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Introduction

In this talk, we consider

f :

{
X = X1 × . . .Xd → Y
x = (x1, . . . , xd ) 7→ y = f (x)

with
• f : mathematical or numerical model,
• x : uncertain input parameters,
• y : output.
We model the uncertainty on the input parameters by a probability
distribution P on X and get

Y = f (X1, . . . ,Xd )

with the vector X = (X1, . . . ,Xd ) distributed as P.
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Introduction

Independent framework: P(dx) = P1(dx1) . . .Pd (dxd )

Why is the independent framework not always the right one?

Let us consider the following example: an agro-climatic model for
the water status management of vineyard. Joint study with INRA
and iTK (Montpellier, FRANCE).
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Introduction

Project objective: control of grape/wine quality. SA as decision
support.
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Introduction
The soil texture was initially described by 3 scalar parameters: the
percentages of argil, sand and silt.

These parameters are not independent as

% argil + % sand + % silt = 100% .

In the study, this set of parameters has been replaced by a unique
parameter aSoil describing the influence of the soil texture on its
evaporation capacity.

Daily precipitations, solar radiation, mean air temperature and
potential evapotranspiration are temporal correlated inputs.

We chose to use kind of scenario approach: it consists in grouping
the 4 temporal inputs into a single input factor, defining a weather
scenario.

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Dependent Inputs



Variance based sensitivity analysis, independent framework

Independent framework: P(dx) = P1(dx1) . . .Pd (dxd )

For sake of clarity, we consider

f :

{
Rd → R

x = (x1, . . . , xd ) 7→ y = f (x)

Does the output Y vary more or less when fixing one of its input
parameters?

V [Y |Xi = xi ], how to choose xi ?

−→ E [V (Y |Xi )]

The more this quantity is small, the more fixing Xi reduces the
variance of Y : the input Xi is influent.
1st order Sobol’ indices−−−−−−−−−−−−−→

i=1,...d
0 ≤ Si = V [E(Y |Xi )]

V [Y ] = 1− E [V (Y |Xi )]
V [Y ] ≤ 1
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Variance based sensitivity analysis, independent framework
For sake of clarity, we consider f : [0, 1]d → R. Then, if∫

[0,1]d f 2(x)d(x) < +∞, f admits a unique decomposition

f0 +
∑d

i=1 fi (xi ) +
∑

1≤i<j≤d fi ,j(xi , xj) + . . .+ f1,...,d (x1, . . . , xd )

under the constraints
I f0 constant,
I ∀ 1 ≤ s ≤ d , ∀ 1 ≤ i1 < . . . < is ≤ d , ∀ 1 ≤ p ≤ s∫ 1

0
fi1,...,is (xi1 , . . . , xis )dxip = 0

Consequences:
? f0 =

∫
[0,1]d f (x)dx,

? ∀u ⊂ {1, . . . , d},
∫

[0,1]d fu(xu)dx = 0,
? ∀u 6= v ⊂ {1, . . . , d},

∫
[0,1]d fu(xu)fv (xv )dx = 0.
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Variance based sensitivity analysis, independent framework
We deduce from the constraints

I fi (xi ) =
∫

[0,1]d−1 f (x)
∏

p 6=i dxp − f0
I i 6= j

fi ,j(xi , xj) =
∫

[0,1]d−2 f (x)
∏

p 6=i ,j dxp − f0 − fi (xi )− fj(xj)

I . . .

Or equivalently, for X ∼ U
(
[0, 1]d

)
,

Y = f (X) = f0+
d∑

i=1
fi (Xi )+

∑
1≤i<j≤d

fi ,j(Xi ,Xj)+. . .+f1,...,d (X1, . . . ,Xd )

with
I fi (xi ) = E [Y |Xi = xi ]− E [Y ],
I i 6= j , fi ,j(xi , xj) =

E [Y |Xi ,Xj = xi , xj ]− E [Y |Xi = xi ]− E [Y |Xj = xj ] + E [Y ],
I . . .
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Variance based sensitivity analysis, independent framework
Variance decomposition:

V [Y ] =
∑d

i=1 V [fi (Xi )] + . . .+ V [f1,...,d (X1, . . . ,Xd )]

Sobol’ indices:
∀ i = 1, . . . , d Si = V [fi (Xi )]

V [Y ] = V [E[Y |Xi ]]
V [Y ]

∀ i 6= j Si ,j =
V [fi,j (Xi ,Xj )]

V [Y ] =
V [E[Y |Xi ,Xj ]]−V [E[Y |Xi ]]−V [E[Y |Xj ]]

V [Y ]
. . .

