# Approximate Bayesian Computation (ABC) 

David Nott<br>Department of Statistics and Applied Probability<br>National University of Singapore

SIAM Conference on Uncertainty Quantification, 2018

## Bayesian inference and the basic ABC idea

Data $y$ to be observed, unknowns $\theta$. Construct a model for $(y, \theta)$ :

$$
p(y, \theta)=\overbrace{p(\theta)}^{\text {prior }} \overbrace{p(y \mid \theta)}^{\text {data model }}
$$

## Condition on $y_{\text {obs }}$, the observed $y$ :

$p\left(\theta \mid y_{\text {obs }}\right) \propto p(\theta) p\left(\right.$ Yobs $\left.^{\prime} \mid \theta\right)$
posterior
Summarizing the posterior (calculating probabilities, moments, etc.) usually done by Markov chain Monte Carlo.

Being able to calculate the likelihood $p\left(y_{\text {obs }} \mid \theta\right)$ seems like a basic requirement

## Bayesian inference and the basic ABC idea

Data $y$ to be observed, unknowns $\theta$. Construct a model for $(y, \theta)$ :

$$
p(y, \theta)=\overbrace{p(\theta)}^{\text {prior }} \overbrace{p(y \mid \theta)}^{\text {data model }}
$$

Condition on $y_{\text {obs }}$, the observed $y$ :

$$
\underbrace{p\left(\theta \mid y_{\mathrm{obs}}\right)}_{\text {posterior }} \propto p(\theta) p\left(y_{\mathrm{obs}} \mid \theta\right)
$$

Summarizing the posterior (calculating probabilities, moments, etc.) usually done by Markov chain Monte Carlo.

Being able to calculate the likelihood $p\left(y_{o b s} \mid \theta\right)$ seems like a basic requirement

## Bayesian inference and the basic ABC idea

Data $y$ to be observed, unknowns $\theta$. Construct a model for $(y, \theta)$ :

$$
p(y, \theta)=\overbrace{p(\theta)}^{\text {prior }} \overbrace{p(y \mid \theta)}^{\text {data model }}
$$

Condition on $y_{\text {obs }}$, the observed $y$ :

$$
\underbrace{p\left(\theta \mid y_{\mathrm{obs}}\right)}_{\text {posterior }} \propto p(\theta) p\left(y_{\mathrm{obs}} \mid \theta\right)
$$

Summarizing the posterior (calculating probabilities, moments, etc.) usually done by Markov chain Monte Carlo.

Being able to calculate the likelihood $p\left(y_{\text {obs }} \mid \theta\right)$ seems like a basic requirement

## Bayesian inference and the basic ABC idea

Data $y$ to be observed, unknowns $\theta$. Construct a model for $(y, \theta)$ :

$$
p(y, \theta)=\overbrace{p(\theta)}^{\text {prior }} \overbrace{p(y \mid \theta)}^{\text {data model }}
$$

Condition on $y_{\text {obs }}$, the observed $y$ :

$$
\underbrace{p\left(\theta \mid y_{\mathrm{obs}}\right)}_{\text {posterior }} \propto p(\theta) p\left(y_{\mathrm{obs}} \mid \theta\right)
$$

Summarizing the posterior (calculating probabilities, moments, etc.) usually done by Markov chain Monte Carlo.

Being able to calculate the likelihood $p\left(y_{\text {obs }} \mid \theta\right)$ seems like a basic requirement ...

## The basic ABC idea

## Rubin (1984) explaining Bayes rule

"How is the conceptual content of this theorem easily conveyed? ... Suppose we first draw equally likely values of $\theta$ from $p(\theta)$... For each $\theta_{j}$ we now draw an $X$ from $f\left(X \mid \theta=\theta_{j}\right)$; ... Suppose we collect together all $X_{j}$ that match the observed $X$ and then all $\theta_{j}$ that correspond to these $X_{j} \ldots$ formally, this collection of $\theta$ values represents the posterior distribution of $\theta$."

## The basic ABC idea

Toy example: $y \mid \theta \operatorname{Binomial}(10, \theta), \theta \sim \operatorname{Beta}(1,1), y_{o b s}=4$



## Replacing exact conditioning with "good enough"

- Let $d(\cdot, \cdot)$ be a distance defined in the data space and $\epsilon>0$ be a tolerance.
- The basic rejection ABC algorithm is (Pritchard et al., 1999):

Generate a joint sample $(\theta, y)$ from the model until $d\left(y, y_{\text {obs }}\right)$ keeping the $\theta$ sample when this occurs.

- The output $\theta$ is an approximate draw from $p(\theta \mid y)$.
- The distance is usually constructed by reducing $y$ to a summary $S=S(y) \sim p(S \mid \theta)$ informative about $\theta$ and then $d(\cdot, \cdot)$ is defined in the space of summary statistics.
- If $S$ is sufficient and $\epsilon \rightarrow 0$ the above algorithm is exact.


## Replacing exact conditioning with "good enough"

- Let $d(\cdot, \cdot)$ be a distance defined in the data space and $\epsilon>0$ be a tolerance.
- The basic rejection ABC algorithm is (Pritchard et al., 1999):

Generate a joint sample $(\theta, y)$ from the model until $d\left(y, y_{\text {obs }}\right)<\epsilon$, keeping the $\theta$ sample when this occurs.

- The output $\theta$ is an approximate draw from $p(\theta \mid y)$
- The distance is usually constructed by reducing $y$ to a summary $S=S(y) \sim p(S \mid \theta)$ informative about $\theta$ and then $d(\cdot, \cdot)$ is defined in the space of summary statistics.
- If $S$ is sufficient and $\epsilon \rightarrow 0$ the above algorithm is exact.


## Replacing exact conditioning with "good enough"

- Let $d(\cdot, \cdot)$ be a distance defined in the data space and $\epsilon>0$ be a tolerance.
- The basic rejection ABC algorithm is (Pritchard et al., 1999):

Generate a joint sample $(\theta, y)$ from the model until $d\left(y, y_{\text {obs }}\right)<\epsilon$, keeping the $\theta$ sample when this occurs.

- The output $\theta$ is an approximate draw from $p(\theta \mid y)$.
- The distance is usually constructed by reducing $y$ to a summary
$S=S(y) \sim p(S \mid \theta)$ informative about $\theta$ and then $d(\cdot, \cdot)$ is defined in
the space of summary statistics.
- If $S$ is sufficient and $\epsilon \rightarrow 0$ the above algorithm is exact.


## Replacing exact conditioning with "good enough"

- Let $d(\cdot, \cdot)$ be a distance defined in the data space and $\epsilon>0$ be a tolerance.
- The basic rejection ABC algorithm is (Pritchard et al., 1999):

Generate a joint sample $(\theta, y)$ from the model until $d\left(y, y_{\text {obs }}\right)<\epsilon$, keeping the $\theta$ sample when this occurs.

- The output $\theta$ is an approximate draw from $p(\theta \mid y)$.
- The distance is usually constructed by reducing $y$ to a summary $S=S(y) \sim p(S \mid \theta)$ informative about $\theta$ and then $d(\cdot, \cdot)$ is defined in the space of summary statistics.
- If $S$ is sufficient and $\epsilon \rightarrow 0$ the above algorithm is exact


## Replacing exact conditioning with "good enough"

- Let $d(\cdot, \cdot)$ be a distance defined in the data space and $\epsilon>0$ be a tolerance.
- The basic rejection ABC algorithm is (Pritchard et al., 1999):

Generate a joint sample $(\theta, y)$ from the model until $d\left(y, y_{\text {obs }}\right)<\epsilon$, keeping the $\theta$ sample when this occurs.

- The output $\theta$ is an approximate draw from $p(\theta \mid y)$.
- The distance is usually constructed by reducing $y$ to a summary $S=S(y) \sim p(S \mid \theta)$ informative about $\theta$ and then $d(\cdot, \cdot)$ is defined in the space of summary statistics.
- If $S$ is sufficient and $\epsilon \rightarrow 0$ the above algorithm is exact.


## Bayesian inference and the basic ABC idea

Location model: $\mathrm{y} \sim \mathrm{N}(\theta, 1), \quad \theta \sim \mathrm{N}(0,1)$


## Bayesian inference and the basic ABC idea

Location model: $\mathrm{y} \sim \mathrm{N}(\theta, 1), \quad \theta \sim \mathrm{N}(0,1)$


## Why ABC?

- The basic rejection ABC algorithm only required simulations $(\theta, y) \sim p(\theta) p(y \mid \theta)$.
- We don't need to compute the likelihood $p\left(y_{\text {obs }} \mid \theta\right)$.
- Difficulties:
- Choosing the distance measure (including the summaries S)
- Choice of tolerance $\epsilon$
- Validating the approximation


## Why ABC?

- The basic rejection ABC algorithm only required simulations $(\theta, y) \sim p(\theta) p(y \mid \theta)$.
- We don't need to compute the likelihood $p\left(y_{\text {obs }} \mid \theta\right)$.
- Difficulties:
- Choosing the distance measure (including the summaries $S$ )
- Choice of tolerance $\epsilon$
- Validating the approximation


## Why ABC?

- The basic rejection ABC algorithm only required simulations $(\theta, y) \sim p(\theta) p(y \mid \theta)$.
- We don't need to compute the likelihood $p\left(y_{\text {obs }} \mid \theta\right)$.
- Difficulties:
- Choosing the distance measure (including the summaries S)
- Choice of tolerance $\epsilon$
- Validating the approximation


## Why ABC?

- The basic rejection $A B C$ algorithm only required simulations $(\theta, y) \sim p(\theta) p(y \mid \theta)$.
- We don't need to compute the likelihood $p\left(y_{\text {obs }} \mid \theta\right)$.
- Difficulties:
- Choosing the distance measure (including the summaries $S$ )
- Choice of tolerance $\epsilon$
- Validating the approximation


## Why ABC?

- The basic rejection $A B C$ algorithm only required simulations $(\theta, y) \sim p(\theta) p(y \mid \theta)$.
- We don't need to compute the likelihood $p\left(y_{\text {obs }} \mid \theta\right)$.
- Difficulties:
- Choosing the distance measure (including the summaries $S$ )
- Choice of tolerance $\epsilon$
- Validating the approximation


## Why ABC?

- The basic rejection $A B C$ algorithm only required simulations $(\theta, y) \sim p(\theta) p(y \mid \theta)$.
- We don't need to compute the likelihood $p\left(y_{\text {obs }} \mid \theta\right)$.
- Difficulties:
- Choosing the distance measure (including the summaries $S$ )
- Choice of tolerance $\epsilon$
- Validating the approximation


## Ricker model

Ricker, 1954, Wood, 2010

- Let $S^{(t)}$ be the size of an animal population at time $t, t=1, \ldots, T$.


## Ricker mode

- Parameters $\theta=(\log r, \sigma, \psi)$. Here:
- $r$ is a growth rate,
- $\sigma$ is the standard deviation of environmental noise,
- $\psi$ is a scale parameter
- Priors: $\log r \sim U[2,5], \log \sigma \sim U[-2.3,-3], \log \psi \sim U[-1.79,1.61]$.


## Ricker model

Ricker, 1954, Wood, 2010

- Let $S^{(t)}$ be the size of an animal population at time $t, t=1, \ldots, T$.


## Ricker model

$$
\begin{gathered}
\log S^{(t)}=\log r+\log S^{(t-1)}-S^{(t-1)}+\sigma e^{(t)}, \\
y^{(t)} \mid S^{(t)} \sim \text { Poisson }\left(\psi S^{(t)}\right) .
\end{gathered}
$$

- Parameters $\theta=(\log r, \sigma, \psi)$. Here:
- $r$ is a growth rate,
- $\sigma$ is the standard deviation of environmental noise,
- $\psi$ is a scale parameter
- Priors: $\log r \sim U[2,5], \log \sigma \sim U[-2.3,-3], \log \psi \sim U[-1.79,1.61]$.


## Ricker model

Ricker, 1954, Wood, 2010

- Let $S^{(t)}$ be the size of an animal population at time $t, t=1, \ldots, T$.


## Ricker model

$$
\begin{gathered}
\log S^{(t)}=\log r+\log S^{(t-1)}-S^{(t-1)}+\sigma e^{(t)} \\
y^{(t)} \mid S^{(t)} \sim \operatorname{Poisson}\left(\psi S^{(t)}\right)
\end{gathered}
$$

- Parameters $\theta=(\log r, \sigma, \psi)$. Here:
- $r$ is a growth rate,
- $\sigma$ is the standard deviation of environmental noise,
- $\psi$ is a scale parameter
- Priors: $\log r \sim U[2,5], \log \sigma \sim U[-2.3,-3], \log \psi \sim U[-1.79,1.61]$.


