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Weather (and climate models) have errors

As computational resources increase, models will get better owing
to better resolution of, e.g., dynamics

Other elements of weather forecasting cannot necessarily be
improved in this way, e.g. land surface models, cloud microphysics
schemes

We cannot rely on computation power to resolve microphysical
uncertainties



Brief overview of microphysics 1/3

What is cloud microphysics?

@ The study of how hydrometeors
(some sort of watery thing in
the atmosphere, e.g. cloud
droplets, rain drops, snow, hail,
graupel, etc.) form, grow,
interact, precipitate.
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Basic goal of microphysics

Estimate the model-grid scale response to unknown microscale

interactions between individual hydrometeors (e.g. cloud droplets,
rain drops, snow, hail, etc.)
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Basic goal of microphysics

Estimate the model-grid scale response to unknown microscale
interactions between individual hydrometeors (e.g. cloud droplets,
rain drops, snow, hail, etc.)

“Bulk” Microphysics
Model a complicated population of particle sizes via a statistical

distribution (e.g. a gamma or exponential distribution), and evolve
moments M, of that distribution

DTV‘L(LIL‘
My, = / DEN(D)dD
Dmin

Usually one or two moments are prognostic (typically Ms and M,
sometimes Mg)



Uncertain distributions, uncertain processes

Figure out how these moments evolve through the physical
processes we expect, e.g. evaporation, collision-coalescence, drop
breakup. Use (limited) empirical, laboratory, theoretical, ad hoc,
evidence to calculate process rate formulae

dM;,

—t = F(My, Ma,... My, RH, T, P, turb)



Uncertain distributions, uncertain processes

Figure out how these moments evolve through the physical
processes we expect, e.g. evaporation, collision-coalescence, drop
breakup. Use (limited) empirical, laboratory, theoretical, ad hoc,
evidence to calculate process rate formulae

dM,
Wk - F(M17M27...Mn,RH,T,P,tUI'b)

Fixed assumptions, unquantified errors

@ The form of N(D) is typically fixed (e.g. exponential or
gamma distribution).

@ the form of dMj./dt = F(...) is typically fixed



Does microphysics uncertainty matt
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Figure 11. Vertical profiles of (a) cloud water, (b) rain water, (¢) ice, (d) snow, (¢) graupel, and (f) sum
of Solid phase hydrometeor mixing ratios over the pentagonal area averaged over the period from 12 UTC
January 23 to 12 UTC January 24. The CRM results are from seven baseline runs over the same period.
‘The standard deviations of CRM results are indicated by the yellow shades.

Zhu et al 2012
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Does microphysics uncertainty matt
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Will “bin" schemes solve these problems?

Bin schemes resolve the size distribution, avoiding the approximtion
of an assumed size distribution form. However, process rates
remain uncertain, and other issues arise (e.g. numerical diffusion)

H P e "o, [0 o
Bin (explicit) | Bulk
Size distribution I Size distribution
discretized |nto assumed to follow
bins \ functional form
Log N'( IIIIII Log N'(D)
Il-

Diameter (D Diameter (D)



Does microphysics uncertainty matt

Bin Models

1-Moment Models
DHARMA

2-Moment Models
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van Zanten et al 2011
schemes!

Spread between bin schemes is at least as great as between bulk
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We suggest that improvement of microphysics is universally
complicated by three factors...

1. Basic understanding of microphysical processes
(collision-coalescence, etc.) is limited and incomplete (parametric
& structural errors)

2. No clear way to use (ample!) observations to improve current
microphysics schemes owing to inflexible/fixed structure (structural
errors)

3. Historically, (virtually) no attempt at quantifying scheme
uncertaintis despite the fact that they are rife w/ uncertainty!

These are issues across all existing microphysics schemes (bin, bulk,
Lagrangian, etc.)
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Focus on microphysical processes (i.e. rather than atmospheric
composition)

Use observations that we expect have information content
relevant to those physical processes

Pose the problem in a probabilistic (i.e. Bayesian) framework
where uncertainties in all quantities (observations,
microphysical parameters) are explicitly quantified



We propose a methodology for improving microphysics:
© Focus on microphysical processes (i.e. rather than atmospheric
composition)
@ Use observations that we expect have information content
relevant to those physical processes

© Pose the problem in a probabilistic (i.e. Bayesian) framework
where uncertainties in all quantities (observations,
microphysical parameters) are explicitly quantified

Bayes' theorem
P(x|M) - P(y|x, M)

PO A =)
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Fundamental question: what is the most probable set of parameter
values, given the information (theoretical, empirical, expert guess,
etc.) available? The combination of information can be. ..

