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Motivation

Weather (and climate models) have errors

As computational resources increase, models will get better owing
to better resolution of, e.g., dynamics

Other elements of weather forecasting cannot necessarily be
improved in this way, e.g. land surface models, cloud microphysics
schemes

We cannot rely on computation power to resolve microphysical
uncertainties
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Brief overview of microphysics 1/3

What is cloud microphysics?
The study of how hydrometeors
(some sort of watery thing in
the atmosphere, e.g. cloud
droplets, rain drops, snow, hail,
graupel, etc.) form, grow,
interact, precipitate.

These details strongly affect the
precipitation formed by cloud
systems, and feed back on
storm system thermodynamics
and dynamics.

Lin et al 1983
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Brief overview of microphysics 2/3

Basic goal of microphysics
Estimate the model-grid scale response to unknown microscale
interactions between individual hydrometeors (e.g. cloud droplets,
rain drops, snow, hail, etc.)

“Bulk” Microphysics
Model a complicated population of particle sizes via a statistical
distribution (e.g. a gamma or exponential distribution), and evolve
moments Mk of that distribution

Mk =

∫ Dmax

Dmin

DkN(D)dD

Usually one or two moments are prognostic (typically M3 and M0,
sometimes M6)
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Brief overview of microphysics 3/3

Uncertain distributions, uncertain processes
Figure out how these moments evolve through the physical
processes we expect, e.g. evaporation, collision-coalescence, drop
breakup. Use (limited) empirical, laboratory, theoretical, ad hoc,
evidence to calculate process rate formulae

dMk

dt
= F (M1,M2, . . .Mn, RH, T, P, turb)

Fixed assumptions, unquantified errors
The form of N(D) is typically fixed (e.g. exponential or
gamma distribution).
the form of dMk/dt = F (. . .) is typically fixed



Brief overview of microphysics 3/3

Uncertain distributions, uncertain processes
Figure out how these moments evolve through the physical
processes we expect, e.g. evaporation, collision-coalescence, drop
breakup. Use (limited) empirical, laboratory, theoretical, ad hoc,
evidence to calculate process rate formulae

dMk

dt
= F (M1,M2, . . .Mn, RH, T, P, turb)

Fixed assumptions, unquantified errors
The form of N(D) is typically fixed (e.g. exponential or
gamma distribution).
the form of dMk/dt = F (. . .) is typically fixed



Does microphysics uncertainty matter?

Zhu et al 2012
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Does microphysics uncertainty matter?

BREAK2. Between 5 and 7 h, the storm in BREAK2
loses its linear organization and becomes highly asym-
metric in the y direction, before reorganizing as a
contiguous line after ;7 h. While width and organiza-
tion are the most apparent differences in terms of overall
structure, other notable differences include relatively
weak low-level reflectivity in the stratiform region in

BREAK1 and higher reflectivity in BREAK2 and
BREAK3. While more efficient breakup in BREAK1
improves comparison of the DSD parameters (N0 and
D0) with disdrometer and radar compared to the other
simulations, it leads to an even greater low bias of low-
level reflectivity in the stratiform region compared to
radar (cf. Figs. 6a,c,e and 13).

FIG. 13. Horizontal cross section of reflectivity from the (a) BREAK1, (b) BREAK2, and (c) BREAK3
simulations at 8 h and interpolated to a height of 1.13 km.
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Does microphysics uncertainty matter?

Will “bin” schemes solve these problems?
Bin schemes resolve the size distribution, avoiding the approximtion
of an assumed size distribution form. However, process rates
remain uncertain, and other issues arise (e.g. numerical diffusion)



Does microphysics uncertainty matter?

and remote sensing data — particularly of the clouds
themselves. In this section we attempt to exploit this wealth
of data, although several factors conspire to make this more
challenging to do so, at least in a decisive way. Underlying all
of the challenges is the sampling issue. Our case-study is
based on the composite forcing, which means that the
behavior of the simulated clouds cannot a priori match any
particular day, but should fall within the range of observed
cases on similar days. However, similar days are relatively
infrequent, because the composite period falls in between the
intensive field operations, when aircraft data are more sparse.
The in situ measurements that are available are biased by a
flight strategy that sought to maximize penetrations of active
cumuli growing through the flight level. For instance, a
comparison between LES and airplane observations of the
RICO campaign by Heus et al. (2009) showed a discrep-
ancy in cloud cover, cloud (size-) distribution and in in-
cloud velocity; however the differences between models
and observations were demonstrated to mostly vanish if
the airplane’s bias towards larger clouds was taken into
account. Although these issues complicate efforts to make
decisive statements, the type of comparisons we are able to
make still represent a great step forward in studies of
cumulus convection.