## Ricker model

Ricker, 1954, Wood, 2010

- Wood (2010) considered this stochastic version of the Ricker model in developing his synthetic likelihood.
- Motivation: hard to explore some parts of the parameter space in near chaotic models with low noise in the state model with full likelihood methods.
- Consider inference based on summary statistics for which the summary statistic likelihood is better behaved (Fasiolo, Pya and Wood, 2016).


## Ricker model

Ricker, 1954, Wood, 2010

- Wood (2010) considered this stochastic version of the Ricker model in developing his synthetic likelihood.
- Motivation: hard to explore some parts of the parameter space in near chaotic models with low noise in the state model with full likelihood methods.
- Consider inference based on summary statistics for which the summary statistic likelihood is better behaved (Fasiolo, Pya and Wood, 2016)


## Ricker model

```
Ricker, 1954, Wood, 2010
```

- Wood (2010) considered this stochastic version of the Ricker model in developing his synthetic likelihood.
- Motivation: hard to explore some parts of the parameter space in near chaotic models with low noise in the state model with full likelihood methods.
- Consider inference based on summary statistics for which the summary statistic likelihood is better behaved (Fasiolo, Pya and Wood, 2016).


## Ricker model

Ricker, 1954, Wood, 2010

## Ricker model summary statistics (Wood, 2010)

- Autocovariances to lag 5;
- The sample mean;
- Coefficients of cubic regression of ordered differences on observed values;
- Two coefficients of a certain autoregressive model;
- The number of zeros.

I have reduced these 13 summary statistics to 3 using the method of Fearnhead and Prangle (2012) (described later).

## Ricker model

## Ricker, 1954, Wood, 2010

Simulated data: $(\log r, \log \sigma, \log \psi)=(3.8,-1.2,2.3)$.


## Motivating example: Ricker model

Ricker, 1954, Wood, 2010
Rejection ABC, keeping 500 samples from 100,000 prior samples, Euclidean distance for summaries scaled by prior predictive MAD







## Ricker model

Ricker, 1954, Wood, 2010


## Why should we believe an ABC analysis?

An ABC analysis approximates $p\left(\theta \mid y_{\text {obs }}\right)$ or $p\left(\theta \mid S_{\text {obs }}\right)$ but the approximation error is unknown. How can we validate the results?

- Posterior predictive checking of fitness for purpose (but if there is a problem is it the model or the computation?)
- Simple ARC methods which simulate from the prior allow repeated analyses using the same prior samples for different data - explore frequentist properties. They can also be used to check the reasonableness of the prior.
- Bayesian credible intervals have a coverage property under repeated sampling from the prior, check if $A B C$ analyses are proper in this sense (Wegmann et al., 2009, Prangle et al., 2014)
- Compare results from different likelihood-free computational methods.
- Theoretical validations in an asymptotic sense.


## Why should we believe an ABC analysis?

An ABC analysis approximates $p\left(\theta \mid y_{\text {obs }}\right)$ or $p\left(\theta \mid S_{\text {obs }}\right)$ but the approximation error is unknown. How can we validate the results?

- Posterior predictive checking of fitness for purpose (but if there is a problem is it the model or the computation?)
$\qquad$
analyses using the same prior samples for different data - explore frequentist pronerties. They can also be used to check the reasonableness of the prior.
- Bayesian credible intervals have a coverage property under reneated sampling from the prior, check if ABC analyses are proper in this sense (Wegmann et al., 2009, Prangle et al., 2014)
- Compare results from different likelihood-free computational methods.
- Theoretical validations in an asymptotic sense


## Why should we believe an ABC analysis?

An ABC analysis approximates $p\left(\theta \mid y_{\text {obs }}\right)$ or $p\left(\theta \mid S_{\text {obs }}\right)$ but the approximation error is unknown. How can we validate the results?

- Posterior predictive checking of fitness for purpose (but if there is a problem is it the model or the computation?)
- Simple ABC methods which simulate from the prior allow repeated analyses using the same prior samples for different data - explore frequentist properties. They can also be used to check the reasonableness of the prior.
> - Bayesian credible intervals have a coverage property under repeated sampling from the prior, check if ABC analyses are proper in this sense (Wegmann et al., 2009, Prangle et al., 2014) Compare results from different likelihood-free computational methods.
- Theoretical validations in an asymptotic sense.


## Why should we believe an ABC analysis?

An ABC analysis approximates $p\left(\theta \mid y_{\text {obs }}\right)$ or $p\left(\theta \mid S_{\text {obs }}\right)$ but the approximation error is unknown. How can we validate the results?

- Posterior predictive checking of fitness for purpose (but if there is a problem is it the model or the computation?)
- Simple ABC methods which simulate from the prior allow repeated analyses using the same prior samples for different data - explore frequentist properties. They can also be used to check the reasonableness of the prior.
- Bayesian credible intervals have a coverage property under repeated sampling from the prior, check if ABC analyses are proper in this sense (Wegmann et al., 2009, Prangle et al., 2014).
- Compare results from different likelihood-free computational methods.
- Theoretical validations in an asymptotic sense.


## Why should we believe an ABC analysis?

An ABC analysis approximates $p\left(\theta \mid y_{\text {obs }}\right)$ or $p\left(\theta \mid S_{\text {obs }}\right)$ but the approximation error is unknown. How can we validate the results?

- Posterior predictive checking of fitness for purpose (but if there is a problem is it the model or the computation?)
- Simple ABC methods which simulate from the prior allow repeated analyses using the same prior samples for different data - explore frequentist properties. They can also be used to check the reasonableness of the prior.
- Bayesian credible intervals have a coverage property under repeated sampling from the prior, check if ABC analyses are proper in this sense (Wegmann et al., 2009, Prangle et al., 2014).
- Compare results from different likelihood-free computational methods.


## - Theoretical validations in an asymptotic sense

## Why should we believe an ABC analysis?

An ABC analysis approximates $p\left(\theta \mid y_{\text {obs }}\right)$ or $p\left(\theta \mid S_{\text {obs }}\right)$ but the approximation error is unknown. How can we validate the results?

- Posterior predictive checking of fitness for purpose (but if there is a problem is it the model or the computation?)
- Simple ABC methods which simulate from the prior allow repeated analyses using the same prior samples for different data - explore frequentist properties. They can also be used to check the reasonableness of the prior.
- Bayesian credible intervals have a coverage property under repeated sampling from the prior, check if ABC analyses are proper in this sense (Wegmann et al., 2009, Prangle et al., 2014).
- Compare results from different likelihood-free computational methods.
- Theoretical validations in an asymptotic sense.


## Summary statistic choice

One of the most consequential assumptions made in an ABC analysis is:

$$
p\left(\theta \mid y_{\mathrm{obs}}\right) \approx p\left(\theta \mid S_{\mathrm{obs}}\right)
$$

- More summary statistics do not necessarily equate to a better posterior approximation
- High-dimensional summaries may make $p\left(\theta \mid y_{\text {obs }}\right) \approx p\left(\theta \mid S_{\text {obs }}\right)$ more reasonable, but
- High-dimensional summaries harder to match


## Ricker model

ABC posterior samples: Fearnhead and Prangle summaries (green, 3 dimensional) and original summaries (black, 13 dimensional)


## Summary statistic choice

- It may be difficult to automate summary statistic choice completely.
- The choice of summaries is sometimes motivated by concerns of model misspecification
- A model for suitable $S=S(y)$ can be nearly well specified even if the model for $y$ is not.
- Matching summaries we care about makes sense.
- Modelling problems lead to computational problems.
- Difficult to simultaneously match inconsistent subsets of summaries (leading to a large $\epsilon$ for given computational effort).


## Summary statistic choice

- It may be difficult to automate summary statistic choice completely.
- The choice of summaries is sometimes motivated by concerns of model misspecification
- A model for suitable $S=S(y)$ can be nearly well specified even if the model for $y$ is not.
- Matching summaries we care about makes sense.
- Modelling problems lead to computational problems.
- Difficult to simultaneously match inconsistent subsets of summaries (leading to a large $\epsilon$ for given computational effort).


## Summary statistic choice

- It may be difficult to automate summary statistic choice completely.
- The choice of summaries is sometimes motivated by concerns of model misspecification
- A model for suitable $S=S(y)$ can be nearly well specified even if the model for $y$ is not.
- Modelling problems lead to computational problems.
- Difficult to simultaneously match inconsistent subsets of summaries (leading to a large $\epsilon$ for given computational effort).


## Summary statistic choice

- It may be difficult to automate summary statistic choice completely.
- The choice of summaries is sometimes motivated by concerns of model misspecification
- A model for suitable $S=S(y)$ can be nearly well specified even if the model for $y$ is not.
- Matching summaries we care about makes sense.
- Modelling problems lead to computational problems.
- Difficult to simultaneously match inconsistent subsets of summaries (leading to a large $\epsilon$ for given computational effort).


## Summary statistic choice

- It may be difficult to automate summary statistic choice completely.
- The choice of summaries is sometimes motivated by concerns of model misspecification
- A model for suitable $S=S(y)$ can be nearly well specified even if the model for $y$ is not.
- Matching summaries we care about makes sense.
- Modelling problems lead to computational problems.
- Difficult to simultaneously match inconsistent subsets of summaries (leading to a large $\epsilon$ for given computational effort).


## Summary statistic choice

- It may be difficult to automate summary statistic choice completely.
- The choice of summaries is sometimes motivated by concerns of model misspecification
- A model for suitable $S=S(y)$ can be nearly well specified even if the model for $y$ is not.
- Matching summaries we care about makes sense.
- Modelling problems lead to computational problems.
- Difficult to simultaneously match inconsistent subsets of summaries (leading to a large $\epsilon$ for given computational effort).


## Summary statistic choice

## Sisson, Fan and Beaumont, 2018

$$
\begin{gathered}
y=\left(y_{1}, \ldots, y_{5}\right), y_{i} \sim \text { Poisson }(\lambda), \lambda \sim \operatorname{Gamma}(1,1), \\
y_{\text {obs }}=(0,0,0,0,5), S=\left(\bar{y}, s^{2}\right), s_{\text {obs }}=(1,5) .
\end{gathered}
$$



## Reducing summary statistic dimension

Blum et al., 2013

Given a set of summary statistics, if it is beneficial to reduce dimension with minimal loss of statistical information (Blum et al., 2013):

- Subset selection (Joyce and Marjoram, 2008, Nunes and Balding, 2010, Blum et al., 2013).
- Projection methods such as partial least squares (Wegmann et al., 2009), neural networks (Blum and François, 2010), decision theoretic approaches based on optimal point estimation (Fearnhead and Prangle, 2012).
- Regularization methods which use shrinkage estimation in conjunction with regression adjustments (Blum and François, 2010, Blum et al., 2013).


## Reducing summary statistic dimension

Blum et al., 2013

Given a set of summary statistics, if it is beneficial to reduce dimension with minimal loss of statistical information (Blum et al., 2013):

- Subset selection (Joyce and Marjoram, 2008, Nunes and Balding, 2010, Blum et al., 2013).
- Projection methods such as partial least squares (Wegmann et al., 2009), neural networks (Blum and François, 2010), decision theoretic approaches based on optimal point estimation (Fearnhead and Prangle, 2012).
- Regularization methods which use shrinkage estimation in conjunction with regression adjustments (Blum and François, 2010, Blum et al., 2013)


## Reducing summary statistic dimension Blum et al., 2013

Given a set of summary statistics, if it is beneficial to reduce dimension with minimal loss of statistical information (Blum et al., 2013):

- Subset selection (Joyce and Marjoram, 2008, Nunes and Balding, 2010, Blum et al., 2013).
- Projection methods such as partial least squares (Wegmann et al., 2009), neural networks (Blum and François, 2010), decision theoretic approaches based on optimal point estimation (Fearnhead and Prangle, 2012).
- Regularization methods which use shrinkage estimation in
conjunction with regression adjustments (Blum and François,
2010, Blum et al., 2013).