Expressed probabilistically

What is the probability of some parameter value x given some new
information (data) y, or ... P(x|y)

Bayes' theorem

Plxly. A = LD e )

@ P(x|M) — prior PDF of control parameters
e P(y|x, M) — likelihood of observations given parameter values

o All probabilities are conditional on the choice of model M!



Markov chain Monte-Carlo (MCM

MCMC probabilistically samples the parameter space:

@ Use a modified random walk (a Markov chain) to sample the
parameter space
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MCMC probabilistically samples the parameter space:

e Use a modified random walk (a Markov chain) to sample the
parameter space

e Random walk can be Gaussian or uniform (or anything else)

@ Each new sample depends only on the previous sample
(Markovian property).

o Each new sample is accepted or rejected depending on
probabilities of prior/proposal:

P (Xprop|Xprior) = min|[1, P(Xprop)/ P(Xprior)]

The density of samples matches P(x|y, M)



Practical issues with MCM.C

@ No efficient way to
parallelize
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@ No efficient way to @ Relies on accurate prior and

parallelize observational uncertainty
@ Assessing convergence can @ Assumes that the parameters
be tricky of interest are the main

@ Requires zillions of samples source of uncertainty

(model integrations!)

The Bottom Line:

MCMC methods are great for tricky (strongly nonlinear,
multimodal, ill-posed) parameter estimation problems where model
integration is relatively cheap. Even then, they require care and
expert guidance (model/observation).



Estimating Ice Micropﬁ s
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FIG. 7. Time-vs-height cross sections of the X-SAPR (a) Z; and (b) Zpg on 2 May 2013 Each profle represents
the mean values of all points with elevation angles of 14-15° (165°-166°) in 50-m height increments from three
HRHI scans (azimuth angles of 7°, 52°, and 97" . Th black dots
respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.
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Precipitating cold Arctic
clouds (obs analysis: Oue
et al JAMC 2016)
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FIG. 7. Time-vs-height cross sections of the X-SAPR (a) Z; and (b) Zpg on 2 May 2013 Each profle represents
the mean values of all points with elevation angles of 14-15° (165°-166°) in 50-m height increments from three
HRHI scans (azimuth angles of 7°, 52°, and 97" . Th black dots
respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.
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FIG. 7. Time-vs-height cross sections of the X-SAPR (a) Z;; and (b) Zpyg on 2 May 2013. Each profile represents
the mean values of all points with elevation angles of 14°-15° (165°-166°) in 50-m height increments from three
HRHI scans (azimuth angles of 7°, 52°, and 97°) every approximately 5 min. The horizontal gray lines and black dots
respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.

Precipitating cold Arctic
clouds (obs analysis: Oue
et al JAMC 2016)

Matthew Kumjian, Jerry
Harrington, Anders Jensen,
Robert Schrom
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the mean values of all points with elevation angles of 14°-15° (165°-166°) in 50-m height increments from three
HRHI scans (azimuth angles of 7°, 52°, and 97°) every approximately 5 min. The horizontal gray lines and black dots
respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.
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Polarimetric radar
observations show
“microphysical fingerprints”
of processes evolving
hydrometeor properties
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FIG. 7. Time-vs-height cross sections of the X-SAPR (a) Z;; and (b) Zpyg on 2 May 2013. Each profile represents
the mean values of all points with elevation angles of 14°-15° (165°-166°) in 50-m height increments from three
HRHI scans (azimuth angles of 7°, 52°, and 97°) every approximately 5 min. The horizontal gray lines and black dots
respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.

