [a− S(βI + m)] dt
dI = [βSI − I(µ+ m)] dt

dC =µI dt

where
β is the transmission coefficient
µ is the per capita CWD mortality rate

}
unknown

a is the number of susceptible animals annually
added to the population via births or importation

 known

m is the per capita natural mortality rate
We assume X(0) = (S(0), I(0),C(0))T are known initial conditions.
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Motivating example:
Ordinary Differential Equation Model for CWD
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Deterministic dynamical models can be used to determine whether or
not transmission will occur.
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Motivating example:
Direct transmission SDE Model for CWD

A SDE model for direct transmission of CWD is given by

dS =[a− S(βI + m)]dt + B11dW1 + B12dW2 + B13dW3,

dI =[βSI − I(µ+ m)]dt + B21dW1 + B22dW2 + B23dW3,

dC =µIdt + B31dW1 + B32dW2 + B33dW3,

where
initial condition X(0) = (S(0), I(0),C(0))T assumed known
W is a k -dimensional standard Wiener process.
B = (Bij) =

√
Σ with

Σ =

a + S(βI + m) −βSI 0
−βSI βSI + I(µ+ m) −µI

0 −µI µI

 .
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Motivating example:
Stochastic Differential Equation Model for CWD
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Stochastic dynamical models
Can be used to determine the probability of disease transmission
between two individuals
Allow more realistic description of the transmission of disease.
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Part 1: PSML Parameter Estimation for SDEs

Goal: Estimate the parameters of SDE model from the data.
Challenges:

Data are partially observed, discrete, sparse.
The transition density between two observations is
typically unknown.

Key ideas:
We propose a new importance sampling
approach with an auxiliary parameter which improves
the approximation of the transition density.
We embed the auxiliary importance sampler in a
penalized simulated maximum likelihood (PSML)
framework which produces more accurate and
computationally efficient parameter estimates.
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PSML: General Multivariate SDE Model

Consider a general multivariate stochastic differential equation model,

dX(t) = f (X(t),θ)dt + g(X(t),θ)dW(t)

where
X(t) = {X1(t), . . . ,Xk (t)}T denotes a k -dimensional state variable
vector at time t ,
Initial conditions X(0) = x0 are assumed known,
θ ∈ Θ ⊆ Rp is an unknown p-dimensional parameter vector,
W is a k -dimensional standard Wiener process.
the functions f and g are known

We also assume that this SDE has a unique weak solution.
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PSML: Partially observed state process

We assume that only a subset of the states can be observed at each
discrete time point.

Partition X so at time t , X (t) = {X−obs(t),X obs(t)}
unobservable state variables X−obs(t) = {X1(t), . . . ,Xj−1(t)}
observable states variables
X obs(t) = {Xj(t), . . . ,Xk (t)}

Note that the time intervals do not have to be equidistant.
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PSML: Likelihood

The discrete-time likelihood of the general multivariate SDE model is
given by

L(θ) = p(X obs(t1)|X (t0),θ)
n∏

i=2

p(X obs(ti)|X (t0),X obs(t1 : ti−1),θ)

where X obs(t1 : ti−1) denotes all observations of X obs from time t1 to
ti−1.
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PSML: Approximate likelihood

Likelihood is based on
1 Transition density p(X(ti)|X(ti−1)) which typically has no closed

form
2 Approximation of p(X(ti)|X(ti−1)) based on multivariate integral

Approximate the likelihood

1 Use Euler-Maruyama scheme which allows us to approximate
p(X(ti)|X(ti−1))

2 Use importance sampling to approximate integral expression in
the likelihood
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PSML: Euler-Maruyama

Goal: approximate the transition probability density p(X(ti)|X(ti−1))
which has no closed form in most cases.

If the time interval between two observations is small enough, we can
approximate p(X(ti)|X(ti−1)) using a multivariate normal density.

The Euler-Maruyama scheme:

X(t + δ)− X(t) ≈ f (X(t),θ)δ + g(X(t),θ)(W(t + δ)−W(t)),

where
δ is called step size
W(t + δ)−W(t) ∼ N(0, δIk×k )
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PSML: What if your time intervals are large?

If the time interval between observations is large, the Euler-Maruyama
approximation will introduce bias.

We can partition the interval ti−1 to ti to M subintervals such that
δ = (ti − ti−1)/M is small enough for the Euler-Maruyama scheme.