## Reducing summary statistic dimension

```
Blum et al., 2013
```

Given a set of summary statistics, if it is beneficial to reduce dimension with minimal loss of statistical information (Blum et al., 2013):

- Subset selection (Joyce and Marjoram, 2008, Nunes and Balding, 2010, Blum et al., 2013).
- Projection methods such as partial least squares (Wegmann et al., 2009), neural networks (Blum and François, 2010), decision theoretic approaches based on optimal point estimation (Fearnhead and Prangle, 2012).
- Regularization methods which use shrinkage estimation in conjunction with regression adjustments (Blum and François, 2010, Blum et al., 2013).


## Semi-automatic ABC

Fearnhead and Prangle, 2012

Steps of semi-automatic ABC:

- Define candidate summaries $u=\left(u_{1}, \ldots, u_{C}\right)$.
- For a pilot ABC run, determine a region of approximate posterior support.
- Simulate $(\theta, u)$ samples using the prior truncated to the training region of 2.
- For each component $\theta_{j}, j=1, \ldots, k$ of $\theta$, fit a regression model, obtaining fitted values $\hat{\theta}_{j}(u)$.
- Use $\theta_{j}(u)$ as a reduced-dimension (one for each parameter) set of summary statistics.


## Semi-automatic ABC

## Fearnhead and Prangle, 2012

Steps of semi-automatic ABC:

- Define candidate summaries $u=\left(u_{1}, \ldots, u_{C}\right)$.
- For a pilot $A B C$ run, determine a region of approximate posterior support.
- Simulate $(\theta, u)$ samples using the prior truncated to the training region of 2.
- For each component $\theta_{j}, j=1, \ldots . k$ of $\theta$, fit a regression model, obtaining fitted values $\hat{\theta}_{j}(u)$.
- Use $\theta_{j}(u)$ as a reduced-dimension (one for each parameter) set of summary statistics.


## Semi-automatic ABC

## Fearnhead and Prangle, 2012

Steps of semi-automatic ABC:

- Define candidate summaries $u=\left(u_{1}, \ldots, u_{C}\right)$.
- For a pilot $A B C$ run, determine a region of approximate posterior support.
- Simulate $(\theta, u)$ samples using the prior truncated to the training region of 2.
- For each component $\theta_{j}, j=1, \ldots, k$ of $\theta$, fit a regression model obtaining fitted values $\hat{\theta}_{j}(u)$.
- Use $\theta_{j}(u)$ as a reduced-dimension (one for each parameter) set of summary statistics.


## Semi-automatic ABC

## Fearnhead and Prangle, 2012

Steps of semi-automatic ABC:

- Define candidate summaries $u=\left(u_{1}, \ldots, u_{C}\right)$.
- For a pilot $A B C$ run, determine a region of approximate posterior support.
- Simulate $(\theta, u)$ samples using the prior truncated to the training region of 2.
- For each component $\theta_{j}, j=1, \ldots, k$ of $\theta$, fit a regression model, obtaining fitted values $\hat{\theta}_{j}(u)$.
- Use $\theta_{j}(u)$ as a reduced-dimension (one for each parameter) set of summary statistics.


## Semi-automatic ABC

## Fearnhead and Prangle, 2012

Steps of semi-automatic ABC:

- Define candidate summaries $u=\left(u_{1}, \ldots, u_{C}\right)$.
- For a pilot $A B C$ run, determine a region of approximate posterior support.
- Simulate $(\theta, u)$ samples using the prior truncated to the training region of 2.
- For each component $\theta_{j}, j=1, \ldots, k$ of $\theta$, fit a regression model, obtaining fitted values $\hat{\theta}_{j}(u)$.
- Use $\theta_{j}(u)$ as a reduced-dimension (one for each parameter) set of summary statistics.


## Nicholson's Blowflies

Nicholson $(1954,1957)$

Time series of blowfly population numbers (Nicholson, 1954, Figure 3)


## Nicholson's Blowflies

Nicholson $(1954,1957)$
Wood (2000) and Fasiolo and Wood (2016) discretize a delayed differential equation model (Gurney, Blythe and Nisbet, 1980):

For $t=1, \ldots, T$,

$$
\begin{aligned}
n_{t} & =r_{t}+s_{t}, \\
r_{t} & \sim \operatorname{Poisson}\left(P n_{t-\tau} \exp \left(-n_{t-\tau} e_{t}\right)\right) \\
s_{t} & \sim \operatorname{Binomial}\left(n_{t-1}, \exp \left(-\delta \epsilon_{t}\right)\right)
\end{aligned}
$$

where

- $n_{t}$ is the population size at time $t, r_{t}$ is a delayed recruitment process, $s_{t}$ is an adult survival process.
- $e_{t}, \epsilon_{t}$ are gamma distributed noise sequences, mean 1 and respective standard deviations $\sigma_{p}, \sigma_{d}$


## Nicholson's Blowflies

Nicholson $(1954,1957)$

## Summary statistics (Wood, 2010)

Twenty-three summary statisics, consisting of:

- Autocovariances to lag 11;
- The sample mean;
- The difference of sample mean and median;
- The number of observed turning points;
- Coefficients of cubic regression of ordered differences on observed values;
- Five coefficients of a certain autoregressive model;

```
Priors: }\delta~U[\operatorname{exp}(-3),\operatorname{exp}(-1)],P~U[\operatorname{exp}(1),\operatorname{exp}(3)]
log}\mp@subsup{n}{0}{~}~U[\operatorname{exp}(5),\operatorname{exp}(7)],\tau~U[\operatorname{exp}(2.5), exp(2.9)], log \mp@subsup{\sigma}{p}{}~U[-2,0] \(\log \sigma_{d} \sim U[-1.5,0]\).
```


## Nicholson's Blowflies

Nicholson $(1954,1957)$

Rejection ABC, Fearnhead and Prangle summaries, 100,000 prior samples, $\epsilon$ retaining 500 samples.







## Nicholson's Blowflies

Nicholson $(1954,1957)$

## Fearnhead and Prangle summary statistics








## Further refinements - regression

Beaumont, Zhang and Balding, 2002, Blum, 2010, Blum and François, 2010

- Consider $\left(\theta_{i}, S_{i}\right) \sim p(\theta) p(S \mid \theta), i=1, \ldots, N$ and the regression model

$$
\theta_{i}=\beta_{0}+\beta^{T}\left(S_{i}-S_{\mathrm{obs}}\right)+\eta_{i}
$$

where $\eta_{i}$ are mean zero iid.

- Empirical residuals, $\hat{\eta}_{i}=\theta_{i}-\hat{\beta}_{0}-\hat{\beta}^{T}\left(S_{i}-S_{o b s}\right)$


## Regression adjusted samples:

Fitted mean at $S_{\text {obs }}$ (i.e. $\hat{\beta}_{o}$ ) plus en pirical residuals:

- Fitting can be localized, weighting, multivariate $\theta$.


## Further refinements - regression

Beaumont, Zhang and Balding, 2002, Blum, 2010, Blum and François, 2010

- Consider $\left(\theta_{i}, S_{i}\right) \sim p(\theta) p(S \mid \theta), i=1, \ldots, N$ and the regression model

$$
\theta_{i}=\beta_{0}+\beta^{T}\left(S_{i}-S_{\mathrm{obs}}\right)+\eta_{i}
$$

where $\eta_{i}$ are mean zero iid.

- Empirical residuals, $\hat{\eta}_{i}=\theta_{i}-\hat{\beta}_{0}-\hat{\beta}^{T}\left(S_{i}-S_{\mathrm{obs}}\right)$.


## Regression adjusted samples:

Fitted mean at $S_{o b s}$ (i.e. $\hat{\beta}_{0}$ ) plus empirical residuals:

- Fitting can be localized, weighting, multivariate $\theta$.


## Further refinements - regression

Beaumont, Zhang and Balding, 2002, Blum, 2010, Blum and François, 2010

- Consider $\left(\theta_{i}, S_{i}\right) \sim p(\theta) p(S \mid \theta), i=1, \ldots, N$ and the regression model

$$
\theta_{i}=\beta_{0}+\beta^{T}\left(S_{i}-S_{\mathrm{obs}}\right)+\eta_{i}
$$

where $\eta_{i}$ are mean zero iid.

- Empirical residuals, $\hat{\eta}_{i}=\theta_{i}-\hat{\beta}_{0}-\hat{\beta}^{T}\left(S_{i}-S_{\mathrm{obs}}\right)$.


## Regression adjusted samples:

Fitted mean at $S_{o b s}$ (i.e. $\hat{\beta}_{0}$ ) plus empirical residuals:

$$
\theta_{i}^{a}=\hat{\beta}_{0}+\hat{\eta}_{i}=\theta_{i}-\hat{\beta}^{T}\left(S_{i}-S_{\mathrm{obs}}\right), \quad i=1, \ldots, N
$$

- Fitting can be localized, weighting, multivariate $\theta$.


## Further refinements - regression

Beaumont, Zhang and Balding, 2002, Blum, 2010, Blum and François, 2010

- Consider $\left(\theta_{i}, S_{i}\right) \sim p(\theta) p(S \mid \theta), i=1, \ldots, N$ and the regression model

$$
\theta_{i}=\beta_{0}+\beta^{T}\left(S_{i}-S_{\mathrm{obs}}\right)+\eta_{i}
$$

where $\eta_{i}$ are mean zero iid.

- Empirical residuals, $\hat{\eta}_{i}=\theta_{i}-\hat{\beta}_{0}-\hat{\beta}^{T}\left(S_{i}-S_{\mathrm{obs}}\right)$.


## Regression adjusted samples:

Fitted mean at $S_{o b s}$ (i.e. $\hat{\beta}_{0}$ ) plus empirical residuals:

$$
\theta_{i}^{a}=\hat{\beta}_{0}+\hat{\eta}_{i}=\theta_{i}-\hat{\beta}^{T}\left(S_{i}-S_{\mathrm{obs}}\right), \quad i=1, \ldots, N
$$

- Fitting can be localized, weighting, multivariate $\theta$.


## Further refinements - regression

## Beaumont, Zhang and Balding, 2002, Blum, 2010, Blum and François, 2010

Location model: $\mathrm{y} \sim \mathrm{N}(\theta, 1), \quad \theta \sim \mathrm{N}(0,1)$


## Further refinements - regression

Beaumont, Zhang and Balding, 2002, Blum, 2010, Blum and François, 2010

- A nonlinear regression adjustment considers the model

$$
\theta_{i}=\mu\left(S_{i}\right)+\sigma\left(S_{i}\right) \eta_{i}
$$

where the $\eta_{i}$ are mean zero variance one.

- With estimates $\hat{\mu}(\cdot)$ and $\hat{\sigma}(\cdot)$ of $\mu(\cdot)$ and $\sigma(\cdot)$, standardized
empirical residuals are

- Adjusted posterior samples (using the fitted regression and empirical residuals):



## Further refinements - regression

Beaumont, Zhang and Balding, 2002, Blum, 2010, Blum and François, 2010

- A nonlinear regression adjustment considers the model

$$
\theta_{i}=\mu\left(S_{i}\right)+\sigma\left(S_{i}\right) \eta_{i}
$$

where the $\eta_{i}$ are mean zero variance one.

- With estimates $\hat{\mu}(\cdot)$ and $\hat{\sigma}(\cdot)$ of $\mu(\cdot)$ and $\sigma(\cdot)$, standardized empirical residuals are

$$
\hat{\eta}_{i}=\frac{\theta_{i}-\hat{\mu}\left(S_{i}\right)}{\hat{\sigma}\left(S_{i}\right)}
$$

- Adjusted posterior samples (using the fitted regression and empirical residuals):


## Further refinements - regression

## Beaumont, Zhang and Balding, 2002, Blum, 2010, Blum and François, 2010

- A nonlinear regression adjustment considers the model

$$
\theta_{i}=\mu\left(S_{i}\right)+\sigma\left(S_{i}\right) \eta_{i}
$$

where the $\eta_{i}$ are mean zero variance one.

- With estimates $\hat{\mu}(\cdot)$ and $\hat{\sigma}(\cdot)$ of $\mu(\cdot)$ and $\sigma(\cdot)$, standardized empirical residuals are

$$
\hat{\eta}_{i}=\frac{\theta_{i}-\hat{\mu}\left(S_{i}\right)}{\hat{\sigma}\left(S_{i}\right)} .
$$

- Adjusted posterior samples (using the fitted regression and empirical residuals):

$$
\theta_{i}^{a}=\hat{\mu}\left(S_{\mathrm{obs}}\right)+\hat{\sigma}\left(S_{\mathrm{obs}}\right) \frac{\theta_{i}-\hat{\mu}\left(S_{i}\right)}{\hat{\sigma}\left(S_{i}\right)}
$$

## Nicholson's Blowflies

Nicholson $(1954,1957)$

Neural network regression adjustment (red), local linear (brown), none (black).







