Model Uncertainty and Uncertainty Quantification

Merlise Clyde Duke University http://stat.duke.edu/~clyde

SIAM UQ18 - April 17, 2018

. . .

Uncertainty Quantification (UQ) is the science of quantitative characterizing and reduction of uncertainties

. . .

Uncertainty Quantification (UQ) is the science of quantitative characterizing and reduction of uncertainties

parameter parameters θ in the model that are unknown

. . .

Uncertainty Quantification (UQ) is the science of quantitative characterizing and reduction of uncertainties

parameter parameters θ in the model that are unknown inputs measurement error in model inputs **x**

Uncertainty Quantification (UQ) is the science of quantitative characterizing and reduction of uncertainties

parameter parameters θ in the model that are unknown inputs measurement error in model inputs x algorithmic induced by approximating model

Uncertainty Quantification (UQ) is the science of quantitative characterizing and reduction of uncertainties

parameter parameters θ in the model that are unknown inputs measurement error in model inputs x algorithmic induced by approximating model experimental observation error in response Y at input x

Uncertainty Quantification (UQ) is the science of quantitative characterizing and reduction of uncertainties

parameter parameters θ in the model that are unknown inputs measurement error in model inputs x
algorithmic induced by approximating model
experimental observation error in response Y at input x
model structural uncertainty about the model/data generating process

Uncertainty Quantification (UQ) is the science of quantitative characterizing and reduction of uncertainties

parameter parameters θ in the model that are unknown inputs measurement error in model inputs x
algorithmic induced by approximating model
experimental observation error in response Y at input x
model structural uncertainty about the model/data generating process
predictive interpolation or extrapolation of model at new x

Uncertainty Quantification (UQ) is the science of quantitative characterizing and reduction of uncertainties

parameter parameters θ in the model that are unknown inputs measurement error in model inputs x algorithmic induced by approximating model experimental observation error in response Y at input x model structural uncertainty about the model/data generating process predictive interpolation or extrapolation of model at new x

Predictive uncertainty: reducible error + irreducible error

Uncertainty Quantification (UQ) is the science of quantitative characterizing and reduction of uncertainties

parameter parameters θ in the model that are unknown inputs measurement error in model inputs x algorithmic induced by approximating model experimental observation error in response Y at input x model structural uncertainty about the model/data generating process predictive interpolation or extrapolation of model at new x

Predictive uncertainty: reducible error + irreducible error

Rumsfeld's "Known Unknowns" versus "Unknown Unknowns" 🛓 🦻 🧟

• Entertain a collection of models $\mathcal{M} = \{\mathcal{M}_m, \ m \in M\}$

• Entertain a collection of models $\mathcal{M} = \{\mathcal{M}_m, m \in M\}$

Each model corresponds to a parametric (although possibly infinite-dimensional) distribution of the data Y:

$$p_m(\mathbf{y} \mid \boldsymbol{\theta}_m, \mathbf{x}) = p(\mathbf{y} \mid \boldsymbol{\theta}_m, \mathcal{M}_m, \mathbf{x})$$

where θ_m corresponds to unknown parameters in the distribution for **Y** under \mathcal{M}_m

• Entertain a collection of models $\mathcal{M} = \{\mathcal{M}_m, m \in M\}$

Each model corresponds to a parametric (although possibly infinite-dimensional) distribution of the data Y:

$$p_m(\mathbf{y} \mid \boldsymbol{\theta}_m, \mathbf{x}) = p(\mathbf{y} \mid \boldsymbol{\theta}_m, \mathcal{M}_m, \mathbf{x})$$

where θ_m corresponds to unknown parameters in the distribution for **Y** under \mathcal{M}_m