Precipitating cold Arctic
clouds (obs analysis: Oue
et al JAMC 2016)

Polarimetric radar
observations show
“microphysical fingerprints”
of processes evolving
hydrometeor properties

Plan: Target processes in
observations and use to
constrain relevent model
parameters



Profiles drawn from timeseries, classified by (assumed) dominant
growth processs
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FIG. 17. Vertical profiles of averaged (a) Zy;, (b) Zpg. (¢) Kpp, and (d) pyy from the X-SAPR HRHIs, during which the pristine
dendrites (blue line), aggregates (red line), and rimed dendrites (green line) were observed at the ground. The averaging areas are
presented in Figs. 6,9, and 13. Averages were calculated in 100-m altitude increments from all values with elevation angles <20° or >160°.
The total number of samples in each profile exceeds 1900. Error bars represent standard deviations. Gray shading represents layers

between ceilometer-measured cloud base and topmost liquid-cloud top.
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Estimating Ice Microphysic§ Param
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ice growth parameters effects of joint perturbation



In situ (2DC & HVPS)
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Profiling radar mean
Doppler velocity
and reflectivity
provide information
on aggregation of
particles (merged
KAZR and NOAA
S-band shown)
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More Ice Microphysics: Aggregatio

Sticking efficiency and ice
property/PSD

Using a column model with bin
microphysics, estimate ice
sticking efficiency in the presence
of uncertainty in particle size
distribution and properties

;.

M
e

%@@@@@@?w
Bebas
e @
TN

A

u]

]
1

u
it
N)
yel
?



Sticking efficiency and ice Using a column model with bin
property/PSD microphysics, estimate ice
sticking efficiency in the presence
of uncertainty in particle size
distribution and properties
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Still some critical outstanding issues

Perhaps the most
substantial source of
microphysical modeling
uncertainty is structural
uncertainty, e.g. DSD
assumptions, process rate
formulations
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Perhaps the most
substantial source of
microphysical modeling
uncertainty is structural
uncertainty, e.g. DSD
assumptions, process rate
formulations
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Figure 11, Vertical profiles of (a) cloud water, (b) rain water, (c) ice, (d) snow, (¢) graupel, and () sum
of solid phase hydrometeor mixing ratios over the pentagonal area averaged over the period from 12 UTC
January 23 to 12 UTC January 24. The CRM results are from seven baseline runs over the same period.

The standard deviations of CRM results are indicated by the yellow shades.

DR G



Still some critical outstanding issues
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Typically, microphysical modelers have not considered systematic
variations in microphysics scheme structure to constrain structural
uncertainty — most tuning of parameters has been done ad hoc
(i.e. not probabilistically)
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A notable attempt at addressing these uncertainties comes from the
ensemble forecast community because they have independently
identified structural physics uncertainty as an outstanding need

@ Perturbed parameter ensembles (parametric uncertainty)
e Multi-physics ensembles (limited structural uncertainty)

@ SPPT: Stochastic Perturbed Physics Tendencies (less limited
structural uncertainty)

The forecasting community has engineered an approach to
addressing structural physics uncertainty. There may be benefits to
engaging the microphysics community to robustly estimate
parameteric and structural uncertainties using observations
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No assumed Drop Size Distribution (DSD) functional form — only
moments are specified

Flexible process-rate formulation with scalable complexity, and
uncertainty residing in tunable parameters (e.g. series of power
laws)

Very few ad-hoc parameter choices and assumptions — constraint
should come from observations

Structural complexity that can be added/subtracted as needed as
required by comparison to observations



Bayesian (we treat uncertainties robustly)
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Observationally-constrained (scheme is informed by comparison to
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Bayesian (we treat uncertainties robustly)

Observationally-constrained (scheme is informed by comparison to
observations)

Statistical-physical (we don't just want a statistical scheme, but we
will use statistics)

Scheme — bulk microphysics parameterization scheme (rain
cloud-only at this point)

Hugh Morrison, Matthew Kumyjian, Olivier Prat, Karly Reimel
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Traditional bulk schemes BOSS

Predict evolution of rain, Predict evolution of rain, cloud DSD
cloud DSD moments moments
My, = [ D*N(D)dD My, = [ D*N(D)dD
Assume DSD fits some Microphysical processes rates are
parameterized form (e.g. parameterized as power laws.
) dM

exponential), and some i

- b+ b2 1 rbs.
functional form for process F(T,p,q) Zj aj (M9 MY MY )

rates (e.g. evaporation,

droplet coalescence/breakup) Power law parameters are

constrained by comparison to
observations in Bayesian inference
framework (e.g. using Markov Chain
Monte Carlo samplers)