A basic question is whether the simulated cloud cover is
consistent with what was observed. The median cloud
cover among the simulations, averaged over the last four
hours, is 0.19, which compares favorably with the value of
0.17 obtained through an analysis of lidar data (Nuijens et
al., 2009). This degree of correspondence is probably
fortuitous. Not only is there considerable scatter in cloud
cover among the simulations, cloud cover can vary by a

factor of two for any given model as a function of its
resolution and numerical methods (Matheou et al., 2010).
Likewise, observational estimates vary significantly, both as
a function of ones retrieval method and ones choice of
sensor (Zhao and Di Girolamo, 2007). These caveats aside,
the cloud cover is almost certainly between 0.1 and 0.3, and
given this range of uncertainty it appears to be well
represented by the simulations.

To compare the vertical profile of cloudiness with the
lidar data we define an effective cumulative cloud cover, at
some level using the algorithm of Neggers et al. (Overlap
statistics of cumuliform boundry-layer in large-eddy simu-
lations, submitted to Journal of Geophysical Research,
2011), which is derived from LES. However the grid-
spacing dependent length scale used to composite layers
was rescaled (by a factor of 0.6) in our application so that
it matched the lidar for surface based cloud-cover. The
rescaling was justified by the fact that their is some
arbitrariness in how one sets the reflectivity threshold in
the lidar, and hence the overall cloud cover (Nuijens et al.,
2009). Moreover, our motivation for reconstructing the
effective increment in cumulative cloud fraction, due to
clouds at different layers, was not meant as a test of the
reconstruction method, but rather the vertical distribution
of clouds by the simulations.

The effective cloud cover versus height, as defined by the
reconstruction, is presented in Fig. 7 alongside the cumu-
lative cloud cover as measured by the lidar. The agreement is
remarkable, suggesting that LES may adequately represent
the distribution of cloud top heights. The level of agreement
is even more surprising given that the observations com-
posite over more variability, hence the tendency for a few

Figure 6. Precipitation flux profile (upper-left); ‘bulk’ fall velocity (upper-right); histograms of surface rain rates as a function of intensity
(for last hour only, bottom right). In the rain-rate histograms the black lines denote the SPol data converted using either the TRMM
(solid) or RICO (dashed) reflectivity vs rain-rate relationship. Lines are otherwise colored following the degrees of freedom available for
the microphysical scheme, green for bin, blue for two moment and red for one moment schemes (note because of an output
diagnostic problem the UCLA-LES is not included in the ‘bulk’ fall velocity plot).

12 VanZanten et al.

JAMES Vol. 3 2011 www.agu.org/journals/ms/

van Zanten et al 2011

Spread between bin schemes is at least as great as between bulk
schemes!



Motivation

We suggest that improvement of microphysics is universally
complicated by three factors...

1. Basic understanding of microphysical processes
(collision-coalescence, etc.) is limited and incomplete (parametric
& structural errors)

2. No clear way to use (ample!) observations to improve current
microphysics schemes owing to inflexible/fixed structure (structural
errors)

3. Historically, (virtually) no attempt at quantifying scheme
uncertaintis despite the fact that they are rife w/ uncertainty!

These are issues across all existing microphysics schemes (bin, bulk,
Lagrangian, etc.)
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A focused Bayesian approach

We propose a methodology for improving microphysics:

1 Focus on microphysical processes (i.e. rather than atmospheric
composition)

2 Use observations that we expect have information content
relevant to those physical processes

3 Pose the problem in a probabilistic (i.e. Bayesian) framework
where uncertainties in all quantities (observations,
microphysical parameters) are explicitly quantified

Bayes’ theorem

P (x|y,M) =
P (x|M) · P (y|x,M)

P (y|M)
(1)
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Bayesian Parameter Estimation

Fundamental question: what is the most probable set of parameter
values, given the information (theoretical, empirical, expert guess,
etc.) available? The combination of information can be. . .

Expressed probabilistically
What is the probability of some parameter value x given some new
information (data) y, or . . .P (x|y)

Bayes’ theorem

P (x|y,M) =
P (x|M) · P (y|x,M)

P (y|M)
(2)

P (x|M) – prior PDF of control parameters
P (y|x,M) – likelihood of observations given parameter values
All probabilities are conditional on the choice of model M !
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Markov chain Monte-Carlo (MCMC)

MCMC probabilistically samples the parameter space:
Use a modified random walk (a Markov chain) to sample the
parameter space

Random walk can be Gaussian or uniform (or anything else)
Each new sample depends only on the previous sample
(Markovian property).
Each new sample is accepted or rejected depending on
probabilities of prior/proposal:

The density of samples matches P (x|y,M)
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Practical issues with MCMC

No efficient way to
parallelize

Assessing convergence can
be tricky
Requires zillions of samples
(model integrations!)