 Objective: Obtain predictive distributions or summaries at inputs x*

$$p(\mathbf{y}^* \mid \mathbf{y}, \mathbf{x}, \mathbf{x}^*)$$

• Entertain a collection of models $\mathcal{M} = \{\mathcal{M}_m, m \in M\}$

Each model corresponds to a parametric (although possibly infinite-dimensional) distribution of the data Y:

$$p_m(\mathbf{y} \mid \boldsymbol{\theta}_m, \mathbf{x}) = p(\mathbf{y} \mid \boldsymbol{\theta}_m, \mathcal{M}_m, \mathbf{x})$$

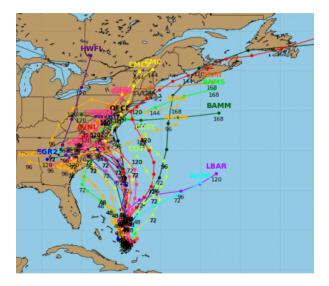
where θ_m corresponds to unknown parameters in the distribution for **Y** under \mathcal{M}_m

 Objective: Obtain predictive distributions or summaries at inputs x*

$$p(\mathbf{y}^* \mid \mathbf{y}, \mathbf{x}, \mathbf{x}^*)$$

WLOG drop dependence on inputs, $p(\mathbf{y}^* \mid \mathbf{y})$

Multiple Models



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Bayesian Perspectives on Model Uncertainty

 $\begin{array}{l} \mathcal{M}\text{-}\mathsf{Closed} \ \text{the true data generating model } \mathcal{M}_{\mathcal{T}} \ \text{is one of} \\ \mathcal{M}_{\textit{m}} \in \textit{M} \ \text{but is unknown to researchers} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bayesian Perspectives on Model Uncertainty

 $\begin{array}{l} \mathcal{M}\text{-}\mathsf{Closed} \ \text{the true data generating model } \mathcal{M}_{\mathcal{T}} \ \text{is one of} \\ \mathcal{M}_m \in M \ \text{but is unknown to researchers} \\ \end{array} \\ \begin{array}{l} \mathcal{M}\text{-}\mathsf{Complete} \ \text{the true model } \mathcal{M}_{\mathcal{T}} \ \text{exists but is not included in the} \\ \text{model list } \mathcal{M}. \ \text{We still wish to use the models in } \mathcal{M} \\ \text{because of tractability of computations or} \\ \text{communication of results, compared with the actual} \\ \text{belief model} \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bayesian Perspectives on Model Uncertainty

 $\begin{array}{l} \mathcal{M}\text{-}\mathsf{Closed} \ \text{the true data generating model } \mathcal{M}_{\mathcal{T}} \ \text{is one of} \\ \mathcal{M}_m \in M \ \text{but is unknown to researchers} \\ \end{array} \\ \begin{array}{l} \mathcal{M}\text{-}\mathsf{Complete} \ \text{the true model } \mathcal{M}_{\mathcal{T}} \ \text{exists but is not included in the} \\ \ \text{model list } \mathcal{M}. \ \text{We still wish to use the models in } \mathcal{M} \\ \ \text{because of tractability of computations or} \\ \ \text{communication of results, compared with the actual} \\ \ \text{belief model} \end{array}$

 \mathcal{M} -Open we know the true model \mathcal{M}_T is not in M, but we cannot specify the explicit form $p(y^* | \mathbf{y})$ because it is too difficult conceptually or computationally, we lack time to do so, or do not have the expertise, etc.

Bernardo & Smith (1994), Clyde & Iversen (2013)

${\sf Predictive \ Distributions \ under \ } {\cal M}{\text{-}}{\sf Closed}$

► A Bayesian would assign a prior probability, p(M_m), representing their belief that each model M_m is the true model.