## Generalizing simple rejection ABC

Simple rejection ABC simulates $(\theta, S)$ from

$$
p_{\epsilon}\left(\theta, S \mid S_{o b s}\right) \propto p(\theta) p(S \mid \theta) I\left(d\left(S, S_{o b s}\right)<\epsilon\right)
$$

with the $\theta$ marginal

$$
p_{\epsilon}\left(\theta \mid S_{o b s}\right) \propto p(\theta) \int I\left(d\left(S, S_{o b s}\right)<\epsilon\right) p(S \mid \theta) d S
$$

Hence instead of $p\left(S_{\text {obs }} \mid \theta\right)$ we are using the approximate likelihood:

$$
p_{\epsilon}\left(S_{o b s} \mid \theta\right) \propto \int I\left(d\left(S, S_{o b s}\right)<\epsilon\right) p(S \mid \theta) d S .
$$

## Generalizing simple rejection ABC

Simple rejection ABC simulates $(\theta, S)$ from

$$
p_{\epsilon}\left(\theta, S \mid S_{o b s}\right) \propto p(\theta) p(S \mid \theta) I\left(d\left(S, S_{o b s}\right)<\epsilon\right)
$$

with the $\theta$ marginal

$$
p_{\epsilon}\left(\theta \mid S_{o b s}\right) \propto p(\theta) \int I\left(d\left(S, S_{o b s}\right)<\epsilon\right) p(S \mid \theta) d S
$$

Hence instead of $p\left(S_{\text {obs }} \mid \theta\right)$ we are using the approximate likelihood:

$$
p_{\epsilon}\left(S_{\mathrm{obs}} \mid \theta\right) \propto \int I\left(d\left(S, S_{o b s}\right)<\epsilon\right) p(S \mid \theta) d S
$$

## Generalizing simple rejection ABC

For a "nice" kernel function $K(u)$ and $K_{\epsilon}(u)=\epsilon^{-1} K\left(\epsilon^{-1} u\right)$ where $\epsilon>0$ is a bandwidth we can consider instead

## Kernel ABC likelihood

$$
p_{\epsilon, K}\left(S_{\mathrm{obs}} \mid \theta\right)=\int K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right) p(S \mid \theta) d S
$$

which approaches $p\left(S_{o b s} \mid \theta\right)$ as $\epsilon \rightarrow 0$.

## Generalizing simple rejection ABC

The posterior approximation

$$
p_{\epsilon, K}\left(\theta \mid S_{o b s}\right) \propto p(\theta) p_{\epsilon, K}\left(S_{o b s} \mid \theta\right)=p(\theta) \int K_{\epsilon}\left(d\left(S, S_{o b s}\right) p(S \mid \theta) d S\right.
$$

is the $\theta$ marginal of

$$
p_{\epsilon, K}\left(\theta, S \mid S_{o b s}\right) \propto p(\theta) p(S \mid \theta) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)
$$

and the basic rejection algorithm can be generalized.

## Generalizing simple rejection ABC

Location model: $\mathrm{y} \sim \mathrm{N}(\theta, 1), \quad \theta \sim \mathrm{N}(0,1)$


## Genearlizing simple rejection ABC

Kernel ABC likelihoods for toy example, Gaussian (left) and uniform (right) kernels, $\epsilon=2,1,0.5$ (red, green, brown) Black is the truth.



## Importance sampling

For some density function $f(\theta)$ and suitable functions $h(\theta)$ we want to approximate expectations

$$
E_{f}(h(\theta))=\int h(\theta) f(\theta) d \theta .
$$

## $f(\theta)$ might be a posterior distribution and $E_{f}(h(\theta))$ a posterior expectation.

## Let $g(\theta)$ be an (importance) density, easy to sample, then

$E_{f}(h(\theta))=\int h(\theta) f(\theta) d \theta=\int h(\theta) \frac{f(\theta)}{g(\theta)} g(\theta) d \theta=E_{g}\left(h(\theta) \frac{f(\theta)}{g(\theta)}\right)$
an expectation with respect to $g(\theta)$.

## Importance sampling

For some density function $f(\theta)$ and suitable functions $h(\theta)$ we want to approximate expectations

$$
E_{f}(h(\theta))=\int h(\theta) f(\theta) d \theta .
$$

$f(\theta)$ might be a posterior distribution and $E_{f}(h(\theta))$ a posterior expectation.

## Let $g(\theta)$ be an (importance) density, easy to sample, then

$E_{f}(h(\theta))=\int h(\theta) f(\theta) d \theta=\int h(\theta) \frac{f(\theta)}{g(\theta)} g(\theta) d \theta=E_{g}\left(h(\theta) \frac{f(\theta)}{g(\theta)}\right)$
an expectation with respect to $g(\theta)$.

## Importance sampling

For some density function $f(\theta)$ and suitable functions $h(\theta)$ we want to approximate expectations

$$
E_{f}(h(\theta))=\int h(\theta) f(\theta) d \theta
$$

$f(\theta)$ might be a posterior distribution and $E_{f}(h(\theta))$ a posterior expectation.

Let $g(\theta)$ be an (importance) density, easy to sample, then

$$
E_{f}(h(\theta))=\int h(\theta) f(\theta) d \theta=\int h(\theta) \frac{f(\theta)}{g(\theta)} g(\theta) d \theta=E_{g}\left(h(\theta) \frac{f(\theta)}{g(\theta)}\right)
$$

an expectation with respect to $g(\theta)$.

## Importance sampling

We can approximate

$$
E_{f}(h(\theta))=E_{g}\left(h(\theta) \frac{f(\theta)}{g(\theta)}\right)
$$

by

$$
\sum_{j=1}^{J} w^{j} h\left(\theta^{(j)}\right)
$$

where $\theta^{(1)}, \ldots, \theta^{(J)} \sim g(\theta)$, and $w^{j}=(1 / J) f\left(\theta^{(j)}\right) / g\left(\theta^{(j)}\right)$.

The choice of importance density is important. If $f(\theta)$ is unnormalized, scale the weights so that $\sum_{j} w^{j}=1$.

## Importance sampling ABC

To sample from

$$
p_{\epsilon, K}\left(\theta, S \mid S_{o b s}\right) \propto p(\theta) p(S \mid \theta) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)
$$

consider an importance density $g(\theta) p(S \mid \theta)$.

The intractable likelihood $p(S \mid \theta)$ cancels out in the importance weights,


> With a compact kernel we may choose $\epsilon$ so that a certain fraction of prior samples receive positive weight.

## Importance sampling ABC

To sample from

$$
p_{\epsilon, K}\left(\theta, S \mid S_{o b s}\right) \propto p(\theta) p(S \mid \theta) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)
$$

consider an importance density $g(\theta) p(S \mid \theta)$.

The intractable likelihood $p(S \mid \theta)$ cancels out in the importance weights,

$$
w^{j} \propto \frac{p\left(\theta^{(j)}\right) p\left(S \mid \theta^{(j)}\right) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)}{g\left(\theta^{(j)}\right) p\left(S \mid \theta^{(j)}\right)}=\frac{p\left(\theta^{(j)}\right) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)}{g\left(\theta^{(j)}\right)}
$$

With a compact kernel we may choose $\epsilon$ so that a certain fraction of prior samples receive positive weight.

## Importance sampling ABC

To sample from

$$
p_{\epsilon, K}\left(\theta, S \mid S_{o b s}\right) \propto p(\theta) p(S \mid \theta) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)
$$

consider an importance density $g(\theta) p(S \mid \theta)$.

The intractable likelihood $p(S \mid \theta)$ cancels out in the importance weights,

$$
w^{j} \propto \frac{p\left(\theta^{(j)}\right) p\left(S \mid \theta^{(j)}\right) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)}{g\left(\theta^{(j)}\right) p\left(S \mid \theta^{(j)}\right)}=\frac{p\left(\theta^{(j)}\right) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)}{g\left(\theta^{(j)}\right)}
$$

With a compact kernel we may choose $\epsilon$ so that a certain fraction of prior samples receive positive weight.

## Markov chain Monte Carlo (MCMC)

MCMC simulates a Markov chain $\left\{\theta^{(n)} ; n=0,1, \ldots\right\}$ on the parameter space such that

- The Markov chain has stationary distribution $p(\theta \mid y)$
- The Markov chain can easily be simulated

Run the chain, keeping samples after convergence to get a dependent sample from the posterior.

## Metropolis-Hastings algorithm

Metropolis et al., 1953, Hastings, 1970

## Metropolis-Hastings algorithm

For current value $\theta$ generate a proposal $\theta^{\prime}$ from $q\left(\theta^{\prime} \mid \theta\right)$, accepting with probability

$$
\min \left\{1, \frac{p\left(\theta^{\prime}\right) p\left(y \mid \theta^{\prime}\right)}{p(\theta) p(y \mid \theta)} \frac{q\left(\theta \mid \theta^{\prime}\right)}{q\left(\theta^{\prime} \mid \theta\right)}\right\}
$$

$=\min \{1$, Prior ratio $\times$ Likelihood ratio $\times$ Proposal ratio $\}$,
with the current value retained otherwise.

## ABC-MCMC

Marjoram et al., 2003

Consider a Metropolis-Hastings algorithm for the target ABC posterior

$$
p_{\epsilon, K}\left(\theta, S \mid S_{o b s}\right) \propto p(\theta) p(S \mid \theta) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)
$$

Letting the proposal density be $g\left(\theta^{\prime} \mid \theta\right) p\left(S^{\prime} \mid \theta^{\prime}\right)$, The intractable terms cancel from the likelihood and proposal ratios in the acceptance probability:


## ABC-MCMC

## Marjoram et al., 2003

Consider a Metropolis-Hastings algorithm for the target ABC posterior

$$
p_{\epsilon, K}\left(\theta, S \mid S_{o b s}\right) \propto p(\theta) p(S \mid \theta) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right) .
$$

Letting the proposal density be $g\left(\theta^{\prime} \mid \theta\right) p\left(S^{\prime} \mid \theta^{\prime}\right)$, The intractable terms cancel from the likelihood and proposal ratios in the acceptance probability:

$$
\begin{gathered}
\min \left\{1, \frac{p\left(\theta^{\prime}\right) p\left(S^{\prime} \mid \theta^{\prime}\right) K_{\epsilon}\left(d\left(S^{\prime}, S_{o b s}\right)\right)}{p(\theta) p(S \mid \theta) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)} \frac{g\left(\theta \mid \theta^{\prime}\right) p(S \mid \theta)}{g\left(\theta^{\prime} \mid \theta\right) p\left(S^{\prime} \mid \theta^{\prime}\right)}\right\} \\
=\min \left\{1, \frac{p\left(\theta^{\prime}\right) K_{\epsilon}\left(d\left(S^{\prime}, S_{o b s}\right)\right)}{p(\theta) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)} \frac{g\left(\theta \mid \theta^{\prime}\right)}{g\left(\theta^{\prime} \mid \theta\right)}\right\} .
\end{gathered}
$$

## Markov chain Monte Carlo

Marjoram et al., 2003

Difficulties with the basic ABC-MCMC

- It can be hard to move if we are in the tails of the posterior, as summary statistics may be hard to match there.
- It may be hard to calibrate the tolerance (i.e. the value of $\epsilon$ ). The tolerance determines the mixing rate as well as the accuracy.

More advanced ABC-MCMC methods are available that mitigate these problems to some extent.

## Markov chain Monte Carlo

Marjoram et al., 2003

Difficulties with the basic ABC-MCMC

- It can be hard to move if we are in the tails of the posterior, as summary statistics may be hard to match there.
- It may be hard to calibrate the tolerance (i.e. the value of $\epsilon$ ). The tolerance determines the mixing rate as well as the accuracy.

More advanced ABC-MCMC methods are available that mitigate these problems to some extent.

## Markov chain Monte Carlo ABC

Wegmann, Leuenberger and Excoffier, 2009

Wegmann, Leuenberger and Excoffier (2009) suggest

- Applying ABC-MCMC with a fairly large tolerance to ensure good mixing;
- Extracting a subset of samples for which the simulated summaries are closes to the observed values;
- Applying postprocessing regression adjustments;
- They also suggest partial least squares dimension reductions for summaries

Fewer simulations are required compared to simple rejection ABC. Bortot, Coles and Sisson (2007) incorporate $\epsilon$ into the target distribution. Baragatti, Grimaud and Pommeret (2013) consider parallel tempering.