Relies on accurate prior and
observational uncertainty
Assumes that the parameters
of interest are the main
source of uncertainty

The Bottom Line:
MCMC methods are great for tricky (strongly nonlinear,
multimodal, ill-posed) parameter estimation problems where model
integration is relatively cheap. Even then, they require care and
expert guidance (model/observation).
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Estimating Ice Microphysics Parameters

the earlier period. Below the height of the embedded
liquid-cloud layers (1.4–1.5 km; Figs. 8a,b), the X-SAPR
ZH structure is mostly horizontally uniform, increasing
with decreasing altitude at lower altitudes. The ZDR

attains maximum values of up to 7 dB near the echo top
(Fig. 9b), similar to the earlier period, but decreases
toward the surface. This altitude variation is captured in
the composite ZDR profiles (Fig. 9c). The mean ZDR at
and just below the lowest liquid-cloud layer (1.2–1.4 km,
denoted by arrow 3 in Fig. 8a) is ;6 dB for elevation
angles less than 108 (greater than 1708) but decreases to
;5 dB at 0.9–1.1 km, ;3 dB at 0.5–0.7 km, and ;2.5 dB
at 0.1–0.3 km. The coexisting decrease in ZDR and

increase inZH going toward the surface below the liquid-
cloud layers is consistent with the process of aggregation
of ice crystals (Hall et al. 1984; Ryzhkov and Zrnić 1998;
Kennedy and Rutledge 2011; Andrić et al. 2013; Bechini
et al. 2013; Schrom et al. 2015). Figure 7 reveals that this
change in the ZH and ZDR profiles occurred around
1700 UTC, when the reflectivity above the liquid-cloud
layers (1.4–1.5km) increased (also see Fig. 8c; 1830–
1850 UTC). Although it is difficult to discern the exact
cause of this ZH increase, it appears that a higher-level
cloud advected over the radar site. The general pattern of
ZH and ZDR profiles persisted until 1900 UTC, shortly
after the small feature at 1.7 km disappeared.
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FIG. 7. Time-vs-height cross sections of the X-SAPR (a) ZH and (b) ZDR on 2 May 2013. Each profile represents
the mean values of all points with elevation angles of 148–158 (1658–1668) in 50-m height increments from three
HRHI scans (azimuth angles of 78, 528, and 978) every approximately 5min. The horizontal gray lines and black dots
respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.
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Estimating Ice Microphysics Parameters

the earlier period. Below the height of the embedded
liquid-cloud layers (1.4–1.5 km; Figs. 8a,b), the X-SAPR
ZH structure is mostly horizontally uniform, increasing
with decreasing altitude at lower altitudes. The ZDR

attains maximum values of up to 7 dB near the echo top
(Fig. 9b), similar to the earlier period, but decreases
toward the surface. This altitude variation is captured in
the composite ZDR profiles (Fig. 9c). The mean ZDR at
and just below the lowest liquid-cloud layer (1.2–1.4 km,
denoted by arrow 3 in Fig. 8a) is ;6 dB for elevation
angles less than 108 (greater than 1708) but decreases to
;5 dB at 0.9–1.1 km, ;3 dB at 0.5–0.7 km, and ;2.5 dB
at 0.1–0.3 km. The coexisting decrease in ZDR and

increase inZH going toward the surface below the liquid-
cloud layers is consistent with the process of aggregation
of ice crystals (Hall et al. 1984; Ryzhkov and Zrnić 1998;
Kennedy and Rutledge 2011; Andrić et al. 2013; Bechini
et al. 2013; Schrom et al. 2015). Figure 7 reveals that this
change in the ZH and ZDR profiles occurred around
1700 UTC, when the reflectivity above the liquid-cloud
layers (1.4–1.5km) increased (also see Fig. 8c; 1830–
1850 UTC). Although it is difficult to discern the exact
cause of this ZH increase, it appears that a higher-level
cloud advected over the radar site. The general pattern of
ZH and ZDR profiles persisted until 1900 UTC, shortly
after the small feature at 1.7 km disappeared.
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HRHI scans (azimuth angles of 78, 528, and 978) every approximately 5min. The horizontal gray lines and black dots
respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.
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Estimating Ice Microphysics Parameters

the earlier period. Below the height of the embedded
liquid-cloud layers (1.4–1.5 km; Figs. 8a,b), the X-SAPR
ZH structure is mostly horizontally uniform, increasing
with decreasing altitude at lower altitudes. The ZDR