We have

1 =
d∑

i=1
Si +

∑
i 6=j

Si ,j + . . .+ S1,...,d

Factors Prioritization (FP): which factor should one try to
determine first in order to have the largest expected reduction in
the variance of the model output? −→ first order Sobol’ indices do
the job.
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Variance based sensitivity analysis, independent framework

Total Sobol’ indices:
i = 1, . . . , d Stot

i =
∑

u⊂{1,...,d} , u∩{i}6=∅ Su

Factors Fixing (FF): which input factors can be fixed, anywhere in
their range of variation, without sensibly affecting a specific output
of interest? −→ total Sobol’ indices do the job.

We have:

Stot
i =

E [V [Y |X−i ]]

V [Y ]
= 1− V [E [Y |X−i ]]

V [Y ]

with X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xd ).
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Variance based sensitivity analysis, general framework

We consider

f :

{
Rd → R

x = (x1, . . . , xd ) 7→ y = f (x)

P(dx) not necessarily equal to P1(dx1) . . .Pd (dxd ).

Let, ∀ i = 1, . . . , d , FXi (·) = P(Xi ≤ ·) and

∀ x = (x1, . . . , xd ) ∈ Rd , FX(x) = P(X1 ≤ x1, . . . ,Xd ≤ xd ) .

Sklar’s Theorem FX(x) = C (FX1(x1), . . . ,FXd (xd )).

If the FXi are continuous, then the copula C is unique.
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Variance based sensitivity analysis, general framework

We can still define Sobol’ indices as:

∀ i = 1, . . . , d Si = V [E[Y |Xi ]]
V [Y ]

∀ i 6= j Si ,j =
V [E[Y |Xi ,Xj ]]−V [E[Y |Xi ]]−V [E[Y |Xj ]]

V [Y ]
. . .

We do not have anymore 1 =
d∑

i=1
Si +

∑
i 6=j

Si ,j + . . .+ S1,...,d

We do not have anymore∑
u⊂{1,...,d} , u∩{i}6=∅

Su =
E [V [Y |X−i ]]

V [Y ]

FP and FF are not easy tasks anymore.
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An alternative, the Shapley effects
Shapley paradigm
Let team u ⊆ {1, 2, ..., d} create value val(u). Let u 7→ val(u),
with val(∅) = 0, be the characteristic function of the game. The
total value of the game is val({1, 2, ..., d}). We attribute φi of
this to i ∈ {1, 2, ..., d}.

Shapley axioms
I Efficiency

∑d
i=1 φi = val({1, . . . , d}).

I Dummy [∀u , val(u ∪ {i}) = val(u)] ⇒ φi = 0.
I Symmetry

[∀u such that u ∩ {i , j} = ∅ , val(u ∪ {i}) = val(u ∪ {j})]
⇒ φi = φj .

I Additivity If games with characteristic functions val, val′
correspond to φi , φ′i , then the game with characteristic
function val + val′ corresponds to φi + φ′i .

[Shapley, 1953] shows there is a unique solution to these axioms.
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An alternative, the Shapley effects

The solution is:

φi =
1
d
∑

u⊆−{i}

(
d − 1
|u|

)−1(
val(u + i)− val(u)

)
Let variables x1, x2, . . . , xd be team members trying to explain f .

The value of any subset u is how much can be explained by xu .

The Shapley effects [Owen, 2014] are the φi s corresponding to the
value function u 7→

∑
v⊆u Sv = V [E [Y |Xu ]]

V [Y ] .

If we define the value function as u 7→ E [V [Y |Xu ]]
V [Y ] instead of

u 7→ V [E [Y |Xu ]]
V [Y ] , we also get the Shapley effects.
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An alternative, the Shapley effects
Independent framework: ∀ i = 1, . . . , d , φi =

∑
u:i∈u

1
|u|Su

We also have: ∀ i = 1, . . . , d , 0 ≤ Si ≤ φi ≤ Stot
i ≤ 1 and∑d

i=1 φi = 1.