## Markov chain Monte Carlo ABC

Wegmann, Leuenberger and Excoffier, 2009

Wegmann, Leuenberger and Excoffier (2009) suggest

- Applying ABC-MCMC with a fairly large tolerance to ensure good mixing;
- Extracting a subset of samples for which the simulated summaries are closes to the observed values;
- Applying postprocessing regression adjustments;
- They also suggest partial least squares dimension reductions for summaries

Fewer simulations are required compared to simple rejection $A B C$. Bortot, Coles and Sisson (2007) incorporate $\epsilon$ into the target distribution. Baragatti, Grimaud and Pommeret (2013) consider parallel tempering.

## Markov chain Monte Carlo ABC

Wegmann, Leuenberger and Excoffier, 2009

Wegmann, Leuenberger and Excoffier (2009) suggest

- Applying ABC-MCMC with a fairly large tolerance to ensure good mixing;
- Extracting a subset of samples for which the simulated summaries are closes to the observed values;
- Applying postprocessing regression adjustments;
- They also suggest partial least squares dimension reductions for summaries

Fewer simulations are required compared to simple rejection ABC . Bortot, Coles and Sisson (2007) incorporate $\epsilon$ into the target distribution. Baragatti, Grimaud and Pommeret (2013) consider parallel tempering.

## Markov chain Monte Carlo ABC

Wegmann, Leuenberger and Excoffier, 2009

Wegmann, Leuenberger and Excoffier (2009) suggest

- Applying ABC-MCMC with a fairly large tolerance to ensure good mixing;
- Extracting a subset of samples for which the simulated summaries are closes to the observed values;
- Applying postprocessing regression adjustments;
- They also suggest partial least squares dimension reductions for summaries

Fewer simulations are required compared to simple rejection ABC .
Bortot, Coles and Sisson (2007) incorporate $\epsilon$ into the target
distribution. Baragatti, Grimaud and Pommeret (2013) consider
parallel tempering.

## Markov chain Monte Carlo ABC

Wegmann, Leuenberger and Excoffier, 2009

Wegmann, Leuenberger and Excoffier (2009) suggest

- Applying ABC-MCMC with a fairly large tolerance to ensure good mixing;
- Extracting a subset of samples for which the simulated summaries are closes to the observed values;
- Applying postprocessing regression adjustments;
- They also suggest partial least squares dimension reductions for summaries
Fewer simulations are required compared to simple rejection $A B C$. Bortot, Coles and Sisson (2007) incorporate $\epsilon$ into the target distribution. Baragatti, Grimaud and Pommeret (2013) consider parallel tempering.


## Markov chain Monte Carlo ABC

## Wegmann, Leuenberger and Excoffier, 2009





## Markov chain Monte Carlo ABC

Wegmann, Leuenberger and Excoffier, 2009

Density estimates using the raw MCMC output (brown) and after subsetting and regression (green)




## The pseudo-marginal perspective

Beaumont, 2003, Andrieu and Roberts, 2009

ABC-MCMC algorithms are examples of pseudo-marginal Metropolis-Hastings algorithms.

Suppose we have a parameter $\theta$ and data $y_{o b s}$ and consider a Metropolis-Hastings algorithm with proposal $g\left(\theta^{\prime} \mid \theta\right)$.

Replace $p\left(y_{\text {obs }} \mid \theta\right)$ by a non-negative unbiased estimate $\hat{p}\left(y_{\text {obs }} \mid \theta\right)$ of it in the acceptance probability: acceptance probability


Surprisingly, this modified algorithm is exact.

## The pseudo-marginal perspective

Beaumont, 2003, Andrieu and Roberts, 2009

ABC-MCMC algorithms are examples of pseudo-marginal Metropolis-Hastings algorithms.

Suppose we have a parameter $\theta$ and data $y_{\text {obs }}$ and consider a Metropolis-Hastings algorithm with proposal $g\left(\theta^{\prime} \mid \theta\right)$.

Replace $p\left(y_{o b s} \mid \theta\right)$ by a non-negative unbiased estimate $\hat{p}\left(y_{o b s} \mid \theta\right)$ of it in the acceptance probability: acceptance probability


Surprisingly, this modified algorithm is exact.

## The pseudo-marginal perspective

Beaumont, 2003, Andrieu and Roberts, 2009

ABC-MCMC algorithms are examples of pseudo-marginal Metropolis-Hastings algorithms.

Suppose we have a parameter $\theta$ and data $y_{\text {obs }}$ and consider a Metropolis-Hastings algorithm with proposal $g\left(\theta^{\prime} \mid \theta\right)$.

Replace $p\left(y_{\text {obs }} \mid \theta\right)$ by a non-negative unbiased estimate $\hat{p}\left(y_{\text {obs }} \mid \theta\right)$ of it in the acceptance probability: acceptance probability

$$
\min \left\{1, \frac{p\left(\theta^{\prime}\right) \hat{p}\left(y_{\mathrm{obs}} \mid \theta^{\prime}\right)}{p(\theta) \hat{p}\left(y_{\mathrm{obs}} \mid \theta\right)} \frac{g\left(\theta \mid \theta^{\prime}\right)}{g\left(\theta^{\prime} \mid \theta\right)}\right\} .
$$

Surprisingly, this modified algorithm is exact.

## The pseudo-marginal perspective

Beaumont, 2003, Andrieu and Roberts, 2009

ABC-MCMC algorithms are examples of pseudo-marginal Metropolis-Hastings algorithms.

Suppose we have a parameter $\theta$ and data $y_{\text {obs }}$ and consider a Metropolis-Hastings algorithm with proposal $g\left(\theta^{\prime} \mid \theta\right)$.

Replace $p\left(y_{\text {obs }} \mid \theta\right)$ by a non-negative unbiased estimate $\hat{p}\left(y_{\text {obs }} \mid \theta\right)$ of it in the acceptance probability: acceptance probability

$$
\min \left\{1, \frac{p\left(\theta^{\prime}\right) \hat{p}\left(y_{\mathrm{obs}} \mid \theta^{\prime}\right)}{p(\theta) \hat{p}\left(y_{\mathrm{obs}} \mid \theta\right)} \frac{g\left(\theta \mid \theta^{\prime}\right)}{g\left(\theta^{\prime} \mid \theta\right)}\right\} .
$$

Surprisingly, this modified algorithm is exact.

## The pseudo-marginal perspective

Beaumont, 2003, Andrieu and Roberts, 2009

Consider once again the likelihood approximation

$$
p_{\epsilon, K}\left(S_{o b s} \mid \theta\right)=\int K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right) p(S \mid \theta) d S
$$

A non-negative unbiased estimate of this likelihood is

$$
K_{\epsilon}\left(d\left(S^{\prime}, S_{o b s}\right)\right) \quad S^{\prime} \sim p(S \mid \theta)
$$

We can average over more than one draw in obtaining the likelihood estimate but one draw is recommended (Bornn et al., 2017).

## The pseudo-marginal perspective

Beaumont, 2003, Andrieu and Roberts, 2009

Consider once again the likelihood approximation

$$
p_{\epsilon, K}\left(S_{o b s} \mid \theta\right)=\int K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right) p(S \mid \theta) d S
$$

A non-negative unbiased estimate of this likelihood is

$$
K_{\epsilon}\left(d\left(S^{\prime}, S_{o b s}\right)\right) \quad S^{\prime} \sim p(S \mid \theta)
$$

We can average over more than one draw in obtaining the likelihood estimate but one draw is recommended (Bornn et al., 2017).

## The pseudo-marginal perspective

Beaumont, 2003, Andrieu and Roberts, 2009

Consider once again the likelihood approximation

$$
p_{\epsilon, K}\left(S_{o b s} \mid \theta\right)=\int K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right) p(S \mid \theta) d S
$$

A non-negative unbiased estimate of this likelihood is

$$
K_{\epsilon}\left(d\left(S^{\prime}, S_{o b s}\right)\right) \quad S^{\prime} \sim p(S \mid \theta)
$$

We can average over more than one draw in obtaining the likelihood estimate but one draw is recommended (Bornn et al., 2017).

## The pseudo-marginal perspective

Beaumont, 2003, Andrieu and Roberts, 2009

Examining the ABC-MCMC acceptance probability

$$
\min \left\{1, \frac{p\left(\theta^{\prime}\right) K_{\epsilon}\left(d\left(S^{\prime}, S_{o b s}\right)\right)}{p(\theta) K_{\epsilon}\left(d\left(S, S_{o b s}\right)\right)} \frac{g\left(\theta \mid \theta^{\prime}\right)}{g\left(\theta^{\prime} \mid \theta\right)}\right\}
$$

we see that ABC-MCMC is just a pseudo-marginal algorithm for sampling $p_{\epsilon, K}\left(\theta \mid S_{o b s}\right)$.

## SMC samplers

An alternative to MCMC methods is to use sequential Monte Carlo samplers (Del Moral et al., 2006).

## Advantages

- Easy adaptive design of proposals;
- Better performance for irregular (for example multi-modal) target distributions.

> A sequence of target distributions $p_{\epsilon_{i}, K}\left(\theta \mid S_{o b s}\right)$ are considered for tolerances $\epsilon_{1}$

> A population of weighted particles is maintained as the tolerances are traversed sequentially, starting with the largest tolerance (Sisson et al. 2007, Beaumont et al., 2009, Toni et al., 2009, Drovandi and Pettit, 2011, Del Moral et al., 2012)

## SMC samplers

An alternative to MCMC methods is to use sequential Monte Carlo samplers (Del Moral et al., 2006).

## Advantages

- Easy adaptive design of proposals;
- Better performance for irregular (for example multi-modal) target distributions.

A sequence of target distributions $p_{\epsilon_{i}, K}\left(\theta \mid S_{o b s}\right)$ are considered for tolerances $\epsilon_{1}>\cdots>\epsilon_{T}$.

A population of weighted particles is maintained as the tolerances are traversed sequentially, starting with the largest tolerance (Sisson et al. 2007, Beaumont et al., 2009, Toni et al., 2009, Drovandi and Pettit, 2011, Del Moral et al., 2012)

## SMC samplers

An alternative to MCMC methods is to use sequential Monte Carlo samplers (Del Moral et al., 2006).

## Advantages

- Easy adaptive design of proposals;
- Better performance for irregular (for example multi-modal) target distributions.

A sequence of target distributions $p_{\epsilon_{i}, K}\left(\theta \mid S_{o b s}\right)$ are considered for tolerances $\epsilon_{1}>\cdots>\epsilon_{T}$.

A population of weighted particles is maintained as the tolerances are traversed sequentially, starting with the largest tolerance (Sisson et al., 2007, Beaumont et al., 2009, Toni et al., 2009, Drovandi and Pettit, 2011, Del Moral et al., 2012).

## Synthetic likelihood

Wood, 2010

- There is a curse of dimensionality that is inherent in ABC methods.
- The ABC likelihood is in effect based on a kernel estimation of the summary statistic distribution.
- When the number of summary statistics is large, this becomes impractical.
- An alternative likelihood free methodology is synthetic likelihood.


## Synthetic likelihood

At each $\theta$, simulate $S_{1}, \ldots S_{N} \sim p(S \mid \theta)$,
$\hat{\mu}(\theta)=\frac{1}{N} \sum_{i=1}^{N} S_{i}, \quad \hat{\Sigma}(\theta)=\frac{1}{N-1} \sum_{i=1}^{N}\left(S_{i}-\hat{\mu}(\theta)\right)\left(S_{i}-\hat{\mu}(\theta)\right)^{T}$
and use as the likelihood $\phi\left(S_{o b s} ; \hat{\mu}(\theta), \hat{\Sigma}(\theta)\right)$ where $\phi(z ; \mu, \Sigma)$ is the multivariate normal density with mean $\mu$ and covariance $\Sigma$.

## Synthetic likelihood

Wood, 2010

- There is a curse of dimensionality that is inherent in ABC methods.
- The ABC likelihood is in effect based on a kernel estimation of the summary statistic distribution.
- When the number of summary statistics is large, this becomes
impractical.
- An alternative likelihood free methodology is synthetic likelihood.


