UNIVERSITY OF
= oxrorp BINERC

Reducing Precision in
Ensemble Data Assimilation

Sam Hatfield, Peter Diben, Matthew Chantry, Tim Palmer
(also Aneesh Subramanian, Keiichi Kondo, Takemasa Miyoshi)
samuel.hatfield@physics.ox.ac.uk



Floating point arithmetic

double (64 bItS) HEEEEEEEEEEN

single (32 bits) INEEEEEEE

half (16 bits) EEEEEE
H sign M exponent significand

Example number:
exponent

4,938 =-1 x (1+0.2345) x 2

sign signiﬁcand

lower
precision



Why reduce numerical precision?

1) Computing trends 2) Model uncertainties
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Single precision in NWP
Jablonowski-Williamson
benchmark (QJRMS 2006)
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Below single precision
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Key Points:

« Huge saving in computing cost via
reduced numerical precision in earth-
system modeling

« Long and short-term simulations
have similar level of minimal
numerical precision

« Numerical precision can be reduced
with time in a weather forecast
simulations
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Abstract Programmable hardware, in particular Field Programmable Gate Arrays (FPGAs), promises a sig-
nificant increase in computational performance for simulations in geophysical fluid dynamics compared
with CPUs of similar power consumption. FPGAs allow adjusting the representation of floating-point num-
bers to specific application needs. We analyze the performance-precision trade-off on FPGA hardware for
the two-scale Lorenz ‘95 model. We scale the size of this toy model to that of a high-performance comput-
ing application in order to make meaningful performance tests. We identify the minimal level of precision
at which changes in model results are not significant compared with a maximal precision version of the
model and find that this level is very similar for cases where the model is integrated for very short or long
intervals. It is therefore a useful approach to investigate model errors due to rounding errors for very short
simulations (e.g., 50 time steps) to obtain a range for the level of precision that can be used in expensive
long-term simulations. We also show that an approach to reduce precision with increasing forecast time,
when model errors are already accumulated, is very promising. We show that a speed-up of 1.9 times is pos-



Reducing precision in data assimilation

* Research questions:

 Can we adjust precision to a level justified by "“system uncertainty”?
(e.g. model error, observation error)

 Can we improve the quality of analyses if we reinvest computational
savings from reducing precision? (e.g. boost the ensemble size)
* Talk outline:
1. Lorenz '96/ensemble square root filter
2. SPEEDY/local ensemble transform Kalman filter



|
Lorenz ‘96
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\HIWWW///////////////////// 2
P iy, 3
S A
= —

Nature model

(used for synthetic
observations)

Model used for

data assimilation

(simplified)

time

Section 1. Lorenz ‘96

Y variable



Assimilation setup
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Reduce precision here



Reduced precision analyses

Observation error (% of natural variability)
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Precision/ensemble size trade-off

~206% error reduction w.r.t. double precision
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SPEEDY

* Spectral dynamical core

* T30 resolution — roughly 400km at
equator

* Several parametrized processes:
convection, radiation, land/sea
fluxes

* Reduce precision in forecast model
- measure change in analysis error

Section 2. SPEEDY
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Using half precision arithmetic in SPEEDY
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single precision (32 bits)

half precision (16 bits) —
range of temperature (K) H i overflow!
| /
surface geopotential (m?2s?) —Y

» Half-precision floats have a limited range (10~ ~ 10°)
 For now, only reduce significand width (52 bits = 10 bits)
» Compare 22 bits (1+11+10) with 64 bits (1+11+52)

sign
exponent
significand
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Reduced precision SPEEDY biases
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Assimilation setup

* Assimilation algorithm:
local ensemble
transform Kalman filter

* Synthetic observations
« 20 members

* Gaspari-Cohn
covariance localisation PR . | | .
and RTPP inflation 0.692 1.016 1.040 1.064 1.088 1.112 1.136

Contours: RTPP inflation factor
Dots: observation locations
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Perfect model experiments
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Introducing
model error (2)

* What about a higher resolution
nature run? (T39 instead of T30)
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Conclusion

* Reducing precision could provide a one-off “boost” of
computer resources — on the order of a computer upgrade

* The lowest possible precision is constrained by the level of
uncertainty (observations, model error etc.)

* The use of half-precision in data assimilation/modeling remains
an open question due to the severely limited range
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Time to reconsider |IEEE floats?

Worst-case decimal precision
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Image from Milan Kloewer, Oxford
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