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Introduction

In this talk, we consider

{X:Xlx...Xd — N

f:

X:(Xl7-"1xd) = y:f(X)

with

e f : mathematical or numerical model,

e x : uncertain input parameters,

e y @ output.

We model the uncertainty on the input parameters by a probability
distribution P on X and get

Y = f(X1,..., X4)

with the vector X = (X1,..., Xy) distributed as P.
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Introduction

Independent framework: P(dx) = Pi(dx1)...Pqg(dxy)

Why is the independent framework not always the right one?

Let us consider the following example: an agro-climatic model for
the water status management of vineyard. Joint study with INRA
and iTK (Montpellier, FRANCE).
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Introduction

Project objective: control of grape/wine quality. SA as decision

support.
INPUTS

 Vine-plot

= 22 scalar parameters:

© Weather data during the growing season

soil texture,
rooting depth,
vegetation size,
row orientation

= 4 correlated (daily) functional inputs

Water budget

N {

l

e WV v‘*"\":v--'\/'\ﬁ, Temperature Daily output

edoin, o, | fRain
5 . Solar radiation
s PET

water stress

growing season
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Introduction

The soil texture was initially described by 3 scalar parameters: the
percentages of , and

These parameters are not independent as
% argil + % sand + % silt = 100%.

In the study, this set of parameters has been replaced by a unique
parameter aSoil describing the influence of the soil texture on its
evaporation capacity.

: ' and
are temporal correlated inputs.

We chose to use kind of scenario approach: it consists in grouping
the 4 temporal inputs into a single input factor, defining a weather
scenario.
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Variance based sensitivity analysis, independent framework

Independent framework: P(dx) = Pi(dx1)...Pg(dxy)
For sake of clarity, we consider
. { R¢ — R
. X:(Xl,...,Xd) = y:f(X)

Does the output Y vary more or less when fixing one of its input
parameters?

V [Y|X; = x;], how to choose x;?
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Variance based sensitivity analysis, independent framework

Independent framework: P(dx) = Pi(dx1)...Pg(dxy)
For sake of clarity, we consider
. { RY — R
. X:(Xl,...,Xd) = y:f(X)

Does the output Y vary more or less when fixing one of its input
parameters?

V [Y|X; = xi], how to choose x;?7 — E [V (Y]X])]
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Variance based sensitivity analysis, independent framework

Independent framework: P(dx) = Pi(dx1) ... Pg(dxy)
For sake of clarity, we consider

f_{ RY — R
Tl x=0a,..0,x0) =y =1F(x)

Does the output Y vary more or less when fixing one of its input
parameters?
V [Y|X; = x;], how to choose x;? — E [V (Y|X;)]

The more this quantity is small, the more fixing X; reduces the
variance of Y: the input X; is influent.
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Variance based sensitivity analysis, independent framework

Independent framework: P(dx) = Pi(dx1) ... Pg(dxy)
For sake of clarity, we consider

f_{ R9 — R
Tl x=0a,..0,x0) =y =1F(x)

Does the output Y vary more or less when fixing one of its input
parameters?
V [Y|X; = x;], how to choose x;? — E [V (Y|X;)]

The more this quantity is small, the more fixing X; reduces the
variance of Y: the input X; is influent.

1st order Sobol’ indices VIE(Y|X; E[V(Y|X;
i=1,.d 0= 5= [V([Y‘] f=1- [V([Y‘] <1
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Variance based sensitivity analysis, independent framework

For sake of clarity, we consider f : [0,1]9 — R. Then, if

Joap f2(x)d(x) < +oo, f admits a unique decomposition

fo+ oy () + Srcicjea i) + o 4 A a0, xa)
under the constraints

» fy constant,
> V1<s<d VI<i<...<ig<d,V1I<p<s

1
/ firronie(Xiss - -5 X0 )dx;, = 0
0
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Variance based sensitivity analysis, independent framework

For sake of clarity, we consider f : [0,1]9 — R. Then, if
Joape f2(x)d(x) < +oo, f admits a unique decomposition

fo+ > i) + d<icj<d i) + oo+ d(xa, . xa)
under the constraints

» fy constant,

> V1<s<d VI<i<...<ig<d,V1I<p<s

1
/ firronie(Xiss - -5 X0 )dx;, = 0
0

Consequences:

* fg = f[O.l]d f(x)dx,

*VucC{l,...,d}, f[O.l]d fu(x,)dx =0,
*VuFvC{l....d} [0 fu(xa)f(x)dx = 0.