## Synthetic likelihood

At each $\theta$, simulate $S_{1}, \ldots, S_{N} \sim p(S \mid \theta)$,
$\hat{\mu}(\theta)=\frac{1}{N} \sum_{i=1}^{N} S_{i}, \quad \hat{\Sigma}(\theta)=\frac{1}{N-1} \sum_{i=1}^{N}\left(S_{i}-\hat{\mu}(\theta)\right)\left(S_{i}-\hat{\mu}(\theta)\right)^{T}$
and use as the likelihood $\phi\left(S_{\text {obs }} ; \hat{\mu}(\theta), \hat{\Sigma}(\theta)\right)$ where $\phi(z ; \mu, \Sigma)$ is the multivariate normal density with mean $\mu$ and covariance $\Sigma$.

## Synthetic likelihood

Wood, 2010

- There is a curse of dimensionality that is inherent in ABC methods.
- The ABC likelihood is in effect based on a kernel estimation of the summary statistic distribution.
- When the number of summary statistics is large, this becomes impractical.
- An alternative likelihood free methodology is synthetic likelihood.


## Synthetic likelihood

At each $\theta$, simulate $S_{1}, \ldots S_{N} \sim p(S \mid \theta)$

and use as the likelihood $\phi\left(S_{o b s} ; \hat{\mu}(\theta), \hat{\Sigma}(\theta)\right)$ where $\phi(z ; \mu, \Sigma)$ is the multivariate normal density with mean $\mu$ and covariance $\Sigma$.

## Synthetic likelihood

Wood, 2010

- There is a curse of dimensionality that is inherent in ABC methods.
- The ABC likelihood is in effect based on a kernel estimation of the summary statistic distribution.
- When the number of summary statistics is large, this becomes impractical.
- An alternative likelihood free methodology is synthetic likelihood.



## Synthetic likelihood

- There is a curse of dimensionality that is inherent in ABC methods.
- The ABC likelihood is in effect based on a kernel estimation of the summary statistic distribution.
- When the number of summary statistics is large, this becomes impractical.
- An alternative likelihood free methodology is synthetic likelihood.


## Synthetic likelihood

At each $\theta$, simulate $S_{1}, \ldots, S_{N} \sim p(S \mid \theta)$,

$$
\hat{\mu}(\theta)=\frac{1}{N} \sum_{i=1}^{N} S_{i}, \quad \hat{\Sigma}(\theta)=\frac{1}{N-1} \sum_{i=1}^{N}\left(S_{i}-\hat{\mu}(\theta)\right)\left(S_{i}-\hat{\mu}(\theta)\right)^{T}
$$

and use as the likelihood $\phi\left(S_{o b s} ; \hat{\mu}(\theta), \hat{\Sigma}(\theta)\right)$ where $\phi(z ; \mu, \Sigma)$ is the multivariate normal density with mean $\mu$ and covariance $\Sigma$.

## Synthetic likelihood

Wood, 2010

- Some advantages of synthetic likelihood compared to ABC:
- It mitigates the curse of dimensionality in ABC to some extent, by making parametric assumptions about the distribution of $S$ in likelihood approximations.
- It's tuning parameters (the number of model simulations $N$ ) are easy to set. The tolerance $\epsilon$ in $A B C$ is hard to set.
On the other hand ... normality of $S \mid \theta$ is assumed.
- S can often be chosen so that it satisfies some central limit theorem.
- The approximation of normality can often be improved by transformation.
- The synthetic likelihood based posterior is often not sensitive to violations of normality (Price et al., 2017).


## Synthetic likelihood

Wood, 2010

- Some advantages of synthetic likelihood compared to ABC:
- It mitigates the curse of dimensionality in $A B C$ to some extent, by making parametric assumptions about the distribution of $S$ in likelihood approximations.
- It's tuning parameters (the number of model simulations $N$ ) are easy to set. The tolerance $\epsilon$ in ABC is hard to set.
normality of $S \mid \theta$ is assumed.
- S can often be chosen so that it satisfies some central limit theorem.
- The approximation of normality can often be improved by transformation.
- The synthetic likelihood based posterior is often not sensitive to violations of normality (Price et al., 2017).


## Synthetic likelihood

Wood, 2010

- Some advantages of synthetic likelihood compared to ABC:
- It mitigates the curse of dimensionality in ABC to some extent, by making parametric assumptions about the distribution of $S$ in likelihood approximations.
- It's tuning parameters (the number of model simulations $N$ ) are easy to set. The tolerance $\epsilon$ in ABC is hard to set.

```
- On the other hand ... normality of \(S \mid \theta\) is assumed.
- \(S\) can often be chosen so that it satisfies some central limit theorem.
- The approximation of normality can often be improved by transformation.
- The synthetic likelihood based posterior is often not sensitive to violations of normality (Price et al., 2017).
```


## Synthetic likelihood

Wood, 2010

- Some advantages of synthetic likelihood compared to ABC:
- It mitigates the curse of dimensionality in ABC to some extent, by making parametric assumptions about the distribution of $S$ in likelihood approximations.
- It's tuning parameters (the number of model simulations $N$ ) are easy to set. The tolerance $\epsilon$ in $A B C$ is hard to set.
- On the other hand ... normality of $S \mid \theta$ is assumed.
- S can often be chosen so that it satisfies some central limit theorem.
- The approximation of normality can often be improved by transformation.
- The synthetic likelihood based posterior is often not sensitive to violations of normality (Price et al., 2017).


## Synthetic likelihood

Wood, 2010

- Some advantages of synthetic likelihood compared to ABC:
- It mitigates the curse of dimensionality in ABC to some extent, by making parametric assumptions about the distribution of $S$ in likelihood approximations.
- It's tuning parameters (the number of model simulations $N$ ) are easy to set. The tolerance $\epsilon$ in $A B C$ is hard to set.
- On the other hand ... normality of $S \mid \theta$ is assumed.
- $S$ can often be chosen so that it satisfies some central limit theorem.
- The approximation of normality can often be improved by transformation.
- The synthetic likelihood based posterior is often not sensitive to violations of normality (Price et al., 2017).


## Synthetic likelihood

Wood, 2010

- Some advantages of synthetic likelihood compared to ABC:
- It mitigates the curse of dimensionality in ABC to some extent, by making parametric assumptions about the distribution of $S$ in likelihood approximations.
- It's tuning parameters (the number of model simulations $N$ ) are easy to set. The tolerance $\epsilon$ in $A B C$ is hard to set.
- On the other hand ... normality of $S \mid \theta$ is assumed.
- $S$ can often be chosen so that it satisfies some central limit theorem.
- The approximation of normality can often be improved by transformation.
- The synthetic likelihood based posterior is often not sensitive to violations of normality (Price et al., 2017).


## Synthetic likelihood

Wood, 2010

- Some advantages of synthetic likelihood compared to ABC:
- It mitigates the curse of dimensionality in ABC to some extent, by making parametric assumptions about the distribution of $S$ in likelihood approximations.
- It's tuning parameters (the number of model simulations $N$ ) are easy to set. The tolerance $\epsilon$ in $A B C$ is hard to set.
- On the other hand ... normality of $S \mid \theta$ is assumed.
- $S$ can often be chosen so that it satisfies some central limit theorem.
- The approximation of normality can often be improved by transformation.
- The synthetic likelihood based posterior is often not sensitive to violations of normality (Price et al., 2017).


## Synthetic likelihood

Wood, 2010

- Some advantages of synthetic likelihood compared to ABC:
- It mitigates the curse of dimensionality in ABC to some extent, by making parametric assumptions about the distribution of $S$ in likelihood approximations.
- It's tuning parameters (the number of model simulations $N$ ) are easy to set. The tolerance $\epsilon$ in $A B C$ is hard to set.
- On the other hand ... normality of $S \mid \theta$ is assumed.
- $S$ can often be chosen so that it satisfies some central limit theorem.
- The approximation of normality can often be improved by transformation.
- The synthetic likelihood based posterior is often not sensitive to violations of normality (Price et al., 2017).


## Synthetic likelihood

Wood, 2010

- Some refinements:
- When using synthetic likelihood within MCMC, the targeted distribution does not seem to depend strongly on $N$.
- Unbiased likelihood estimation under normality (Ghurye and Olkin, 1969) allowing pseudo-marginal algorithms (Price et al., 2016).
- Shrinkage estimation of covariance with the graphical lasso to reduce the needed number of simulations (An et al., 2016).
- Bootstrap methods for the covariance estimation in computationally expensive models (Everitt, 2017).
- Variational inference methods less sensitive to noise in likelihood estimates (Ong et al., 2018).


## Synthetic likelihood

Wood, 2010

- Some refinements:
- When using synthetic likelihood within MCMC, the targeted distribution does not seem to depend strongly on $N$.
> - Unbiased likelihood estimation under normality (Ghurye and Olkin, 1969) allowing pseudo-marginal algorithms (Price et al., 2016).
- Shrinkage estimation of covariance with the graphical lasso to reduce the needed number of simulations (An et al., 2016).
- Bootstrap methods for the covariance estimation in computationally expensive models (Everitt, 2017).
- Variational inference methods less sensitive to noise in likelihood estimates (Ong et al., 2018).


## Synthetic likelihood

Wood, 2010

- Some refinements:
- When using synthetic likelihood within MCMC, the targeted distribution does not seem to depend strongly on $N$.
- Unbiased likelihood estimation under normality (Ghurye and Olkin, 1969) allowing pseudo-marginal algorithms (Price et al., 2016).
- Shrinkage estimation of covariance with the graphical lasso to reduce the needed number of simulations (An et al., 2016).
- Rootstran methods for the covariance estimation in computationally expensive models (Everitt, 2017).
- Variational inference methods less sensitive to noise in likelihood estimates (Ong et al., 2018).


## Synthetic likelihood

Wood, 2010

- Some refinements:
- When using synthetic likelihood within MCMC, the targeted distribution does not seem to depend strongly on $N$.
- Unbiased likelihood estimation under normality (Ghurye and Olkin, 1969) allowing pseudo-marginal algorithms (Price et al., 2016).
- Shrinkage estimation of covariance with the graphical lasso to reduce the needed number of simulations (An et al., 2016).
- Bootstrap methods for the covariance estimation in computationally expensive models (Everitt, 2017). Variational inference methods less sensitive to noise in likelihood estimates (Ong et al., 2018).


## Synthetic likelihood

Wood, 2010

- Some refinements:
- When using synthetic likelihood within MCMC, the targeted distribution does not seem to depend strongly on $N$.
- Unbiased likelihood estimation under normality (Ghurye and Olkin, 1969) allowing pseudo-marginal algorithms (Price et al., 2016).
- Shrinkage estimation of covariance with the graphical lasso to reduce the needed number of simulations (An et al., 2016).
- Bootstrap methods for the covariance estimation in computationally expensive models (Everitt, 2017).
- Variational inference methods less sensitive to noise in likelihood
estimates (Ong et al., 2018).


## Synthetic likelihood

Wood, 2010

- Some refinements:
- When using synthetic likelihood within MCMC, the targeted distribution does not seem to depend strongly on $N$.
- Unbiased likelihood estimation under normality (Ghurye and Olkin, 1969) allowing pseudo-marginal algorithms (Price et al., 2016).
- Shrinkage estimation of covariance with the graphical lasso to reduce the needed number of simulations (An et al., 2016).
- Bootstrap methods for the covariance estimation in computationally expensive models (Everitt, 2017).
- Variational inference methods less sensitive to noise in likelihood estimates (Ong et al., 2018).


## Nicholson's Blowflies

Nicholson $(1954,1957)$
Synthetic likelihood estimated marginals (red) with $\mathrm{N}=1000$ and rejection ABC estimated marginals (brown) with NN regression adjustment. Synthetic likelihood uses all 23 summary statistics.


## Nicholson's Blowflies

Nicholson $(1954,1957)$
Trace plots for $\log \delta$ for random walk MCMC with $\mathrm{N}=1000$ and $\mathrm{N}=250$



## Synthetic likelihood extensions

- Extensions to address non-normality of summaries - extended empirical saddlepoint approximation (Fasiolo et al., 2016), ratio estimation (Dutta et al., 2016)
- Replace the intractable likelihood with some other pseudo-likelihood:
- Empirical likelihood (Mengersen, Pudlo and Robert, 2013, Pham 2016)
- Bootstrap likelihood (Zhu et al., 2016).
- More general parametric auxiliary models (Drovandi et al., 2015).


## Synthetic likelihood extensions

- Extensions to address non-normality of summaries - extended empirical saddlepoint approximation (Fasiolo et al., 2016), ratio estimation (Dutta et al., 2016)
- Replace the intractable likelihood with some other pseudo-likelihood:
- Empirical likelihood (Mengersen, Pudlo and Robert, 2013, Pham
2016).
- Bootstrap likelihood (Zhu et al., 2016).
- More general parametric auxiliary models (Drovandi et al., 2015).


