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Introduc6on	
•  Un6l	recently	observa6on	error	correla6ons	(OECs)	have	been	neglected	

in	NWP.	
–  Difficult	to	es6mate	
–  Complicate	DA	algorithms	

•  However,	OECS	are	known	to	be	non-negligible	for	many	observa6on	
types-	arise	due	to	represen6vity	errors,	observa6on	operator	errors,	pre-
processing…	

•  However,	progress	is	being	made	in	es6ma6ng	OECs	(for	example	using	
observa6on	minus	model	sta6s6cs)	and	accoun6ng	for	them	in	the	
assimila6on	(e.g.	Campbell	et	al.	[2017],	Bormann	et	al.	[2016],	Weston	et	
al.	2014).	

•  This	paves	the	way	for	the	assimila6on	of	denser	observa6ons	
–  could	be	crucial	for	high	impact	small	scale	weather	



Introduc6on	
•  Ques6on:	

–  How	does	accoun6ng	explicitly	for	OECs	impact	the	assimila6on	of	the	
observa6ons?	

–  What	are	the	implica6ons	for	observa6on	network	design?	

Disclaimer:	
–  Assuming	observa6on	and	prior	uncertain6es	are	Gaussian,	known	and	

accounted	for	perfectly.	
–  Only	considering	spa6al	error	correla6ons.	



Examples	of	spa6al	observa6on	error	
correla6ons	

Es+mated	DRW	error	correla+ons,	from	Waller	
et	al.	2016,	MWR.	

Es+mated	AMV	error	
correla+ons,	from	Corborda	
et	al.	2017,	QJRMS.	

In	the	UKV	background	error	correla6on	length-
scales	for	winds	are	approximately	100km.	
DRW	are	currently	thinned	to	a	distance	of	6km	
and	AMVs	to	20km.	



OECs	and	informa6on	content	

<-	the	region	of	95%	probability	of	a	
Gaussian	PDF	with	covariance	matrix	
given	by		
I.  	I	(black	dashed	line)		

•  entropy	=	2.8379	
II.  [(1,	0.99)T,	(0.99,	1)T]	(solid	line).		

•  entropy	=	0.8794.		



Illustra6on	of	the	effect	of	
posi6ve	spa6ally	correlated	
observa6on	errors,	from	
Rainwater	et	al.	2015,	QJRMS.	
	



Bayes’	illustra6on	
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Direct observations Fowler	et	al.	2018,	QJRMS	



2-variable	illustra6ons	con6nued… 
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MI			

Prior	error	corr.	

Pa=(B-1+R-1)-1 

S=dxa/dy 
 

MI=ln(det(B(Pa)-1) 
     =-0.5ln(det(I-S)) 
 Where	B	and	R	are	the	prior	and	observa6on	error	covariance	matrices	respec6vely	



2-variable	illustra6ons	conclusions	
•  In	general	as	the	magnitude	of	the	OECs	increase	the	informa6on	in	the	

observa6ons	increases	too.		
•  However,	the	Impact	of	OECs	on	the	analysis	cannot	be	considered	in	

isola6on	of	prior	error	correla6ons.	
–  The	greater	the	difference	in	the	structures	of	prior	and	likelihood	

•  The	greater	the	reduc6on	in	analysis	error	variances	
•  The	greater	the	spread	in	informa6on	form	the	observa6ons	



Data	thinning	and	data	compression	

•  Observa6ons	with	posi6ve	OECs	have	more	small	scale	informa6on	than	
observa6ons	with	uncorrelated	error	=>	greater	benefit	to	having	a	denser	
observa6on	network		

•  Can	reduce	amount	of	data	by	compressing	observa6ons	such	that	the	
maximum	amount	of	informa6on	is	retained.	

•  Let	M=R-1/2HB1/2=UΛMVT 

•  Then		
•  Can	compress	the	observa6ons	using																												where	Ic…..	
•  Ordering	the	observa6ons	w.r.t	the	singular	values	of	M	allows	for	the	first	
pc	observa6ons	with	the	maximum	informa6on	to	be	selected	for	
assimila6on	



Isotropic,	homogenous	example	
•  Circulant	matrices	have	the	property	that	eigenvectors	are	given	by	the	

Fourier	basis,	F.	
•  Let	B=FΓFT, R=FΨFT and H=I (direct	observa6ons	of	the	state)	
•  Then	C=IcΨ-1/2FT 

•    

•  The	most	informa6ve	compressed	observa6ons	are	those	associated	with	
the	scales	at	which	the	prior	uncertainty	is	rela6vely	large	compared	to	
the	observa6on	uncertainty.	

•  The	reduc6on	in	the	analysis	error	variance	compared	to	the	prior	is	given	
by	



Isotropic,	homogenous	example…	
circular	grid	discre6sed	into	32	grid	points.	SOAR	correla6on	structure.	
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Observa6on	network	design	
Conclusions	

•  As	the	length-scales	in	the	observa6on	errors,	Lr,	increase	the	observa6ons	
become	more	informa6ve	about	the	small	scales.	

•  When	Lr>Lb,	the	observa6ons	are	more	certain	at	small	scale	than	the	prior	
and	so	the	benefit	of	denser	observa6ons	increases.	
–  Data	compression	can	be	used	to	help	reduce	the	amount	of	data	while	

retaining	the	small	scale	informa6on	(opposite	to	Super-obbing!)	
–  Assimila6ng	just	the	small-scale	informa6on	may	not	result	in	the	greatest	

reduc6on	in	analysis	error	
•  is	this	an	issue	for	nested	models?		
•  use	a	metric	which	focuses	on	accuracy	of	small	scales?	