attains maximum values of up to 7 dB near the echo top
(Fig. 9b), similar to the earlier period, but decreases
toward the surface. This altitude variation is captured in
the composite ZDR profiles (Fig. 9c). The mean ZDR at
and just below the lowest liquid-cloud layer (1.2–1.4 km,
denoted by arrow 3 in Fig. 8a) is ;6 dB for elevation
angles less than 108 (greater than 1708) but decreases to
;5 dB at 0.9–1.1 km, ;3 dB at 0.5–0.7 km, and ;2.5 dB
at 0.1–0.3 km. The coexisting decrease in ZDR and

increase inZH going toward the surface below the liquid-
cloud layers is consistent with the process of aggregation
of ice crystals (Hall et al. 1984; Ryzhkov and Zrnić 1998;
Kennedy and Rutledge 2011; Andrić et al. 2013; Bechini
et al. 2013; Schrom et al. 2015). Figure 7 reveals that this
change in the ZH and ZDR profiles occurred around
1700 UTC, when the reflectivity above the liquid-cloud
layers (1.4–1.5km) increased (also see Fig. 8c; 1830–
1850 UTC). Although it is difficult to discern the exact
cause of this ZH increase, it appears that a higher-level
cloud advected over the radar site. The general pattern of
ZH and ZDR profiles persisted until 1900 UTC, shortly
after the small feature at 1.7 km disappeared.
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HRHI scans (azimuth angles of 78, 528, and 978) every approximately 5min. The horizontal gray lines and black dots
respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.
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Estimating Ice Microphysics Parameters

the earlier period. Below the height of the embedded
liquid-cloud layers (1.4–1.5 km; Figs. 8a,b), the X-SAPR
ZH structure is mostly horizontally uniform, increasing
with decreasing altitude at lower altitudes. The ZDR

attains maximum values of up to 7 dB near the echo top
(Fig. 9b), similar to the earlier period, but decreases
toward the surface. This altitude variation is captured in
the composite ZDR profiles (Fig. 9c). The mean ZDR at
and just below the lowest liquid-cloud layer (1.2–1.4 km,
denoted by arrow 3 in Fig. 8a) is ;6 dB for elevation
angles less than 108 (greater than 1708) but decreases to
;5 dB at 0.9–1.1 km, ;3 dB at 0.5–0.7 km, and ;2.5 dB
at 0.1–0.3 km. The coexisting decrease in ZDR and

increase inZH going toward the surface below the liquid-
cloud layers is consistent with the process of aggregation
of ice crystals (Hall et al. 1984; Ryzhkov and Zrnić 1998;
Kennedy and Rutledge 2011; Andrić et al. 2013; Bechini
et al. 2013; Schrom et al. 2015). Figure 7 reveals that this
change in the ZH and ZDR profiles occurred around
1700 UTC, when the reflectivity above the liquid-cloud
layers (1.4–1.5km) increased (also see Fig. 8c; 1830–
1850 UTC). Although it is difficult to discern the exact
cause of this ZH increase, it appears that a higher-level
cloud advected over the radar site. The general pattern of
ZH and ZDR profiles persisted until 1900 UTC, shortly
after the small feature at 1.7 km disappeared.
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HRHI scans (azimuth angles of 78, 528, and 978) every approximately 5min. The horizontal gray lines and black dots
respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.
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the earlier period. Below the height of the embedded
liquid-cloud layers (1.4–1.5 km; Figs. 8a,b), the X-SAPR
ZH structure is mostly horizontally uniform, increasing
with decreasing altitude at lower altitudes. The ZDR

attains maximum values of up to 7 dB near the echo top
(Fig. 9b), similar to the earlier period, but decreases
toward the surface. This altitude variation is captured in
the composite ZDR profiles (Fig. 9c). The mean ZDR at
and just below the lowest liquid-cloud layer (1.2–1.4 km,
denoted by arrow 3 in Fig. 8a) is ;6 dB for elevation
angles less than 108 (greater than 1708) but decreases to
;5 dB at 0.9–1.1 km, ;3 dB at 0.5–0.7 km, and ;2.5 dB
at 0.1–0.3 km. The coexisting decrease in ZDR and

increase inZH going toward the surface below the liquid-
cloud layers is consistent with the process of aggregation
of ice crystals (Hall et al. 1984; Ryzhkov and Zrnić 1998;
Kennedy and Rutledge 2011; Andrić et al. 2013; Bechini
et al. 2013; Schrom et al. 2015). Figure 7 reveals that this
change in the ZH and ZDR profiles occurred around
1700 UTC, when the reflectivity above the liquid-cloud
layers (1.4–1.5km) increased (also see Fig. 8c; 1830–
1850 UTC). Although it is difficult to discern the exact
cause of this ZH increase, it appears that a higher-level
cloud advected over the radar site. The general pattern of
ZH and ZDR profiles persisted until 1900 UTC, shortly
after the small feature at 1.7 km disappeared.
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respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.
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Estimating Ice Microphysics Parameters