## Synthetic likelihood extensions

- Extensions to address non-normality of summaries - extended empirical saddlepoint approximation (Fasiolo et al., 2016), ratio estimation (Dutta et al., 2016)
- Replace the intractable likelihood with some other pseudo-likelihood:
- Empirical likelihood (Mengersen, Pudlo and Robert, 2013, Pham 2016).
- Bootstrap likelihood (Zhu et al., 2016)
- More general parametric auxiliary models (Drovandi et al., 2015),


## Synthetic likelihood extensions

- Extensions to address non-normality of summaries - extended empirical saddlepoint approximation (Fasiolo et al., 2016), ratio estimation (Dutta et al., 2016)
- Replace the intractable likelihood with some other pseudo-likelihood:
- Empirical likelihood (Mengersen, Pudlo and Robert, 2013, Pham 2016).
- Bootstrap likelihood (Zhu et al., 2016).
- More general parametric auxiliary models (Drovandi et al., 2015),


## Synthetic likelihood extensions

- Extensions to address non-normality of summaries - extended empirical saddlepoint approximation (Fasiolo et al., 2016), ratio estimation (Dutta et al., 2016)
- Replace the intractable likelihood with some other pseudo-likelihood:
- Empirical likelihood (Mengersen, Pudlo and Robert, 2013, Pham 2016).
- Bootstrap likelihood (Zhu et al., 2016).
- More general parametric auxiliary models (Drovandi et al., 2015).


## Variational Approximation

Ormerod and Wand, 2010, Blei et al., 2017

Let $q_{\lambda}(\theta)$ be an approximation to $p\left(\theta \mid y_{\text {obs }}\right)$, parametrized by variational parameters $\lambda$ to be chosen to give the "best" approximation.


The second term on the right hand side is the variational lower bound which we write $\mathcal{L}(\lambda)$.

Minimizing $K L\left(q_{\lambda}(\theta) \| p(\theta \mid y)\right.$ with respect to $\lambda$ is the same as maximizing $\mathcal{L}(\lambda)$.

## Variational Approximation

## Ormerod and Wand, 2010, Blei et al., 2017

Let $q_{\lambda}(\theta)$ be an approximation to $p\left(\theta \mid y_{\text {obs }}\right)$, parametrized by variational parameters $\lambda$ to be chosen to give the "best" approximation.

The Kullback-Leibler (KL) divergence from $q_{\lambda}(\theta)$ to $p\left(\theta \mid y_{\mathrm{obs}}\right)$, $K L\left(q_{\lambda}(\theta) \| p\left(\theta \mid y_{\text {obs }}\right)\right)$ can be expressed as
$\int \log \frac{q_{\lambda}(\theta)}{p\left(\theta \mid y_{\mathrm{obs}}\right)} q_{\lambda}(\theta) d \theta=\log p\left(y_{\mathrm{obs}}\right)-\int \log \frac{p(\theta) p\left(y_{\text {obs }} \mid \theta\right)}{q_{\lambda}(\theta)} q_{\lambda}(\theta) d \theta$

The second term on the right hand side is the variational lower bound which we write $\mathcal{L}(\lambda)$.

Minimizing $K L\left(q_{\lambda}(\theta) \| p(\theta \mid y)\right.$ with respect to $\lambda$ is the same as maximizing $\mathcal{L}(\lambda)$

## Variational Approximation

Ormerod and Wand, 2010, Blei et al., 2017

Let $q_{\lambda}(\theta)$ be an approximation to $p\left(\theta \mid y_{\text {obs }}\right)$, parametrized by variational parameters $\lambda$ to be chosen to give the "best" approximation.

The Kullback-Leibler (KL) divergence from $q_{\lambda}(\theta)$ to $p\left(\theta \mid y_{\mathrm{obs}}\right)$, $K L\left(q_{\lambda}(\theta) \| p\left(\theta \mid y_{\text {obs }}\right)\right)$ can be expressed as

$$
\int \log \frac{q_{\lambda}(\theta)}{p\left(\theta \mid y_{\mathrm{obs}}\right)} q_{\lambda}(\theta) d \theta=\log p\left(y_{\mathrm{obs}}\right)-\int \log \frac{p(\theta) p\left(y_{\mathrm{obs}} \mid \theta\right)}{q_{\lambda}(\theta)} q_{\lambda}(\theta) d \theta
$$

The second term on the right hand side is the variational lower bound which we write $\mathcal{L}(\lambda)$.

Minimizing $K L\left(q_{\lambda}(\theta) \| p(\theta \mid y)\right.$ with respect to $\lambda$ is the same as

## Variational Approximation

Ormerod and Wand, 2010, Blei et al., 2017

Let $q_{\lambda}(\theta)$ be an approximation to $p\left(\theta \mid y_{\text {obs }}\right)$, parametrized by variational parameters $\lambda$ to be chosen to give the "best" approximation.

The Kullback-Leibler (KL) divergence from $q_{\lambda}(\theta)$ to $p\left(\theta \mid y_{\mathrm{obs}}\right)$, $K L\left(q_{\lambda}(\theta) \| p\left(\theta \mid y_{\text {obs }}\right)\right)$ can be expressed as

$$
\int \log \frac{q_{\lambda}(\theta)}{p\left(\theta \mid y_{\mathrm{obs}}\right)} q_{\lambda}(\theta) d \theta=\log p\left(y_{\mathrm{obs}}\right)-\int \log \frac{p(\theta) p\left(y_{\mathrm{obs}} \mid \theta\right)}{q_{\lambda}(\theta)} q_{\lambda}(\theta) d \theta
$$

The second term on the right hand side is the variational lower bound which we write $\mathcal{L}(\lambda)$.

Minimizing $K L\left(q_{\lambda}(\theta) \| p(\theta \mid y)\right.$ with respect to $\lambda$ is the same as maximizing $\mathcal{L}(\lambda)$.

## Variational Approximation and ABC

Can variational approximation be used for $A B C$ ?

## Tran, Nott and Kohn (2017) use an idea similar to pseudo-marginal Metropolis-Hastings.

Suppose we can estimate the likelihood unbiasedly (for ABC we can) by a non-negative estimator $\hat{p}\left(y_{\text {obs }} \mid \theta\right)$.

Write $z=\log \hat{p}\left(y_{\text {obs }} \mid \theta\right)-\log p\left(y_{\text {obs }} \mid \theta\right)$ so that


## Variational Approximation and ABC

Can variational approximation be used for ABC ?
Tran, Nott and Kohn (2017) use an idea similar to pseudo-marginal Metropolis-Hastings.

Suppose we can estimate the likelihood unbiasedly (for ABC we can) by a non-negative estimator $\hat{p}\left(y_{\text {obs }} \mid \theta\right)$

Write $z=\log \hat{p}\left(y_{\text {obs }} \mid \theta\right)-\log p\left(y_{\text {obs }} \mid \theta\right)$ so that


## Variational Approximation and ABC

Can variational approximation be used for ABC ?
Tran, Nott and Kohn (2017) use an idea similar to pseudo-marginal Metropolis-Hastings.

Suppose we can estimate the likelihood unbiasedly (for ABC we can) by a non-negative estimator $\hat{p}\left(y_{\text {obs }} \mid \theta\right)$.

Write $z=\log \hat{p}\left(y_{\text {obs }} \mid \theta\right)-\log p\left(y_{\text {obs }} \mid \theta\right)$ so that


## Variational Approximation and ABC

Can variational approximation be used for ABC ?
Tran, Nott and Kohn (2017) use an idea similar to pseudo-marginal Metropolis-Hastings.

Suppose we can estimate the likelihood unbiasedly (for ABC we can) by a non-negative estimator $\hat{p}\left(y_{\text {obs }} \mid \theta\right)$.

Write $z=\log \hat{p}\left(y_{\text {obs }} \mid \theta\right)-\log p\left(y_{\text {obs }} \mid \theta\right)$ so that

$$
e^{z}=\frac{\hat{p}\left(y_{\text {obs }} \mid \theta\right)}{p\left(y_{\text {obs }} \mid \theta\right)} .
$$

## Variational Bayes with intractable likelihood (VBIL)

Tran, Nott and Kohn, 2017

Write $\pi(\theta)$ for the posterior distribution. Consider a joint distribution on $(\theta, z)$ of

$$
\pi(\theta, z)=\pi(\theta) \exp (z) g(z \mid \theta)
$$

where $g(z \mid \theta)$ is defined implicitly by the process of generating $\hat{p}\left(y_{\text {obs }} \mid \theta\right)$.

The $\theta$ marginal of $\pi(\theta, z)$ is $\pi(\theta)$ since


[^0]
## Variational Bayes with intractable likelihood (VBIL)

## Tran, Nott and Kohn, 2017

Write $\pi(\theta)$ for the posterior distribution. Consider a joint distribution on $(\theta, z)$ of

$$
\pi(\theta, z)=\pi(\theta) \exp (z) g(z \mid \theta)
$$

where $g(z \mid \theta)$ is defined implicitly by the process of generating $\hat{p}\left(y_{\text {obs }} \mid \theta\right)$.

The $\theta$ marginal of $\pi(\theta, z)$ is $\pi(\theta)$ since

$$
\int \exp (z) g(z \mid \theta) d z=\int \frac{\hat{p}(y \mid \theta)}{p(y \mid \theta)} g(z \mid \theta) d z=1
$$

by the unbiasedness of $\hat{p}(y \mid \theta)$.

## Variational Bayes with intractable likelihood (VBIL)

Tran, Nott and Kohn, 2017

Consider

$$
q_{\lambda}(\theta, z)=q_{\lambda}(\theta) g(z \mid \theta)
$$

for some parametrized approximation $q_{\lambda}(\theta)$ (for example multivariate normal) to $\pi(\theta)$.

The $\theta$ marginal of $q_{\lambda}(\theta, z)$ is $q_{\lambda}(\theta)$.

If we can tune the estimator $\hat{p}(y \mid \theta)$ such that $E(z \mid \theta)$ does not depend on $\theta$ then the variational optimization matching $q_{\lambda}(\theta, z)$ to $\pi(\theta, z)$ is equivalent to the one matching $q_{\lambda}(\theta)$ to $\pi(\theta)$.

## Variational Bayes with intractable likelihood (VBIL)

Tran, Nott and Kohn, 2017

Consider

$$
q_{\lambda}(\theta, z)=q_{\lambda}(\theta) g(z \mid \theta)
$$

for some parametrized approximation $q_{\lambda}(\theta)$ (for example multivariate normal) to $\pi(\theta)$.

The $\theta$ marginal of $q_{\lambda}(\theta, z)$ is $q_{\lambda}(\theta)$.

If we can tune the estimator $\hat{p}(y \mid \theta)$ such that $E(z \mid \theta)$ does not depend on $\theta$ then the variational optimization matching $q_{\lambda}(\theta, z)$ to $\pi(\theta, z)$ is equivalent to the one matching $q_{\lambda}(\theta)$ to $\pi(\theta)$.

## Variational Bayes with intractable likelihood (VBIL)

Tran, Nott and Kohn, 2017

Consider

$$
q_{\lambda}(\theta, z)=q_{\lambda}(\theta) g(z \mid \theta)
$$

for some parametrized approximation $q_{\lambda}(\theta)$ (for example multivariate normal) to $\pi(\theta)$.

The $\theta$ marginal of $q_{\lambda}(\theta, z)$ is $q_{\lambda}(\theta)$.

If we can tune the estimator $\hat{p}(y \mid \theta)$ such that $E(z \mid \theta)$ does not depend on $\theta$ then the variational optimization matching $q_{\lambda}(\theta, z)$ to $\pi(\theta, z)$ is equivalent to the one matching $q_{\lambda}(\theta)$ to $\pi(\theta)$.

## Variational Bayes with intractable likelihood (VBIL)

Tran, Nott and Kohn, 2017
Tran, Nott and Kohn (2017) show that the gradient of the lower bound for optimization for $q_{\lambda}(\theta, z)$ can be estimated unbiasedly and use stochastic gradient methods for the optimization.

> VBIL can be used not just in ABC but other applications (eg. state space models). The main advantage over alternatives is less sensitivity to noise in likelihood estimates.

