
State Estimation for a Filtered  
Representation of a Chaotic Field 

Dan Hodyss1 and Peter Schwartz2 

1. Marine Meteorology Division, Naval Research Laboratory, Monterey, CA 

2. Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory, Berkeley, CA 



State Estimation for a Filtered Representation of a Chaotic Field|  2 U.S. Naval Research Laboratory 

Reality is detailed and full of structure … 



… but our model simulations are coarse 
and smoothed. 
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Apples and Oranges 

• We have point measurements of things like temperature, 

barometric pressure, wind velocity, etc. 

• We have model simulated values of area-averaged temperature, 

barometric pressure, wind velocity, etc.   

 Cannot run PDE solver at a resolution for which all important 

physical processes are resolved 

Observations 

Model grid points 
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What’s our Goal? 

• We have at least two choices: 

1. Search for the best estimate of the pointwise values of 

temperature, winds, etc. at our model grid points 

2. Search for the best estimate of the area-averaged values of 

temperature, winds, etc. in each of our grid cells   

Observations 

Model grid points 
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High-Resolution Data Assimilation 
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Low-Resolution Data Assimilation 
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Low-Resolution Ob Likelihood 

     1 1 1 1 1

1 1L H H L Hp p p d





 y x y x x x x

A little bit of manipulation with the chain rule of probability finds 

High-Resolution  

Ob Likelihood 

Synchronization Density 
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Synchronization Density 

   1 1 1
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If the high and low-resolution systems are not synchronized then 
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Our assimilation of the observation then delivers 

State Estimation for a Filtered Representation of a Chaotic Field|  9 U.S. Naval Research Laboratory 



Assume a Structure for the Synchronization  

       1 1 1 1 1 1

H L L L H Hp p p px x x x x x
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 x x x x x

The converse synchronization density must satisfy 
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Assumption: A map exists between high and low-resolution such that  
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How do we find F? 
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Note that F is the mean of  

Therefore, standard polynomial regression will find F: 

   1 1 1 1 1 1 1 1

1H L L H L L H Hp d





      F x x x x x x A x x

       1 1 1 1 1 1 11 ˆ ˆexp
2

T

L H L H L Hp N  
    

 
x x x F x B x F x

When we truncate the expansion we no longer have zero variance: 
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Low-Resolution Ob Likelihood 
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A little bit of manipulation with the chain rule of probability finds 

High-Resolution  

Ob Likelihood 

Synchronization Density 
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Low-Resolution Data Assimilation 
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A Test Problem: Solitary Waves in 
Variable Media 

The test problem we will use is a variable-coefficient KdV  

equation (Hodyss and Nathan 2003, 2006, 2007): 

   
3

3
0d p g n

A A A A
m m x m x A m A

t x x x

   
    

   

1d nm m  

We set the coefficients to: 

 
2

1 ax

pm x e   
2

2 ax

gm x axe 

Interesting DA problem because: 

• Chaotic creation/destruction of solitary waves 

• Very large amplitude solitary waves are very narrow 

• Large amplitude waves move very fast 
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            Space    

High versus Low Resolution 
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High-resolution 

simulation 

 

N = 512 

 

Both simulations 

will use the same 

numerical 

methods 

Low-resolution 

simulation 

 

M = 32 
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Data Assimilation Problem 

• High-resolution – N = 512 

• Low-resolution  – M = 32 

 

• The locations of the grid points of the low-resolution state vector will be 

coincident with the high-resolution state-vector subsampled every 16 points. 

 

• Observations will be taken at the location of these overlapping points 

 

• The observation error variance will be R = 0.3, which is approximately 50% of 

the climatological variance at high-resolution. 

 

• There will be 1 unit of time between observations, which is approximately 1000 

(100) time steps at high-resolution (low-resolution).  

 

• We will use 1000 member ensembles 

 

• The contemporary approach is brute-force tuned for best prior and observation 

inflation parameters  

 

• Note: both methods benefited from some gross localization of the prior 

covariance matrices 
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Problem Statement and a Contemporary 
Approach 

• Assume high-resolution reality with state vector of length N. 

• Assume low-resolution model state space with state vector of length M. 

• We will assume that we can run the model at resolution N, but  

     then must perform our data assimilation at a reduced resolution of length M. 

 

• A contemporary (ad hoc) approach using the Ensemble Kalman Filter 

• The ensemble update step uses the stochastic observation approach (Evenson 2003) 
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A Multi-Resolution Kalman Filter 

 

• A multi-resolution Kalman filter approach will make use of the same  

 Ensemble (Monte-Carlo) Kalman Filter framework (Hodyss and Nichols, 2015; Tellus A) 

• The ensemble update step uses the stochastic observation approach (Evenson 2003) 
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Mean-Squared Error and Ensemble Variance 

Solid – Multi-Resolution Kalman Technique 

Dashed – Contemporary (ad hoc) approach 

Blue – Mean-Squared Error (MSE) 

Red – Ensemble Variance  

Measured in High-Resolution State Space Measured in Low-Resolution State Space 
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Let’s see what’s happening on the 
400th cycle … 

Contemporary Method  

at High-Resolution 

New Method  

at High-Resolution 

Contemporary Method  

at Low-Resolution 

New Method  

at Low-Resolution 
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How good was F at t = 400? 

New Method  Ad Hoc Method  

x = 0 

x = 5 

Blue – High-Resolution 

Red – Low-Resolution 

Green – F(High-Res) 
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Summary and Conclusions 

• We described a new framework to understand and account for  

 the coarseness of typical model simulations in the  

 data assimilation process. 

 

• The most important component is the estimation of the correct  

 mapping function from high to low-resolution. 

 

• Presently, we are working on several adaptive methods that update  

 the F relationship at each cycle of the data assimilation 

 to account for the new information available. 

Hodyss, D. and N. Nichols, 2015: The error of representation: Basic understanding.   

 Tellus, 67A, 24822. 
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