Dependent framework:

In this framework, it is usual to define first order and total Sobol’
indices as

Si =
V [E [Y |Xi ]]

V [Y ]

Stot
i =

E [V [Y |X−i ]]

V [Y ]

We still have 0 ≤ φi ≤ 1 and
∑d

i=1 φi = 1
We do not necessarily have Si ≤ φi ≤ Stot

i
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Some properties

I Property 1 Let Y = f (X) = f (X1, . . . ,Xd ), with X1 = h(X2)
and X2 = h−1(X1) with probability one. Then φ1 = φ2.

I Property 2 Let Y = f (X) and for i = 1, . . . , d , Xi = τ−1
i (Zi ).

We define g(Z) = f (τ−1
1 (Z1), . . . , τ−1

d (Zd )).

Let φ′i be the Shapley importance of Zi as a predictor of
Y ′ = g(Z). Then, for all i = 1, . . . , d , φ′i = φi .
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A few analytical examples
[Owen and Prieur, 2017, Iooss and Prieur, 2017]

Gaussian framework, affine model, d = 2

We consider X ∼ N2(µ,Σ) and Y = β0 + βTX, with

µ =

(
µ1
µ2

)
,β =

(
β1
β2

)
,Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
, ρ ∈ [−1, 1] , σi > 0.

We have σ2 = V [Y ] = β2
1σ

2
1 + 2ρβ1β2σ1σ2 + β2

2σ
2
2 and

σ2Sh1 = β2
1σ

2
1(1−ρ

2

2 ) + ρβ1β2σ1σ2 + β2
2σ

2
2
ρ2

2 ,

σ2Sh2 = β2
2σ

2
2(1−ρ

2

2 ) + ρβ1β2σ1σ2 + β2
1σ

2
1
ρ2

2 ·
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A few analytical examples
Farlie-Gumbel-Morgenstern copula, uniform marginals, affine
model, d = 2

We consider Y = β0 + βTX, with
I marginal distributions Xi ∼ U([0, 1]2) for i = 1, 2,
I joint probability density function

cθ(x1, x2) = 1 + θ(1− 2x1)(1− 2x2), −1 ≤ θ ≤ 1.

We then have
I σ2

i = V [Xi ] = 1/12,

I ρ = cor(X1,X2) =
θ

3 ·

We also have

I σ2 = V [Y ] =
β2

1 + β2
2

12 +β1β2
θ

18 = β2
1σ

2
1 +2ρβ1β2σ1σ2+β2

2σ
2
2.
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A few analytical examples
We get once more

σ2Sh1 = β2
1σ

2
1(1−ρ

2

2 ) + ρβ1β2σ1σ2 + β2
2σ

2
2
ρ2

2 ,

σ2Sh2 = β2
2σ

2
2(1−ρ

2

2 ) + ρβ1β2σ1σ2 + β2
1σ

2
1
ρ2

2 ·

That is
Sh1 =

1
2

(
1 +

(
1−θ

2

9

)
β2

1 − β2
2

12σ2

)
,

Sh2 =
1
2

(
1 +

(
1−θ

2

9

)
β2

2 − β2
1

12σ2

)
,

with σ2 =
β2

1 + β2
2

12 + β1β2
θ

18 ·
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A few analytical examples

Gaussian framework, exponential model, d = 2

Let f (X) = exp
(
XTβ

)
for X,β ∈ R2 and X ∼ N (0,Σ), for

Σ =

(
1 ρ
ρ 1

)
. Then

Sh1 =
1
2

(
1 +

e(β1+β2ρ)2 − e(β2+β1ρ)2

eβ2
1 +β2

2 +2ρβ1β2 − 1

)

Sh2 =
1
2

(
1 +

e(β2+β1ρ)2 − e(β1+β2ρ)2

eβ2
1 +β2

2 +2ρβ1β2 − 1

)
From Property 2, we can extend the result to unnormalized X1
and X2.
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A few analytical examples

General bivariate framework

We consider Y = f (X) with finite variance σ2 > 0. We have

Sh1 =
1
2

(
1 +

V [E [Y |X1]]− V [E [Y |X2]]

σ2

)
,

Sh2 =
1
2

(
1 +

V [E [Y |X2]]− V [E [Y |X2]]

σ2

)
·
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A few analytical examples
Gaussian framework, model with a second order interaction, d = 3

We consider Y = X1 + X2X3 with X ∼ N2(0,Σ) and

Σ =

 σ2
1 0 ρσ1σ3

0 σ2
2 0

ρσ1σ3 0 σ2
3

 , ρ ∈ [−1, 1] , σi > 0.