Refinements:

- Reduced variance gradient estimation for models coded in an automatic differentiation environment with model simulations a smooth function of underlying pseudo-random numbers (Moreno et al., 2016)
- Variational methods with the synthetic likelihood (Ong et al., 2017)


## Variational Bayes with intractable likelihood (VBIL)

## Tran, Nott and Kohn, 2017

Tran, Nott and Kohn (2017) show that the gradient of the lower bound for optimization for $q_{\lambda}(\theta, z)$ can be estimated unbiasedly and use stochastic gradient methods for the optimization.

VBIL can be used not just in ABC but other applications (eg. state space models). The main advantage over alternatives is less sensitivity to noise in likelihood estimates.

Refinements:

- Reduced variance gradient estimation for models coded in an automatic differentiation environment with model simulations a smooth function of underlying pseudo-random numbers (Moreno et al., 2016)
- Variational methods with the synthetic likelihood (Ong et al., 2017)


## Variational Bayes with intractable likelihood (VBIL)

## Tran, Nott and Kohn, 2017

Tran, Nott and Kohn (2017) show that the gradient of the lower bound for optimization for $q_{\lambda}(\theta, z)$ can be estimated unbiasedly and use stochastic gradient methods for the optimization.

VBIL can be used not just in ABC but other applications (eg. state space models). The main advantage over alternatives is less sensitivity to noise in likelihood estimates.

Refinements:

- Reduced variance gradient estimation for models coded in an automatic differentiation environment with model simulations a smooth function of underlying pseudo-random numbers (Moreno et al., 2016).
- Variational methods with the synthetic likelihood (Ong et al., 2017)


## Variational Bayes with intractable likelihood (VBIL)

 Tran, Nott and Kohn, 2017Tran, Nott and Kohn (2017) show that the gradient of the lower bound for optimization for $q_{\lambda}(\theta, z)$ can be estimated unbiasedly and use stochastic gradient methods for the optimization.

VBIL can be used not just in ABC but other applications (eg. state space models). The main advantage over alternatives is less sensitivity to noise in likelihood estimates.

Refinements:

- Reduced variance gradient estimation for models coded in an automatic differentiation environment with model simulations a smooth function of underlying pseudo-random numbers (Moreno et al., 2016).
- Variational methods with the synthetic likelihood (Ong et al., 2017).


## Expectation propagation

 Minka, 2001Suppose $h(\theta)$ is a density to be approximated in the form

$$
h(\theta) \propto \prod_{i=0}^{n} h_{i}(\theta)
$$

For example

$$
\begin{aligned}
p\left(\theta \mid y_{\mathrm{obs}}\right) & \propto p(\theta) p\left(y_{\mathrm{obs}} \mid \theta\right) \\
& =p(\theta) \prod_{i=1}^{n} p\left(y_{\mathrm{obs}, i} \mid y_{\mathrm{obs},<i}, \theta\right) .
\end{aligned}
$$

## Expectation propagation

Minka, 2001
Consider an approximation of the same form as the target

$$
q(\theta)=\prod_{i=0}^{n} q_{i}(\theta)
$$

where we want $q_{i}(\theta) \propto h_{i}(\theta)$.
Replace the current $q_{i}(\theta)$ by the corresponding term $h_{i}(\theta)$ in the target
to create the tilted distribution

$$
\tilde{q}(\theta)=h_{i}(\theta) \prod_{i \neq j} q_{j}(\theta),
$$

an unnormalized approximation to $h(\theta)$ that should be closer to it than the current $q(\theta)$.

## Expectation propagation

Minka, 2001
Consider an approximation of the same form as the target

$$
q(\theta)=\prod_{i=0}^{n} q_{i}(\theta)
$$

where we want $q_{i}(\theta) \propto h_{i}(\theta)$.
Replace the current $q_{i}(\theta)$ by the corresponding term $h_{i}(\theta)$ in the target to create the tilted distribution

$$
\tilde{q}(\theta)=h_{i}(\theta) \prod_{j \neq i} q_{j}(\theta)
$$

an unnormalized approximation to $h(\theta)$ that should be closer to it than the current $q(\theta)$.

## Expectation-propagation ABC

## Barthelmé and Chopin, 2014

Optimize $q_{i}(\theta)$ in $q(\theta)$ to get closer to $\tilde{q}(\theta)$ in the Kullback-Leibler sense, cycle over $i$ until convergence (hopefully).

## Barthelmé and Chopin (2014) apply EP to ABC: consider the

## EP-ABC Hkethood approximation



This likelihood approximation has the form of a product and we can approximate the terms of it using EP.

## Expectation-propagation ABC

 Barthelmé and Chopin, 2014Optimize $q_{i}(\theta)$ in $q(\theta)$ to get closer to $\tilde{q}(\theta)$ in the Kullback-Leibler sense, cycle over $i$ until convergence (hopefully).

Barthelmé and Chopin (2014) apply EP to ABC: consider the

## EP-ABC likelihood approximation

$$
p\left(y_{\mathrm{obs}} \mid \theta\right)=\prod_{i=1}^{n} \int p\left(y_{i} \mid y_{\mathrm{obs},<i}, \theta\right) I\left(d\left(y_{i}, y_{\mathrm{obs}, i}\right)<\epsilon\right) d y_{i} .
$$

This likelihood approximation has the form of a product and we can approximate the terms of it using EP.

## Expectation-propagation ABC

Barthelmé and Chopin, 2014

The big advantage of this technique is that no summary statistics are required.

## Possible drawbacks:

- To do the moment matching steps of EP-ABC it must be possible to simulate from $p\left(y_{i} \mid y_{o b s,<i}, \theta\right)$.
- We need an exponential family form (usually normal) for the approximation.
- EP is generally not guaranteed to converge.
- The EP optimization steps are done stochastically in EP-ABC and sophisticated variance reduction methods may be needed to ensure stability.


## Expectation-propagation ABC

 Barthelmé and Chopin, 2014The big advantage of this technique is that no summary statistics are required.

Possible drawbacks:

- To do the moment matching steps of EP-ABC it must be possible to simulate from $p\left(y_{i} \mid y_{\mathrm{obs},<i}, \theta\right)$.
- We need an exponential family form (usually normal) for the approximation.
- EP is generally not guaranteed to converge.
- The EP optimization steps are done stochastically in EP-ABC and sophisticated variance reduction methods may be needed to ensure stability.


## Expectation-propagation ABC

 Barthelmé and Chopin, 2014The big advantage of this technique is that no summary statistics are required.

Possible drawbacks:

- To do the moment matching steps of EP-ABC it must be possible to simulate from $p\left(y_{i} \mid y_{\mathrm{obs},<i}, \theta\right)$.
- We need an exponential family form (usually normal) for the approximation.
- EP is generally not guaranteed to converge.
- The EP optimization steps are done stochastically in EP-ABC and sophisticated variance reduction methods may be needed to ensure stability.


## Expectation-propagation ABC

 Barthelmé and Chopin, 2014The big advantage of this technique is that no summary statistics are required.

Possible drawbacks:

- To do the moment matching steps of EP-ABC it must be possible to simulate from $p\left(y_{i} \mid y_{\mathrm{obs},<i}, \theta\right)$.
- We need an exponential family form (usually normal) for the approximation.
- EP is generally not guaranteed to converge.
- The EP optimization steps are done stochastically in EP-ABC and sophisticated variance reduction methods may be needed to ensure stability.


## Expectation-propagation ABC

## Barthelmé and Chopin, 2014

The big advantage of this technique is that no summary statistics are required.

Possible drawbacks:

- To do the moment matching steps of EP-ABC it must be possible to simulate from $p\left(y_{i} \mid y_{\mathrm{obs},<i}, \theta\right)$.
- We need an exponential family form (usually normal) for the approximation.
- EP is generally not guaranteed to converge.
- The EP optimization steps are done stochastically in EP-ABC and sophisticated variance reduction methods may be needed to ensure stability.


## Neglected topics

- Theory (Frazier et al., 2018).
- ABC model choice (Marin et al., 2018).
- Methods for computationally expensive simulation models (Gutmann and Corander, 2016, Prangle, 2016, Holden et al., 2018).
- Regression based approaches based on mixtures, random forests, deep learning methods, kernels (Bonassi et al., 2011, Fan, Nott and Sisson, 2013, Marin et al., 2016, Jiang et al., 2017, Nakagone et al., 2013).
- Recent high-dimensional ABC methods based on marginal adjustments and copulas (Nott et al., 2014, Li et al., 2017).
- Software - for the examples in this talk l've used various R packages - abc (Csillery et al., 2012) abctools (Nunes and Prangle, 2015), EasyABC (Jabot et al., 2015), synlik (Fasiolo and Wood, 2014).


## Neglected topics

- Theory (Frazier et al., 2018).
- ABC model choice (Marin et al., 2018).
- Methods for computationally expensive simulation models (Gutmann and Corander, 2016, Prangle, 2016, Holden et al., 2018).
- Regression based approaches based on mixtures, random forests, deep learning methods, kernels (Bonassi et al., 2011, Fan, Nott and Sisson, 2013, Marin et al., 2016, Jiang et al., 2017, Nakagone et al., 2013).
- Recent high-dimensional ABC methods based on marginal adjustments and copulas (Nott et al., 2014, Li et al., 2017).
- Software - for the examples in this talk l've used various R packages - abc (Csillery et al., 2012) abctools (Nunes and Prangle, 2015), EasyABC (Jabot et al., 2015), synlik (Fasiolo and Wood, 2014).


## Neglected topics

- Theory (Frazier et al., 2018).
- ABC model choice (Marin et al., 2018).
- Methods for computationally expensive simulation models (Gutmann and Corander, 2016, Prangle, 2016, Holden et al., 2018).
- Regression based approaches based on mixtures, random forests, deep learning methods, kernels (Bonassi et al., 2011, Fan, Nott and Sisson, 2013, Marin et al., 2016, Jiang et al., 2017, Nakagone et al., 2013).
- Recent high-dimensional ABC methods based on marginal adjustments and copulas (Nott et al., 2014, Li et al., 2017).
- Software - for the examples in this talk l've used various R packages - abc (Csillery et al., 2012) abctools (Nunes and Prangle, 2015), EasyABC (Jabot et al., 2015), synlik (Fasiolo and Wood, 2014).


## Neglected topics

- Theory (Frazier et al., 2018).
- ABC model choice (Marin et al., 2018).
- Methods for computationally expensive simulation models (Gutmann and Corander, 2016, Prangle, 2016, Holden et al., 2018).
- Regression based approaches based on mixtures, random forests, deep learning methods, kernels (Bonassi et al., 2011, Fan, Nott and Sisson, 2013, Marin et al., 2016, Jiang et al., 2017, Nakagone et al., 2013).
> - Recent high-dimensional ABC methods based on marginal adjustments and copulas (Nott et al., 2014, Li et al., 2017).
> - Software - for the examnles in this talk l've used various R packages - abc (Csillery et al., 2012) abctools (Nunes and Prangle, 2015), EasyABC (Jabot et al., 2015), synlik (Fasiolo and Wood, 2014)


## Neglected topics

- Theory (Frazier et al., 2018).
- ABC model choice (Marin et al., 2018).
- Methods for computationally expensive simulation models (Gutmann and Corander, 2016, Prangle, 2016, Holden et al., 2018).
- Regression based approaches based on mixtures, random forests, deep learning methods, kernels (Bonassi et al., 2011, Fan, Nott and Sisson, 2013, Marin et al., 2016, Jiang et al., 2017, Nakagone et al., 2013).
- Recent high-dimensional ABC methods based on marginal adjustments and copulas (Nott et al., 2014, Li et al., 2017).
 and Wood, 2014)


## Neglected topics

- Theory (Frazier et al., 2018).
- ABC model choice (Marin et al., 2018).
- Methods for computationally expensive simulation models (Gutmann and Corander, 2016, Prangle, 2016, Holden et al., 2018).
- Regression based approaches based on mixtures, random forests, deep learning methods, kernels (Bonassi et al., 2011, Fan, Nott and Sisson, 2013, Marin et al., 2016, Jiang et al., 2017, Nakagone et al., 2013).
- Recent high-dimensional ABC methods based on marginal adjustments and copulas (Nott et al., 2014, Li et al., 2017).
- Software - for the examples in this talk l've used various R packages - abc (Csillery et al., 2012) abctools (Nunes and Prangle, 2015), EasyABC (Jabot et al., 2015), synlik (Fasiolo and Wood, 2014).


## Thank you


[^0]:    by the unbiasedness of $\hat{p}(y \mid \theta)$.