DSD form and process rates
determined empirically,
theoretically, or ad hoc



Structural complexity can be added in two ways:

Prognostic variables Power law terms
@ BOSS can evolve any df‘;ftpl ~
prognostic moments of the F(T,p,q) Zj CLj(Mbl JMIIEyMbs i

size distribution

e M3 (mixing ratio) is a typical
choice because of mass
conservation and invariance
with coalescence/breakup

@ Can add power law terms to
model more complex
responses (i.e. j=1,2,...)

o Ideally, there should be a
way to balance model
accuracy and parsimony

@ Other moments can be
chosen to maximize
information content of
observations
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Initial Conditions Rain Gauge Disdrometer Bin Simulations
for Rain Shaft Climatology (M0, M3, M6, (Mo, M3, M6,
(M0, M3, M6, RH) (Rain rate, RH) Rain rate) Rain Rate)

)

« Optimal BOSS
parameter values
(MAP values)

« Uncertainty in
BOSS parameters

MCMC Algorithm « Optimal degree of

(Adaptive Metropolis sampler) BOSS structural

complexity

—
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BOSS can be set up with varying degrees of structural complexity

Both idealized observations (of prognostic variables) and simulated
forward-simulated polarimetric radar observations provide constraint
on BOSS parameters

Adding complexity via observed additional prognostic moments
improves prediction of all prognostic moments

There is still need for a systematic (i.e. probabilistic) quantification
of structural uncertainty in BOSS
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Problem: Addressing Structural Error:

@ Retrieve cloud and rain @ Solution: Fit to complicated
properties using DSD (from bin models or in
vertically-pointing radar situ obs) in the DSD-space
Doppler spectrum @ Analyze errors associated

@ Approach: estimate with doing this fit in the
parameters of two modified space of the observable
gamma drop-size quantities

distributions (cloud, rain)
with constraint in Doppler
spectral moment-space

@ Structural error: what is the
error associated with our
model assumption (2-mode
gamma)?
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Distribution of radar variable errors associated with the assumption
of a 2-mode gamma in our retrieval

Radar variable relative bi associated with fit to a 2-mode gamma DSD

2 -1 0 1 2
Reflectivity (dBZ)

Mean Doppler Vel. (%) Spectrum width (%) Skewness (%)

Kurtosis (%)
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Models, Polynomial Chaos
Expansion, etc.
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What if the model is still too expensive, and you can only afford to
run it 1000, 500, or 100 times?

o Emulate the response of N
some model to perturbation
of parameters by nonlinear
regression

@ Perform parameter
estimation or sensitivity
analysis or UQ on the
(cheap!) surrogate model
rather than the full model

@ Choices: Gaussian Process
Models, Polynomial Chaos
Expansion, etc. only 500 samples




What if the model is still too expensive, and you can only afford to
run it 1000, 500, or 100 times?

@ Emulate the response of
some model to perturbation

e PELEIGES 1 0 =l This method will be applied to

regression determine if the PDF of
° Per_form. paramete.r u parameters in the NASA GISS
estimation or sensitivity ModelE GCM is multimodel, i.e.

analysis or UQ on the
(cheap!) surrogate model
rather than the full model

has multiple valid solutions that
may exhibit different climate

sensitivities (Pl: Greg Elsaesser)
@ Choices: Gaussian Process

Models, Polynomial Chaos
Expansion, etc.
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chain example - the Metrog

Acceptance probability = 0.70/0.63

Accepted!

Markov Chain
[i] x(i)
1 1.3
2 2.0
»q
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chain example - thg Metrog

Acceptance probability = 0.25/0.70 = 0.35

a

Marko
rand < 0.357

v Chain
| i | x(i)
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|
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Markov chain example - thg Metrog

—~ Markovgain—
Acceptance probability = 0.40/0.70 = 0.57

lr rand < 0.577 Li] ()
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What is the likelihood?

P(x) - P(y|x)
P(x = — 7 > 7 3
(xly) = =5 (3)
Assuming Gaussian error in our observations, the likelihood is:
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What is the likelihood?