We have σ2 = V [Y ] = σ2
1 + σ2

2σ
2
3 and

I σ2Sh1 = σ2
1(1−ρ

2

2 ) +
σ2

2σ
2
3

6 ρ2

I σ2Sh2 =
σ2

2σ
2
3

6 (3 + ρ2)

I σ2Sh3 =
ρ2σ2

1
2 +

σ2
2σ

2
3

6 (3−2ρ2)
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A few analytical examples

General model with a block-additive structure, d = 3

We consider Y = g(X1,X2) + h(X3). We assume that all the three
inputs have a finite variance and that X3 is independent from
(X2,X3).

We then have
I S3 = Sh3 = Stot

3
I for i = 1, 2,

[Si ≤ Shi ] ⇔ [Shi ≤ Stot
i ]

⇔
[

V [E [Y |X1]]+V [E [Y |X2]]
2 ≤ V [E [Y |X1,X2]]

2

]
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What about algorithms?

Algorithms to compute Shapley effects [Castro et al., 2009] are

based on the value function u 7→ E [V [Y |Xu]]

V [Y ]
· Note that

Shi =
1

d !

∑
π∈Π({1,...,d})

(val(Pi (π) ∪ {i}))− val(Pi (π)))

with Π({1, . . . , d}) the set of all possible permutations of the
inputs and for a permutation π ∈ Π({1, . . . , d}), the set Pi (π) is
defined as the inputs that precede input i in π.

Exact permutation algo. (moderate d) all possible permutations
are covered.

Random permutation algo. (d >> 1) it randomly sample
permutations of the inputs.
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What about algorithms?
In [Song et al., 2016], val(u) → v̂al(u).

For each iteration of the loop on the inputs’ permutations, a
conditional variance expectation must be computed.

The cost C of these algorithms is the following:

C = Nv + m(d − 1)N0Ni

with Nv the sample size for the variance computation, N0 the
outer loop size for the expectation, Ni the inner loop size for the
conditional variance and m the number of permutations according
to the selected method.

Bootstrap confidence intervals can be computed. A costly model
can be replaced by a metamodel. [Iooss and Prieur, 2017,
Benoumechiara and Elie-Dit-Cosaque, 2018]
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An industrial application
Industrial problem: ultrasonic non-destructive control of a weld
containing manufacturing defect

The heterogeneous and anisotropic weld’s structure is represented
by a simplified model consisting of a partition of 7 equivalent
homogeneous regions with a specific grain orientation.

Metallographic picture (left)
Description of the weld in 7 homogeneous domains (right)

Inspection configuration

Input parameters: 11 scalar inputs (4 elastic coefficients and 7
orientations).
Scalar output: the amplitude of the defect echoes resulting from
an ultrasonic inspection.
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An industrial application
Probabilistic model: all the inputs are modeled by Gaussian
distributions, there are dependences between the orientations.

(Or1, . . . ,Or7)T ∼ N7(µ,Σ)
[Rupin et al., 2014, Moysan et al., 2003]

Shapley effects for the ultrasonic non-destructive control
application. The vertical bars represent the 95%-confidence
intervals of each effect.
Algorithm’s parameters: m = 104, Ni = 3, N0 = 1, Nv = 104, total
cost C = 3× 105 metamodel evaluations.
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Conclusion, perspectives

Conclusion: Shapley effects present an alternative to allocate parts
of variance in the dependent framework. There exist algorithms to
estimate these indices.

Perspectives
I Can we propose goal-oriented Shapley effects?
I What are the theoretical finite sample properties of both

algorithms?
I How can Shapley effects be related to gradient-based

measures of sensitivity?
I . . .
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