${\sf Predictive \ Distributions \ under \ } {\cal M}{\text{-}}{\sf Closed}$

- ► A Bayesian would assign a prior probability, p(M_m), representing their belief that each model M_m is the true model.
- ▶ Distributions $p(\theta_m \mid M_m)$ characterizing *a priori* uncertainty

・ロト・日本・モート モー うへぐ

Predictive Distributions under \mathcal{M} -Closed

- ► A Bayesian would assign a prior probability, p(M_m), representing their belief that each model M_m is the true model.
- ▶ Distributions $p(\theta_m \mid M_m)$ characterizing a priori uncertainty

▶ Bayes Theorem: posterior probability of each model p(M_m | Y)

$$p(\mathcal{M}_m \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \mathcal{M}_m) p(\mathcal{M}_m)}{\sum_{m \in M} p(\mathbf{y} \mid \mathcal{M}_m) p(\mathcal{M}_m)}, \quad m \in M$$

where $p(\mathbf{Y} \mid \mathcal{M}_m) = \int p(\mathbf{Y} \mid \boldsymbol{\theta}_m, \mathcal{M}_m) p(\boldsymbol{\theta}_m \mid \mathcal{M}_m) d\boldsymbol{\theta}_m$

${\sf Predictive \ Distributions \ under \ } {\cal M}{\sf -Closed}$

- ► A Bayesian would assign a prior probability, p(M_m), representing their belief that each model M_m is the true model.
- ▶ Distributions $p(\theta_m \mid M_m)$ characterizing a priori uncertainty
- ▶ Bayes Theorem: posterior probability of each model p(M_m | Y)

$$p(\mathcal{M}_m \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \mathcal{M}_m) p(\mathcal{M}_m)}{\sum_{m \in \mathcal{M}} p(\mathbf{y} \mid \mathcal{M}_m) p(\mathcal{M}_m)}, \quad m \in \mathcal{M}$$

where $p(\mathbf{Y} \mid \mathcal{M}_m) = \int p(\mathbf{Y} \mid \boldsymbol{\theta}_m, \mathcal{M}_m) p(\boldsymbol{\theta}_m \mid \mathcal{M}_m) d\boldsymbol{\theta}_m$

Predictive distribution

$$p(\mathbf{y}^*|\mathbf{y}) = \sum_{m \in \mathcal{M}} p(\mathbf{y}^*|\mathcal{M}_m, \mathbf{y}) p(\mathcal{M}_m|\mathbf{y})$$
$$= \sum_{m \in \mathcal{M}} \left[\int p(\mathbf{y}^*|\mathcal{M}_m, \theta_m, \mathbf{y}) p(\theta_m|\mathbf{y}, \mathcal{M}_m) \, d\theta_m \right] p(\mathcal{M}_m|\mathbf{y})$$

Estimation and Prediction

Consider the decision problem of estimation/prediction under squared error loss

$$u(Y^*,a) = -(Y^*-a)^2$$

where a is a possible action (u is utility or negative loss) and Y^* is an unknown.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Estimation and Prediction

Consider the decision problem of estimation/prediction under squared error loss

$$u(Y^*,a) = -(Y^*-a)^2$$

where a is a possible action (u is utility or negative loss) and Y^* is an unknown.

From a Bayesian perspective, the solution is to find the action that maximizes expected utility given the observed data \mathbf{Y} :

$$\mathsf{E}_{\mathbf{Y}^*|\mathbf{Y}}[u(\mathbf{Y}^*,a)] = -\int (y^*-a)^2 p(\mathbf{y}^*|\mathbf{y}) d\mathbf{y}^*$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where the expectation is taken with respect to the predictive distribution of \mathbf{Y}^* given the observed data \mathbf{y} .