P(xly) =

P(x)-P

(x) - Ply}x) a
P(y)

Assuming Gaussian error in our observations, the likelihood is:

P(ylx) = e,

(4)
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What is the likelihood?

P(xly) =

P(x)-P

(x) - Ply}x) a
P(y)

Assuming Gaussian error in our observations, the likelihood is:

P(ylx) = e,

Dyy =

(4)
2

5(f(x) =y)TCTH(f(x) ~y) (5)
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P(x) - P(y[x)

P(xly) = 3
(xly) = 5 ©)
Assuming Gaussian error in our observations, the likelihood is:
P(ylx) = e~®, (4)
1 -
Bry = 5 (/) —y)TC (S () — ) (5)

f(x) is result of propagating the control parameters x through the
forward model f.

y is the (true) observational vector.

C is the observation error covariance matrix.



Poorly tuned proposal distribution
can cause problems. Also, bad
choice of start position can be
problematic. x

o A: Good proposal variance

@ B: Proposal variance small,

started far from large PDF e
values i
o C: same as B, started within o
region of large PDF values oz

o D: Same as B, adaptive

proposal variance
Figures from Posselt [2012]
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Time series of chain can show problematic autocorrelation due to
poorly chosen proposal and/or non-covergent sample.

a

©

Parameter Value

Parameter Value

o

0 200 400 600 800 1000

200 400 600 800 1000
Number of Samples (a) Number of Samples (b)
5 5
@4 o4
32 32
] S
s i
2 2
1] °
E2 =
[ £
5 T 4
1 1
m it TV, fy
Wi 1 e W
% 200 400 600 800 1000 % 200 400 600 800 1000
Number of Samples (c) Number of Samples (d)

Figures from Posselt [2012]
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How does one construct a good
proposal?
@ Prior knowledge
@ “Burn-in" phase where
proposal is actively tuned
o Adaptive Metropolis
(proposal variance constantly
tuned)
o Delayed Rejection (2nd
proposal after 1st)

How does one avoid bad start
position?
@ Prior knowledge
@ Run many chains with
random start positions

@ Run simulated annealing
“pre-sampler”



When do we stop our chain? How do we tell if we've converged to
the target PDF?

o If the target distribution is PP JINEE JITNES

known, compare

@ Assess convergence of ’
running statistical moments ' ' )

o Kolmogorov-Smirnov test on

chain sub-samples * ‘ ‘ ‘ ‘
@ R-statistic — Gelman et al.
[1996]

o (Caveat: beware of
‘pseudo-convergence' |



R-Statistic — Gelman et al. [1996]

General idea:
@ Run many chains

o Compute variance within
each chain (W)

o Compute mean of each chain

o Compare mean of
within-chain variances with
variance of all chain means

(B)

vart (x|y) = 71W oh lB
(6)
o foart (xly)
B2V )
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Monte Carlo methods can solve tough inference problems
using random numbers

Much cheaper than complete enumeration, especially as
dimensions increase

Robust, make no assumptions of model linearity or PDF
Gaussianity

Require many model integrations

o Often do not parallelize well

@ For more info see:

e Tarantola [2005]
o MacKay [2005]
o Robert and Casella
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more efficiently find high-probability regions of the parameter space.
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For optimization problems, we can modify a MCMC sampler to
more efficiently find high-probability regions of the parameter space.

@ Perform MCMC walk, similarly to For example. ..
Metropolis sampling L

@ Scale the transition probability by a SR
“temperature” which decreases with i

sample size. A |
. " log(i + 1)
@ This allows for bold transitions
when the sampler is “hot” and more
conservative transitions when the

sampler is “cold”
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Figure from MacKay [2005]

@ What if you can sample from
the conditional distribution?

@ Take turns sampling from
conditionals of each
dimension

@ Acceptance ratio = 1

(always!)

o Freely available software

(BUGS) - Bayesian inference
Using Gibbs Sampling
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Hamiltonian (hybrid) MCMC and No U-Turn Sampler
Affine-invariant MCMC (The MCMC Hammer)

Importance sampling

Slice sampler

Perfect sampler

Nested (& multimodal nested sampling)

MC methods for model comparison (estimation of ‘evidence')
Particle filter

Ensemble Kalman Filter
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Cloud Property Retrieval u§ing Rad: _

Moments fitted: 01246 9
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