By the Markov property, p(X(ti)|X(ti−1)) can be estimated by

∫ M∏
m=1

p(X(ti−1 + mδ)|X(ti−1 + (m − 1)δ))dX((ti−1 + δ) : (ti − δ)),

(Pedersen 1995)
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PSML

We have a formula for the approximate transition density.

Our next goal is to estimate parameters of the density.

How will we do that? We will generate samples from the approximate
transition density using importance sampling.

So, first, what is importance sampling?

PSML J. Hoeting April 2018 29



Statistics

1 Expectation
2 Monte Carlo Integration
3 Importance sampling

4 Maximum likelihood estimation
5 Penalized maximum likelihood estimation
6 Simulated maximum likelihood estimation

7 Bayesian statistics
8 Markov chain Monte Carlo
9 Approximate Bayesian Computation
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Statistics: Expectation

Expectation is the backbone of much of the field of statistics.

The expected value is the average value of a random variable.

Let X be a random variable with distribution p(x). Then

E (X) =

∫
xp(x) dx

Many quantities of interest in inferential statistical analyses can be
expressed as the expectation of a function of a random variable,
E (h(X )), where

µ = E (h(X)) =

∫
h(X)p(x) dx
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Statistics: Monte Carlo integration

E (h(X)) isn’t always available in closed form, so we use alternative
approaches to approximate it.

Monte Carlo Integration
When an i.i.d. random sample X1, . . . ,Xn is obtained from p, we can
approximate µ by a sample average:

µ̂MC =
1
n

n∑
i=1

h(Xi) −→ µ = E (h(X)) =

∫
h(x)p(x) dx

as n→∞ by the strong law of large numbers.
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Statistics: Importance Sampling

Importance sampling is based upon the principle that the expectation

of h(X) with respect to its density p can be written in the alternative

form

µ =

∫
h(x)p(x) dx =

∫
h(x)

p(x)

q(x)
q(x) dx

where q is another density function called the importance sampling

function or envelope.
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Statistics: Importance Sampling

This suggests that a Monte Carlo approach to estimating E{h(X)} is to
draw X1, . . . ,Xn i.i.d. from q and use the estimator

µ̂∗IS =
1
n

n∑
i=1

h(Xi)w∗(Xi)

where w∗(Xi) = p(Xi)/q(Xi) are unstandardized weights, also called
importance ratios.

For this strategy to be convenient, it must be easy to sample from q
and to evaluate p, even when it is not easy to sample from p.
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PSML: Importance sampling approximation

Back to our problem:
Using importance sampling, we draw J samples,
{X(j)((ti−1 + δ) : (ti − δ)), j = 1, · · · , J}, from an importance sampling
density q.
Then p(X(ti)|X(ti−1)) can be approximated by

1
J

J∑
j=1

∏M
m=1 p(X(j)(ti−1 + mδ) |X(j)(ti−1 + (m − 1)δ))

q(X(j)((ti−1 + δ) : (ti − δ)))
(1)

To decrease the importance sampler variance and reduce the sample
size J, we want to choose an importance sampling function q that is as
close as possible to the integrand in the likelihood

This is very challenging for our SDE problem!
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Statistics

1 Expectation
2 Monte Carlo Integration
3 Importance sampling

4 Maximum likelihood estimation
5 Penalized maximum likelihood estimation
6 Simulated maximum likelihood estimation

7 Bayesian statistics
8 Markov chain Monte Carlo
9 Approximate Bayesian Computation
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Statistics: Maximum Likelihood Estimation

Let X = (X1, . . . ,Xn) be a sequence of random variables with joint
density p(x|θ) viewed as a function of θ = (θ1, . . . , θp).

The likelihood function is the density viewed as a function of θ so

L(θ|x) = p(x1, . . . , xn|θ1, . . . , θp)

The observed data, x1, . . . , xn, might have been realized under
many different values for θ.
The parameters for which observing x1, . . . , xn would be most
likely constitute the maximum likelihood estimate (MLE) of θ

θ̂MLE = arg max
θ∈Θ

L(θ|x)

We often consider the log likelihood, `(θ|x).
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Statistics: Maximum Likelihood Estimation
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Fig 1: easy likelihood

130 140 150 160 170 180

12
3

12
4

12
5

12
6

θ

log
(lik

eli
ho

od
)

Fig 2:  more challenging likelihood

For simple univariate problems, it is easy to find the maximum
likelihood estimate (MLE).
For many real-world problems finding the MLE can be challenging
(multivariate, multiple maxima, etc).
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Statistics: Penalized MLE

One drawback with likelihood inference across multiple models is that
the likelihood increases with model complexity.