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Dependent Inputs - S



Variance based sensitivity analysis, independent framework
We deduce from the constraints

» f;'(X,') = f[O,l]dfl f(X) Hp;ﬁi pr — fo
> i A
fij(xi, %) = f[o,1]df2 f(x) Hp;éi,j dxp, — fo — £i(x:) — £())

| S
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Variance based sensitivity analysis, independent framework
We deduce from the constraints

» f;'(X,') = f[O,l]d71 f(X) Hp;ﬁi pr — fo
ey
fi i(xi, %) = f[O,l]d*2 f(x) Hp?élj dx, — fo — fi(>x;) — fi(x)

| S

Or equivalently, for X ~ #/ ([0,1]9),

d
i= 1<I<_]<C/
with
> fi(x)=E[Y|Xi=x]—E[Y],
> i Fj, fii(x, ) =
E [Y|X,XJ = X;,Xj] — E[Y|X, = X,'] —E [Y|)<J = Xj] + E [Y],
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Variance based sensitivity analysis, independent framework

Variance decomposition:

VIV =S VIEOD + ..+ VA g, X)]

Sobol’ indices: VIFOO)]  VIE[Y[X]]
PO VIRC] . VIEL] )
Vi= 17 d S R viv]

. VI (G,X)] _ VIE[Y X X1 = VIE[Y | X]]— VIE[ Y| X,
VitjSy= [ \J/([Y] D _ VIE[Y|X.X]] \[/[[Y]I 1= VIE[Y|X]]
We have d
1= Si+> Sij+...+S1..q
i=1 i£j
Factors Prioritization (FP): which factor should one try to
determine first in order to have the largest expected reduction in

the variance of the model output? — first order Sobol’ indices do
the job.

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Dependent Inputs -



Variance based sensitivity analysis, independent framework

Total Sobol’ indices:
i=1,...,d SitOt:ZuC{l ..... d},uﬂ{i};ﬁwsu

Factors Fixing (FF): which input factors can be fixed, anywhere in
their range of variation, without sensibly affecting a specific output
of interest? — total Sobol indices do the job.

We have:

EVIVIX.l | VIEYIX_]
VIY] VIY]
with X_; = (Xl, coy Xiz1, Xiva, - - - ,Xd).

tot __
Stot —
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Variance based sensitivity analysis, general framework
We consider

f_{ R4 — R
U x= 0 k) =y = (%)

‘ P(dx) not necessarily equal to Pi(dx) ... Pg(dxy). ‘

Let, Vi=1,...,d, Fx(-) = P(X; <-) and

VX:(Xl,...,Xd)ERd, Fx(X):P(Xl §X1,...,Xd§Xd).

‘Sklar’s Theorem Fx(x) = C(Fx,(x1),..., Fx,(x4))-

If the Fx, are continuous, then the copula C is unique.
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Variance based sensitivity analysis, general framework

We can still define Sobol’ indices as:
C _ VIE[Y|X]]
Vi= ].,...,d S,'— W

Vit j Sy = YELDCXVED D ViEl L)

i=1 i#j '
We do not have anymore

AU

. VY]
uC{l,....d}, un{i}£0

FP and FF are not easy tasks anymore.
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An alternative, the Shapley effects
Shapley paradigm
Let team u C {1,2,...,d} create value val(u). Let u — val(u),
with val(f)) = 0, be the characteristic function of the game. The
total value of the game is val({1,2,...,d}). We attribute ¢; of

this to 7 € {1,2,...,d}.
Shapley axioms
> Efficiency 29, ¢y = val({1,...,d}).
» Dummy [Vu, val(uU {i}) = val(u)] = ¢; = 0.
» Symmetry
[V u such that un {i,j} =0, val(uU{i}) = val(u U {j})]
= ¢i = ¢j.
» Additivity If games with characteristic functions val, val’
correspond to ¢;, ¢%, then the game with characteristic
function val + val’ corresponds to ¢; + ¢’
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An alternative, the Shapley effects
The solution is:

¢i = % <d|; 1> - (val(u + i) — val(u))

uC—{i}

Let variables x1, xo, ..., x4y be team members trying to explain f.

The value of any subset u is how much can be explained by x,,.

The Shapley effects [Owen, 2014] are the ¢;s corresponding to the

value function u > .S, = %

vCu

E[V[¥|Xu]]
48

If we define the value function as u — instead of

VIE[Y[Xu]]
48

u— , we also get the Shapley effects.
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An alternative, the Shapley effects

1
Independent framework: Vi=1,...,d, ¢, = E WSU

u
uiicu

We also have: Vi=1,...,d,0 <5 < ¢; < 5° <1 and

Z;jfl C),‘ — 1
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An alternative, the Shapley effects
1

Independent framework: Vi=1,...,d, ¢; = Z ﬁ
u

u:icu
We also have: Vi=1,...,d,0 <5 < ¢; < 5° <1 and
Z;jfl C),‘ — 1

Dependent framework:

Su

In this framework, it is usual to define first order and total Sobol’

indices as
o _ VIEDYX)
' 284
tot __ E[V[Y|X,,-]]
TV

We still have 0 < ¢; <1 and Zf’zl o =1
We do not necessarily have S; < ¢; < S
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Some properties

» Property 1 Let ¥ = f(X) = f(X1,...,Xy), with X; = h(X1)
and X> = h=1(X;) with probability one. Then ¢; = ¢».

» Property 2 Let ¥ = f(X) and for i = 1,...,d, X; = 7, (2).
We define g(Z) = f(r; H(Z1), - .-, 7 (Z4))-

Let gb:- be the Shapley importance of Z; as a predictor of
Y =g(Z). Then, foralli=1,...,d, ¢\ = ¢;.
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A few analytical examples

[Owen and Prieur, 2017, looss and Prieur, 2017]
Gaussian framework, affine model, d =2

We consider X ~ Na(p, X) and ¥ = By + BT X, with
G} B 03 po1o2
= , = ,p€e|-1,1],0; > 0.
H (Mz) A= (/32) <P0102 o3 ) pel .o
We have 02 = V[Y] = 8202 + 2p/1 oo105 + 305 and

ﬁ%lzﬁ%mia+wﬂm@+ :

0'25/72 = (1 )+p«310)20'102+ ))1(T 2
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A few analytical examples
Farlie-Gumbel-Morgenstern copula, uniform marginals, affine
model, d =2
We consider Y = g 4+ BT X, with
» marginal distributions X; ~ U([0,1]?) for i = 1,2,
» joint probability density function
Cg(Xl,Xz) =1+ 9(1 — 2X1)(1 — 2X2), -1<9<1.

We then have
> a,-2 = V[X]=1/12,

0
> p=cor(Xy, Xo) = 3
We also have
B+ 055 +ﬂ2

o =V[Y]="224p 52 = (202 42pp1 foc102+B303.
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A few analytical examples

We get once more

2
, )
o2Shy = .‘)’101(1—%) + pB1Paoion + ,

02Shy = (1) + pB1Bacion + 3101 S

1 02\ 53 — 533
b o= 1+ (1)t 52
Shy 2(+< 9) 1202 )

That is

1 62\ B3 — B2
h - = - 2 ~1
She 2<1+<1 9> 1202 )
2 0
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A few analytical examples