 Under the *M*-closed perspective, optimal solution for prediction is Bayesian Model Averaging

$$a^* = \mathsf{E}_{\mathbf{Y}^*}[\mathbf{Y}^* \mid \mathbf{Y}] = \sum_{m \in \mathcal{M}} p(\mathcal{M}_m \mid \mathbf{Y}) \hat{Y}^*_{\mathcal{M}_m}$$

where $\hat{Y}^*_{\mathcal{M}_m}$ is the predictive mean of \textbf{Y}^* under model \mathcal{M}_m

 Under the *M*-closed perspective, optimal solution for prediction is Bayesian Model Averaging

$$a^* = \mathsf{E}_{\mathbf{Y}^*}[\mathbf{Y}^* \mid \mathbf{Y}] = \sum_{m \in \mathcal{M}} p(\mathcal{M}_m \mid \mathbf{Y}) \hat{Y}^*_{\mathcal{M}_m}$$

where $\hat{Y}^*_{\mathcal{M}_m}$ is the predictive mean of \mathbf{Y}^* under model \mathcal{M}_m • Use joint posterior distribution on $\boldsymbol{\theta} \mid \mathcal{M}$ and \mathcal{M} to obtain prediction intervals

► Under the *M*-closed perspective, optimal solution for prediction is Bayesian Model Averaging

$$\mathsf{a}^* = \mathsf{E}_{\mathbf{Y}^*}[\mathbf{Y}^* \mid \mathbf{Y}] = \sum_{m \in \mathcal{M}} p(\mathcal{M}_m \mid \mathbf{Y}) \hat{Y}^*_{\mathcal{M}_m}$$

where $\hat{Y}^*_{\mathcal{M}_m}$ is the predictive mean of \mathbf{Y}^* under model \mathcal{M}_m

- ► Use joint posterior distribution on θ | M and M to obtain prediction intervals
- Full propagation of all "known" uncertainties

 Under the *M*-closed perspective, optimal solution for prediction is Bayesian Model Averaging

$$\mathsf{a}^* = \mathsf{E}_{\mathbf{Y}^*}[\mathbf{Y}^* \mid \mathbf{Y}] = \sum_{m \in \mathcal{M}} p(\mathcal{M}_m \mid \mathbf{Y}) \hat{Y}^*_{\mathcal{M}_m}$$

where $\hat{Y}^*_{\mathcal{M}_m}$ is the predictive mean of \mathbf{Y}^* under model \mathcal{M}_m

- ► Use joint posterior distribution on θ | M and M to obtain prediction intervals
- Full propagation of all "known" uncertainties
- Extensive literature for regression and generalized linear models [Hoeting et al 1999, Clyde & George 2004, Bayarri et al 2012] with invariant priors/Spike & Slab + software
- more complex models via RJ-MCMC, SMC, ABC

Two models in $\ensuremath{\mathcal{M}}$

Two models in $\ensuremath{\mathcal{M}}$

$$\blacktriangleright \mathcal{M}_1 : \mathbf{Y} = \mathbf{X}_1 \beta_1 + \mathbf{e}$$

$$\blacktriangleright \mathcal{M}_2 : \mathbf{Y} = \mathbf{X}_2 \beta_2 + \mathbf{e}$$

True Model
$$\mathbf{Y} = \mathbf{X}_1 \beta_{1T} + \mathbf{X}_2 \beta_{2T} + \mathbf{e}$$

BMA $\hat{\mathbf{Y}}^* = p(\mathcal{M}_1 \mid \mathbf{Y}) \mathbf{X}_1 \hat{\beta}_1 + p(\mathcal{M}_2 \mid \mathbf{Y}) \mathbf{X}_2 \hat{\beta}_2$

Two models in ${\mathcal M}$

$$\blacktriangleright \mathcal{M}_1 : \mathbf{Y} = \mathbf{X}_1 \beta_1 + \mathbf{e}$$

$$\blacktriangleright \mathcal{M}_2 : \mathbf{Y} = \mathbf{X}_2 \beta_2 + \mathbf{e}$$

True Model
$$\mathbf{Y} = \mathbf{X}_1 \beta_{1T} + \mathbf{X}_2 \beta_{2T} + \mathbf{e}$$

BMA $\hat{\mathbf{Y}}^* = p(\mathcal{M}_1 | \mathbf{Y}) \mathbf{X}_1 \hat{\beta}_1 + p(\mathcal{M}_2 | \mathbf{Y}) \mathbf{X}_2 \hat{\beta}_2$