Penalized MLE has been used in many contexts, particularly for
simultaneous model selection and parameter estimation in
regression-type models (e.g., LASSO).

The general idea is to maximize a penalized likelihood of the form

θ̂PMLE = arg max
θ∈Θ

{`(θ|x)− λP(θ)}

where
λ controls the tradeoff between the likelihood and the penalty
P is a function that penalizes less attractive models (e.g., penalty
for model complexity or higher variance)
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Statistics: Simulated MLE

Simulated Maximum Likelihood Estimation is the idea of
maximizing an approximate likelihood
Also called: Maximum Simulated Likelihood Estimation
Basic idea: replace the integral in the likelihood with the Monte
Carlo approximation to the integral.
Example: See slide 35, equation (1)
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PSML: Maximum simulated Likelihood Estimation

SMLE is the idea of maximizing an approximate likelihood
For our problem: SMLE uses uses the Euler-Maruyama
approximation conditional only on X(ti−1), so the first M − 1 terms
in the approximation are canceled.

Hence, the importance sampler reduces to

1
J

J∑
j=1

p
(

X(ti) | X(j)(ti − δ)
)
.

SMLE constructs an importance sampler q by simulating J paths on
each subinterval.
And then you find the parameters that maximize this quantity.
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PSML: Maximum simulated Likelihood Estimation

SMLE requires simulation of J trajectories of all states in X from time
ti − δ to time ti using the Euler-Maruyama scheme with the step size δ.

Challenges
Computationally intensive: SMLE is computationally intensive in
practice, especially for a multivariate SDE model.
High variance: The SML estimator can have variance.
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PSML: Penalized maximum simulated likelihood

Auxiliary importance sampling
Augment the likelihood with an auxiliary parameter ρ which tunes
the importance sampler
Penalized maximum simulated likelihood
We maximize the log likelihood subject to a constraint that the
sum of the variance of the Monte Carlo approximation of the
transition density is less than a prespecified level.
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PSML: Penalized maximum simulated likelihood
(PSML)

We seek to simultaneously estimate θ and find ρ which minimizes the
variation of the Monte Carlo approximation of the transition density.

The PSML estimator (θ̂, ρ̂) is defined by

(θ̂, ρ̂) =arg max
n∑

i=1

log

1
J

J∑
j=1

hρ

− λ n∑
i=1

ĉv (hρ)

where
λ ≥ 0 controls the tradeoff between the likelihood and the penalty
hρ is the importance sampling ratio where ρ is an auxiliary
parameter used to tune the importance sampling function.
ĉv(hρ) is the sample coefficient of variation of hρ
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PSML: Selecting optimal tuning parameter

The tuning parameter λ controls how close the importance
sampler density q is to the target probability density.

We choose the optimal tuning parameter λ that minimizes the
estimated prediction error,

1
nL

L∑
`=1

n∑
i=1

∣∣∣∣∣∣X̂(`)
obs(ti)− Xobs(ti)

∣∣∣∣∣∣ ,
where X̂(`)

obs(ti) is the `th simulated Xobs at observation time ti by
the Euler-Maruyama scheme with θ set to θ̂(s).
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PSML: Summary of Simulation Results

We have shown via simulations and analyses of real data that our
penalized simulated maximum likelihood (PSML) method has
superior performance as compared to previously proposed methods:

Modified Brownian Bridge (Durham and Gallant, 2002)
Regularized bridge sampler (Lindstrom 2012)
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Stochastic version of the Lorenz model

RMSE using our approach (PSML-Reg) is much lower than RMSE of
current best approach (Regularized)
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PSML: CWD transmission

Recall the direct transmission SDE model

dS = [a− S(βI + m)] dt + B11dW1 + B12dW2 + B13dW3,

dI = [βSI − I(µ+ m)] dt + B21dW1 + B22dW2 + B23dW3,

dC =µIdt + B31dW1 + B32dW2 + B33dW3,

where the unknown parameters are:
β is the direct transmission coefficient
µ is the per capita CWD mortality rate
a is the known number of susceptible animals
m is the known per capita natural mortality rate
W = (W1,W2,W3)T is a standard Wiener process
B = (Bij) is the positive definite square root of the covariance
matrix, B =