Gaussian framework, exponential model, d = 2

Let £(X) = exp(XT3) for X, 8 € R? and X ~ N (0, X), for
I (1 ”). Then
p 1

1

e(ﬁ1+,32p)2 _ e(ﬁz-i—ﬁlp)z
BT +B3+2pB18 _ | >

1 (1 e(Ba+B1p)* _ e(51+52p)2>

hy = =
She =3 BB 20B152 _ |

From Property 2, we can extend the result to unnormalized X1
and XG.
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A few analytical examples

General bivariate framework

We consider Y = f(X) with finite variance 0® > 0. We have

1 VIE[Y X = VIETY X
o= 2 <1+ o2 ) 7
1 VIE[Y|X]] — VIE[Y X
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A few analytical examples

Gaussian framework, model with a second order interaction, d = 3

We consider Y = X; + XoX5 with X ~ N3(0,X) and

O'% 0 poios
Y= 0 o3 0 ,p€[-1,1],0; > 0.

2
poioz 0 o3

We have 02 = V[Y] = 0% + 0303 and

> 02Sh; = 1(1—7
> 02Shy = 3+ /)
2 2
> 025hy =" ;1 + (3-20)

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Dependent Inputs -



A few analytical examples

General model with a block-additive structure, d = 3

We consider V' = g(X1, X2) 4+ h(X3). We assume that all the three
inputs have a finite variance and that X3 is independent from
(X2, X3).
We then have
> 53 = 5/73 = 5§°t
» fori=1,2,

[5,' < Sh,'] = [Sh,' < S;FOt]

N V[E[Y\Xﬂ];V[E[VIXz]] < V[E[Y|2X1,X2]]
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What about algorithms?

Algorithms to compute Shapley effects [Castro et al., 2009] are

based on the value function u > W Note that
1
Shi =5 > (val(Pi(x) u{i})) — val(Pi(m)))

with M({1,...,d}) the set of all possible permutations of the
inputs and for a permutation m € MN({1,...,d}), the set P;(r) is
defined as the inputs that precede input i in .

Exact permutation algo. (moderate d) all possible permutations
are covered.

Random permutation algo. (d >> 1) it randomly sample
permutations of the inputs.
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What about algorithms?

In [Song et al., 2016], val(u) — val(u).

For each iteration of the loop on the inputs’ permutations, a
conditional variance expectation must be computed.

The cost C of these algorithms is the following:

C=" +m(d-1)N
with the sample size for the computation, the
outer loop size for the , ;i the inner loop size for the

conditional variance and m the number of permutations according
to the selected method.

Bootstrap confidence intervals can be computed. A costly model
can be replaced by a metamodel. [looss and Prieur, 2017,
Benoumechiara and Elie-Dit-Cosaque, 2018]
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An industrial application

Industrial problem:

The heterogeneous and anisotropic weld’s structure is represented
by a simplified model consisting of a partition of 7 equivalent
homogeneous regions with a specific grain orientation.

Metallographic picture (left) Inspection configuration
Description of the weld in 7 homogeneous domains (right)
: 11 scalar inputs (4 elastic coefficients and 7
orientations).
Scalar output: the amplitude of the defect echoes resulting from
an ultrasonic inspection.
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An industrial application

Probabilistic model: all the inputs are modeled by Gaussian
distributions, there are dependences between the orientations.

(Orl, ey OI’7)T ~ N7(LL, 2)
[Rupin et al., 2014, Moysan et al., 2003]

for the ultrasonic non-destructive control
application. The vertical bars represent the
of each effect.
Algorithm's parameters: m = 104, N; =3, Np =1, N, = 10%, total
cost C = 3 x 10° metamodel evaluations.

om0 00 0% 02 05 0
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Conclusion, perspectives

: Shapley effects present an alternative to allocate parts
of variance in the dependent framework. There exist algorithms to
estimate these indices.

Perspectives

» Can we propose goal-oriented Shapley effects?

v

What are the theoretical finite sample properties of both
algorithms?

v

How can Shapley effects be related to gradient-based
measures of sensitivity?
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