Profiles drawn from timeseries, classified by (assumed) dominant
growth processs

mean profiles of ZH, ZDR, KDP, and rHV through areas
where the ZH and ZDR profiles are consistent with the
time-evolving structures revealed in Figs. 7 and 14. These
meanprofiles (Fig. 17) come fromblocks in a singleHRHI
for each case. Averages were calculated in 100-m altitude
increments from values with elevation angles ,208
or.1608. Because ZH in the HRHI of the aggregate case
is mostly horizontally uniform, the block placement is not
critical (Figs. 9a,b), but the HRHIs of the dendrite and
riming cases exhibit some inhomogeneities that must
be considered. For the pristine dendrite case, we se-
lected two regions with lower ZH and higher ZDR

(Figs. 6a,b), and for the rimed dendrite case, we followed
one of the larger-scale structures from the cloud top to
the surface (Figs. 13a,b). Because the X-SAPR is less
sensitive than the KAZR, it frequently failed to detect
the seeder clouds. Therefore, we also constructed mean
profiles of the KAZR reflectivity and Doppler velocity
for the three cases (Figs. 18a,b). Finally, we also present
the HSRL linear depolarization and backscatter pro-
files (Figs. 18c,d). The selection of KAZR and HSRL
averaging periods for each case followed the arguments
presented for the HRHI blocks. Profiles for the pristine
dendrite case were calculated for a period of weak
reflectivity (Fig. 5c), for the rimed dendrite case
following a precipitation streak (Fig. 12c) and for the
aggregate case around the time of the photographs
(Fig. 8a). Note that we named each profile according to
the type of ice particles observed at the surface.

The X-SAPR and KAZR mean reflectivity profiles
have the same general characteristics (Figs. 17a, 18a), but
the KAZR indicate cloud-top reflectivities of 230dBZ
about 200–300m higher than the X-SAPR in all the cases,
because the X-SAPR sensitivity (sensitivity ;238dB at
1km) is lower than the KAZR (sensitivity ;245dB at
1km). The mean Doppler velocities near the ground
support our differentiation between the cases as pristine
dendrites, rimed dendrites, and aggregates of dendrites.
The mean Doppler velocities for each case correspond to
particle fall speeds of ‘‘unrimed dendrites’’ and ‘‘densely
rimed dendrites’’ [underlying crystal structure visible
(from Locatelli and Hobbs 1974)] and ‘‘early snowflakes’’
(from Kajikawa 1989), respectively.
We use the mean KAZR reflectivities just above the

tops of the liquid-cloud layers to quantify the seeder-
cloud precipitation because of the KAZR’s greater sen-
sitivity. Figure 18a reveals systematic differences in the
seeder-cloud layers between the three cases, with the
pristine dendrite case having the lowest reflectivities
(;225dBZ), the aggregate case higher (;212dBZ),
and the riming case the highest (;29dBZ). Reflectivities
in the liquid-cloud layers exceed the X-SAPR ZH mini-
mum values, allowing us to use theX-SAPRvalues in and
below these layers. The mean ZDR values in the upper
liquid-cloud layers are similar for the three cases (.6dB;
Fig. 17b). Figures 5 and 12 show ZDR values above the
upper-level liquid-cloud layers exceeding 8dB for all
three cases. These ZDR values and the seeder-cloud

FIG. 17. Vertical profiles of averaged (a) ZH, (b) ZDR, (c) KDP, and (d) rHV from the X-SAPR HRHIs, during which the pristine
dendrites (blue line), aggregates (red line), and rimed dendrites (green line) were observed at the ground. The averaging areas are
presented in Figs. 6, 9, and 13. Averages were calculated in 100-m altitude increments from all values with elevation angles,208 or.1608.
The total number of samples in each profile exceeds 1900. Error bars represent standard deviations. Gray shading represents layers
between ceilometer-measured cloud base and topmost liquid-cloud top.