√
Σ
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PSML: Modeling two CWD epidemics
Upper: observed cumulative number of deaths for CWD.
Lower: 100 simulated trajectories of SDE model estimated with parameters via PSML.
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Our approach successfully captures the pattern of the CWD epidemic, especially for such a small
sample size.
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PSML: Modeling two CWD epidemics

Parameter Method Estimate 95% CI
β MBB 0.03 (0.027,0.186)

Our method 0.03 (0.027,0.120)
µ MBB 0.27 (0.148,0.599)

Our method 0.21 (0.143,0.388)

95% Confidence intervals computed using Bootstrapping (another
statistics topic....)
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Part 2: Model selection for dynamical models

A hierarchical model is one approach to constructing models for
complex problems.

Hierarchical model consists of
Stage 1: Data model
Stage 2: Process model
Stage 3: Parameter model

Typically, we use the Bayesian paradigm for inference for hierarchical
models.
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Statistics

1 Expectation
2 Monte Carlo Integration
3 Importance sampling

4 Maximum likelihood estimation
5 Penalized maximum likelihood estimation
6 Simulated maximum likelihood estimation

7 Bayesian statistics
8 Markov chain Monte Carlo
9 Approximate Bayesian Computation
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Statistics: Bayes Theorem

p(θ|x) =
p(θ,x)

p(x)
(2)

posterior︷ ︸︸ ︷
p(θ|x) =

likelihood︷ ︸︸ ︷
p(x|θ)

prior︷︸︸︷
p(θ)∫

p(x|θ)p(θ)dθ
(3)

p(θ|x) ∝ p(x|θ)p(θ) (4)
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Statistics: Markov chain Monte Carlo (MCMC)

The most common use of MCMC is to obtain draws from the
posterior distribution, p(θ|x), to enable Bayesian inference.

The basic idea is that we can’t obtain p(θ|x) in closed form or we
can’t simulate easily from p(θ|x).

MCMC methods can be used to generate a draw from a
distribution that approximates some target distribution p(·), but
they are more properly viewed as methods for generating a
sample from which E(h(X)) can reliably be estimated.

MCMC is a type of Monte Carlo integration (see page 32), but now
you simulate from a Markov chain

Common MCMC algorithms: Metropolis-Hastings algorithm and
Gibbs sampling
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Statistics: ABC

Approximate Bayesian Computation (ABC):

Method to estimate the model parameters when the likelihood is
difficult to compute
Basic idea:

1 Simulate data from the model given a set of parameters
2 Compute a distance function between simulated data and the

observed data
3 If the simulated data are similar to the observed data, accept this

set of parameters

ABC-SMC (sequential Monte Carlo):
Improve ABC by simulating data through a sequence of intermediate
distributions
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Approximate Bayesian Computation (ABC)

For more on
Approximate Bayesian Computation (ABC)

Attend David Notts minitutorial 2- 4 pm today
Grand Ballroom, G
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Model selection: model set-up

For our chronic wasting disease example:

Stage 1: Data Model

At time t let C̃(t) = observed cumulative number of deaths from CWD
where

C̃(t) ∼ Binomial
(

N(t);
C(t)
N(t)

)
where

N(t) = S(t) + I(t) + C(t) is the total # of animals at time t
Only C̃(t) and N(t) observed at discrete time t = t0, t1, . . . , tn,
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Model selection: model set-up

Stage 2: Process Model

d

S
I
C

 =

 a− S(βI + m)
βSI − I(µ+ m)

µI

dt

Stage 3: Parameter Model
Prior distributions for all model parameters

Inference: We can’t write the likelihood in closed form so we certainly
don’t have the posterior distribution in closed form
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Model selection: multiple models

I have multiple reasonable differential equation models. Which one
should I use when analyzing my data?

Case 1: Choose between 3 dynamical model types
1 Ordinary differential equation (ODE) model
2 Stochastic differential equation (SDE) model
3 Continuous time Markov chain (CTMC) model

Case 2: Choose between 3 forms of the same type of ODE
1 Direct disease transmission (basic SIR)
2 Indirect disease transmission (environmental transmission)
3 Both direct and indirect disease transmission
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Model Selection: ODE model for indirect
transmission of CWD

An ODE model for the indirect transmission of CWD (Miller et al. 2006)

d


S
I
E
C

 =


a− S(γE + m)
γSE − I(µ+ m)

εI − τE
µI

dt ,

where
γ is the indirect transmission coefficient
ε is the per capita rate of excretion of infectious material by
infected animals
τ is the mass-specific rate of loss of infectious material from the
environment

The unknown quantities to be estimated are (γ, µ, ε, τ,S(t0), I(t0),E(t0)).