418 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 55



Estimating Ice Microphysics Parameters

Polarimetric and profiling radars
provide constraint on (2 out of 3)
ice growth parameters

Covariance in the parameter
PDFs indicates compensating
effects of joint perturbation



Estimating Ice Microphysics Parameters

Polarimetric and profiling radars
provide constraint on (2 out of 3)
ice growth parameters

Covariance in the parameter
PDFs indicates compensating
effects of joint perturbation



Estimating Ice Microphysics Parameters

Polarimetric and profiling radars
provide constraint on (2 out of 3)
ice growth parameters

Covariance in the parameter
PDFs indicates compensating
effects of joint perturbation



More Ice Microphysics: Aggregation

In situ (2DC & HVPS)

Observations: MC3E Profiling radars, in situ

NOAA S-band profiler: 
• Pros: unattenuated, Rayleigh scattering 
• Cons: large beamwidth, which results in 

dynamically broadened Doppler spectra 
!
!
Ka-band ARM Zenith Radar (KAZR) 
• Pros: Narrow beamwidth, high sensitivity 
• Cons: Attenuated through rain, non-

Rayleigh scattering for larger 
hydrometeors 
!

In situ probes (2D-C, HVPS3) 
• Pros: Single particle 2D information 

(size/area), PSD 
• Cons: Uncertainties with mass 

estimation, no CPI on 5/20/2011

20 May 2011, SGP, Trailing Stratiform MCS
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Still some critical outstanding issues

Our uncertainty in
microphysical processes
should be thought of as a
PDF existing in the space
of all possible functions
and all relevant
microphysical
variables/parameters and
each current scheme is one
point in this space



Progress in representing structural uncertainty

Typically, microphysical modelers have not considered systematic
variations in microphysics scheme structure to constrain structural
uncertainty — most tuning of parameters has been done ad hoc
(i.e. not probabilistically)
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A notable attempt at addressing these uncertainties comes from the
ensemble forecast community because they have independently
identified structural physics uncertainty as an outstanding need

Perturbed parameter ensembles (parametric uncertainty)
Multi-physics ensembles (limited structural uncertainty)
SPPT: Stochastic Perturbed Physics Tendencies (less limited
structural uncertainty)

The forecasting community has engineered an approach to
addressing structural physics uncertainty. There may be benefits to
engaging the microphysics community to robustly estimate
parameteric and structural uncertainties using observations
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No assumed Drop Size Distribution (DSD) functional form — only
moments are specified

Flexible process-rate formulation with scalable complexity, and
uncertainty residing in tunable parameters (e.g. series of power
laws)

Very few ad-hoc parameter choices and assumptions — constraint
should come from observations

Structural complexity that can be added/subtracted as needed as
required by comparison to observations
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BOSS vs. Traditional Microphysics Schemes

Traditional bulk schemes

Predict evolution of rain,
cloud DSD moments
Mk =

∫
DkN(D)dD

Assume DSD fits some
parameterized form (e.g.
exponential), and some
functional form for process
rates (e.g. evaporation,
droplet coalescence/breakup)

DSD form and process rates
determined empirically,
theoretically, or ad hoc

BOSS

Predict evolution of rain, cloud DSD
moments
Mk =

∫
DkN(D)dD

Microphysical processes rates are
parameterized as power laws.
dMp1

dt ≈
F (T, p, q)

∑
j aj(M
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Power law parameters are
constrained by comparison to
observations in Bayesian inference
framework (e.g. using Markov Chain
Monte Carlo samplers)
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Structural Complexity in BOSS

Structural complexity can be added in two ways:

Prognostic variables
BOSS can evolve any
prognostic moments of the
size distribution
M3 (mixing ratio) is a typical
choice because of mass
conservation and invariance
with coalescence/breakup
Other moments can be
chosen to maximize
information content of
observations

Power law terms
dMp1

dt ≈
F (T, p, q)

∑
j aj(M

b1,j
p1 M

b2,j
p2 M

b3,j
p3 . . .)

Can add power law terms to
model more complex
responses (i.e. j=1,2,. . . )
Ideally, there should be a
way to balance model
accuracy and parsimony



BOSS Experimental Design
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Moment-based Polarimetric Radar Fwd. Op.

Kumjian et al, (in preparation)



Ideal constraint vs. radar constraint

Parameter PDF for 2-moment (M0M3) version of BOSS

Constraint by idealized “obs” of
prognostic moments (M0,M3)

Constraint by forward-simulated
profiles of ZH , ZDR, and KDP



BOSS Conclusions

BOSS can be set up with varying degrees of structural complexity

Both idealized observations (of prognostic variables) and simulated
forward-simulated polarimetric radar observations provide constraint
on BOSS parameters

Adding complexity via observed additional prognostic moments
improves prediction of all prognostic moments

There is still need for a systematic (i.e. probabilistic) quantification
of structural uncertainty in BOSS
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A Retrieval example

Problem:
Retrieve cloud and rain
properties using
vertically-pointing radar
Doppler spectrum

Approach: estimate
parameters of two modified
gamma drop-size
distributions (cloud, rain)
with constraint in Doppler
spectral moment-space
Structural error: what is the
error associated with our
model assumption (2-mode
gamma)?

Addressing Structural Error:

Solution: Fit to complicated
DSD (from bin models or in
situ obs) in the DSD-space
Analyze errors associated
with doing this fit in the
space of the observable
quantities
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Cloud Property Retrieval using Radar



Cloud Property Retrieval using Radar

Distribution of radar variable errors associated with the assumption
of a 2-mode gamma in our retrieval
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Radar variable relative biases associated with fit to a 2-mode gamma DSD



The end

A new approach to microphysics
We hope that others will share our enthusiasm and optimism for a
statistical approach to addressing uncertainties in microphysics
parameterization schemes!

We need help!
We solicit collaboration to resolve roadblocks to addressing
structural and parametric uncertainties (e.g. statistical model
selection, quantificaiton of obs. uncertainty)
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Surrogate techniques

What if the model is still too expensive, and you can only afford to
run it 1000, 500, or 100 times?

Emulate the response of
some model to perturbation
of parameters by nonlinear
regression
Perform parameter
estimation or sensitivity
analysis or UQ on the
(cheap!) surrogate model
rather than the full model
Choices: Gaussian Process
Models, Polynomial Chaos
Expansion, etc.

This method will be applied to
determine if the PDF of
parameters in the NASA GISS
ModelE GCM is multimodel, i.e.
has multiple valid solutions that
may exhibit different climate
sensitivities (PI: Greg Elsaesser)
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What is the likelihood?

P (x|y) =
P (x) · P (y|x)

P (y)
(3)

Assuming Gaussian error in our observations, the likelihood is:

P (y|x) = e−Φxy , (4)

Φxy =
1

2
(f(x)− y)TC−1(f(x)− y) (5)

f(x) is result of propagating the control parameters x through the
forward model f .
y is the (true) observational vector.
C is the observation error covariance matrix.
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Practical issues with MCMC: Proposal issues 1

Poorly tuned proposal distribution
can cause problems. Also, bad
choice of start position can be
problematic.

A: Good proposal variance
B: Proposal variance small,
started far from large PDF
values
C: same as B, started within
region of large PDF values
D: Same as B, adaptive
proposal variance
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Fig. 2. Scatter plots of (a) 20,000 samples from an MCMC chain with a well tuned proposal,
(b), (c), and (d) 1,000 samples from three test MCMC chains. In (b), the proposal variance
is too small, and the chain is started far from the posterior mode. In (c), the proposal
variance is too small, but the chain is started near the posterior mode. In (d), the chain is
started at a point far from the posterior mode, and with proposal variance that is initially
too small. However, the proposal variance is allowed to vary according to the characteristics
of the sample during the first 1000 iterations.
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Practical issues with MCMC: Proposal issues 2

Time series of chain can show problematic autocorrelation due to
poorly chosen proposal and/or non-covergent sample.
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Fig. 1. Timeseries plots of parameter values in MCMC chains with (a) well tuned proposal,
(b) proposal variance that is too large, (c) proposal variance that is too small, and (d)
proposal variance that is too small and a chain that is started far from the mode of the
target distribution. The dashed horizontal line corresponds to the true parameter maximum
likelihood value (= 0.5), and the marginal distribution of each parameter is plotted in gray
along the ordinate axis of each plot on the right hand side. For reference, each marginal
distribution is overlaid with a black line depicting the distribution obtained by sampling
with the well-tuned proposal (a).
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Practical issues with MCMC: Proposal issues 3

How does one construct a good
proposal?

Prior knowledge
“Burn-in” phase where
proposal is actively tuned
Adaptive Metropolis
(proposal variance constantly
tuned)
Delayed Rejection (2nd
proposal after 1st)

How does one avoid bad start
position?

Prior knowledge
Run many chains with
random start positions
Run simulated annealing
“pre-sampler”
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Practical issues with MCMC: Asessing
convergence 1

When do we stop our chain? How do we tell if we’ve converged to
the target PDF?

If the target distribution is
known, compare
Assess convergence of
running statistical moments
Kolmogorov-Smirnov test on
chain sub-samples
R-statistic – Gelman et al.
[1996]
Caveat: beware of
‘pseudo-convergence’ !