Model selection J. Hoeting April 2018 60



Model Selection: Model for CWD

Models considered for CWD problem

Data Process Model
Model Model CWD transmission Dynamical model
M1 Binom Direct ODE
M2 Binom Indirect ODE
M3 Binom Direct SDE
M4 Binom Indirect SDE
M5 Binom Direct CTMC
M6 Pois Direct ODE
M7 Pois Indirect ODE
M8 Pois Direct SDE
M9 Pois Indirect SDE
M10 Pois Direct CTMC

No CTMC model for indirect CWD transmission was considered as
excreta left in the environment is not a discrete variable.
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Model selection: Approaches for model selection

Model selection:

1 Compare models via their posterior model probabilities.
I For modelMk the posterior model probability is given by P(Mk |D).
I Related to Bayesian model averaging (BMA).
I See Hoeting, Madigan, Raftery, Volinsky (1999)
I More info: Merlise Clyde’s talk on Tuesday

2 Compare models using Bayes factors (Kass & Raftery 1995)

Model selection J. Hoeting April 2018 62



Model Selection: Results for CWD

Goal: compare models for Chronic wasting disease.

Posterior model probabilities for each model P(M|D)
Data Process Informative prior set
Model Model P(M|D) Bayes factor
Binom Indirect SDE 0.21 1.00
Binom Direct SDE 0.18 1.15
Binom Direct ODE 0.13 1.55
Binom Direct CTMC 0.11 1.87
Binom Indirect ODE 0.09 2.43
Pois Indirect SDE 0.09 2.27
Pois Direct ODE 0.06 3.48
Pois Direct SDE 0.05 3.87
Pois Indirect ODE 0.04 4.63
Pois Direct CTMC 0.03 6.17
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Model selection: Parameter estimates

The marginal posterior distribution for the parameters of the indirect
transmission SDE model based on the CWD epidemic data.
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Model selection: Parameter estimates

The marginal posterior modes and 95% highest posterior density
(HPD) intervals of the parameters of the indirect transmission SDE
process model with the Binomial data model based on the CWD
epidemic data.

Informative prior set
Parameter Mode 95% HPD
γ = Indirect transmission rate (mass−1yr−1) 0.05 (0.01, 0.36)
µ = CWD mortality rate (yr−1) 0.20 (0.10, 0.59)
ε = Per capita rate of excretion of infectious agent (yr−1) 0.47 (0.15, 0.91)
τ = Rate of loss of infectious agent (yr−1) 0.88 (0.01, 4.52)
S(0) of the first epidemic 18 (10,26)
I(0) 10 (5,18)
E(0) 1.73 (0.97,5.84)
S(0) of the second epidemic 48 (24,50)
I(0) 2 (0,5)
E(0) 3.47 (0.24,4.85)
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Conclusions

We have covered two approaches for statistical parameter estimation
and inference for dynamical models.

Many other approaches have been proposed.

Hopefully this minitutorial will tempt you to learn more statistics and/or
dynamical models as there is much work to be done! We need

More computationally feasible methods for parameter inference
and estimating uncertainty
More understanding about which methods to use when
Advances on many other open problems
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Key References

Textbook:
Computational Statistics
G. Givens and J. A. Hoeting (2013), 2nd edition, Wiley.

Topics include:
Optimization and solving nonlinear equations
Optimization methods for discrete and continuous-valued functions, EM Algorithm

Integration and Simulation
Numerical integration, simulation, Monte Carlo integration, MCMC (basic and advanced)

Bootstrapping
Density Estimation and Smoothing

Book webpage including R code:
www.stat.colostate.edu/computationalstatistics
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Key References, continued

Part 1: L. Sun, C. Lee, and J. A. Hoeting (2015)
A penalized simulated maximum likelihood approach in
parameter estimation for stochastic differential equations
Computational Statistics and Data Analysis, 84: 54–67

Part 2: L. Sun, C. Lee, and J. A. Hoeting (2015)
Parameter inference and model selection in deterministic
and stochastic dynamical models via approximate
Bayesian computation: modeling a wildlife epidemic
Environmetrics, 26: 451–462.
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