110 Philippe and Robert

leading to

!1
T =

T −1∑

t=1

(
x [t+1] − x [t]) f

(
x [t]) (11)

as an “estimator of 1”. In this special case, !1
T thus works as

a control variate in the sense that it must converge to 1 for the
chain to converge. The important feature of (11) is, however, that
it provides us with an “on-line” evaluation of the probability
of the region yet unexplored by the chain and is thus a clear
convergence diagnostic for stationarity issues.

Example 4. Consider the case of a bivariate normal mixture,

(X, Y ) ∼ pN2(µ, ") + (1 − p)N2(ν, "′), (12)

where µ = (µ1, µ2), ν = (ν1, ν2) ∈ R2 and the covariance matri-
ces are

" =
(

a c

c b

)
, "′ =

(
a′ c′

c′ b′

)
.

In this case, the conditional distributions are also normal mix-
tures,

X | y ∼ ωyN
(

µ1 + (y − µ2)c
b

,
det "

b

)

Fig. 5. (top) Histogram of the Markov chain after 4000, 6000 and 10,000 iterations (middle) Path of the Markov chain for the first coordi-
nate x (bottom) Control curves for the bivariate mixture model, for the parameters µ = (0, 0), ν = (15, 15), p = 0.5, " = " ′ = ( 3 1

1 3
)

(Continued on next page).

+ (1 − ωy)N
(

ν1 + (y − ν2)c′

b′ ,
det "′

b′

)

Y | x ∼ ωxN
(

µ2 + (x − µ1)c
a

,
det "

a

)

+ (1 − ωx )N
(

ν2 + (y − ν1)c′

a′ ,
det "′

a′

)
,

where

ωx = p−1/2 exp(−(x − µ1)2/(2a))

pa−1/2 exp(−(x − µ1)2/(2a)) + pa′−1/2 exp(−(y − ν1)2/(2a′))

ωy = pb−1/2 exp(−(y − µ2)2/(2b))

pb−1/2 exp(−(y − µ2)2/(2b)) + pb′−1/2 exp(−(y − ν2)2/(2b′))
.

They thus provide a straightforward Gibbs sampler, while the
marginal distributions of X and Y are again normal mixtures,

X ∼ pN (µ1, a) + (1 − p)N (ν1, a′)

Y ∼ pN (µ2, b) + (1 − p)N (ν2, b′).

It is easy to see that, when both components of the normal
mixture (12) are far apart, the Gibbs sampler may take a large
number of iterations to jump from one component to the other.
This feature is thus ideal to study the properties of the conver-
gence diagnostic (11). As shown by Fig. 5, for the numerical val-
ues µ = (0, 0), ν = (15, 15), p = 0.5, " = "′ = ( 3 1

1 3 ), the chain



Practical issues with MCMC: Asessing
convergence 2

R-Statistic – Gelman et al. [1996]
General idea:

Run many chains
Compute variance within
each chain (W)
Compute mean of each chain
Compare mean of
within-chain variances with
variance of all chain means
(B)

ˆvar+(x|y) =
n− 1

n
W +

1

n
B

(6)

R̂ =

√
ˆvar+(x|y)

W
(7)



Summary

Monte Carlo methods can solve tough inference problems
using random numbers

Much cheaper than complete enumeration, especially as
dimensions increase
Robust, make no assumptions of model linearity or PDF
Gaussianity
Require many model integrations
Often do not parallelize well
For more info see:

Tarantola [2005]
MacKay [2005]
Robert and Casella
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Simulated Annealing 1

For optimization problems, we can modify a MCMC sampler to
more efficiently find high-probability regions of the parameter space.

Perform MCMC walk, similarly to
Metropolis sampling
Scale the transition probability by a
“temperature” which decreases with
sample size.
This allows for bold transitions
when the sampler is “hot” and more
conservative transitions when the
sampler is “cold”
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For optimization problems, we can modify a MCMC sampler to
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For example. . .

PSA = P
1
T

Ti =
200

log(i + 1)



Simulated Annealing 2
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Gibbs Sampling

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 | x(t)
2 )

x(t)

(c)
x1

x2

P (x2 | x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

What if you can sample from
the conditional distribution?
Take turns sampling from
conditionals of each
dimension
Acceptance ratio = 1
(always!)
Freely available software
(BUGS) - Bayesian inference
Using Gibbs Sampling

Figure from MacKay [2005]



Other Monte Carlo topics

Hamiltonian (hybrid) MCMC and No U-Turn Sampler
Affine-invariant MCMC (The MCMC Hammer)
Importance sampling
Slice sampler
Perfect sampler
Nested (& multimodal nested sampling)
MC methods for model comparison (estimation of ‘evidence’)
Particle filter
Ensemble Kalman Filter



Cloud Property Retrieval using Radar
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