BMA model weights converge to 1 for the model that is "closest" to true model in Kullback-Leibler divergence

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two models in \mathcal{M}

$$\blacktriangleright \mathcal{M}_1 : \mathbf{Y} = \mathbf{X}_1 \beta_1 + \mathbf{e}$$

$$\blacktriangleright \mathcal{M}_2 : \mathbf{Y} = \mathbf{X}_2 \beta_2 + \mathbf{e}$$

True Model
$$\mathbf{Y} = \mathbf{X}_1 \beta_{1T} + \mathbf{X}_2 \beta_{2T} + \mathbf{e}$$

BMA $\hat{\mathbf{Y}}^* = p(\mathcal{M}_1 | \mathbf{Y}) \mathbf{X}_1 \hat{\beta}_1 + p(\mathcal{M}_2 | \mathbf{Y}) \mathbf{X}_2 \hat{\beta}_2$

BMA model weights converge to 1 for the model that is "closest" to true model in Kullback-Leibler divergence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BMA only uses predictions from that model

Two models in \mathcal{M}

$$\blacktriangleright \mathcal{M}_1 : \mathbf{Y} = \mathbf{X}_1 \beta_1 + \mathbf{e}$$

$$\blacktriangleright \mathcal{M}_2 : \mathbf{Y} = \mathbf{X}_2 \beta_2 + \mathbf{e}$$

True Model
$$\mathbf{Y} = \mathbf{X}_1 \beta_{1T} + \mathbf{X}_2 \beta_{2T} + \mathbf{e}$$

BMA $\hat{\mathbf{Y}}^* = p(\mathcal{M}_1 | \mathbf{Y}) \mathbf{X}_1 \hat{\beta}_1 + p(\mathcal{M}_2 | \mathbf{Y}) \mathbf{X}_2 \hat{\beta}_2$

BMA model weights converge to 1 for the model that is "closest" to true model in Kullback-Leibler divergence

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- BMA only uses predictions from that model
- ▶ In the limit BMA is not consistent if $M_T \notin M$

Two models in \mathcal{M}

$$\blacktriangleright \mathcal{M}_1 : \mathbf{Y} = \mathbf{X}_1 \beta_1 + \mathbf{e}$$

$$\blacktriangleright \mathcal{M}_2 : \mathbf{Y} = \mathbf{X}_2 \beta_2 + \mathbf{e}$$

True Model
$$\mathbf{Y} = \mathbf{X}_1 \beta_{1T} + \mathbf{X}_2 \beta_{2T} + \mathbf{e}$$

BMA $\hat{\mathbf{Y}}^* = p(\mathcal{M}_1 | \mathbf{Y}) \mathbf{X}_1 \hat{\beta}_1 + p(\mathcal{M}_2 | \mathbf{Y}) \mathbf{X}_2 \hat{\beta}_2$

- BMA model weights converge to 1 for the model that is "closest" to true model in Kullback-Leibler divergence
- BMA only uses predictions from that model
- ▶ In the limit BMA is not consistent if $M_T \notin M$
- Expand the list of models (prior specification on M)

Two models in \mathcal{M}

$$\blacktriangleright \mathcal{M}_1 : \mathbf{Y} = \mathbf{X}_1 \beta_1 + \mathbf{e}$$

$$\blacktriangleright \mathcal{M}_2 : \mathbf{Y} = \mathbf{X}_2 \beta_2 + \mathbf{e}$$

True Model
$$\mathbf{Y} = \mathbf{X}_1 \beta_{1T} + \mathbf{X}_2 \beta_{2T} + \mathbf{e}$$

BMA $\hat{\mathbf{Y}}^* = p(\mathcal{M}_1 | \mathbf{Y}) \mathbf{X}_1 \hat{\beta}_1 + p(\mathcal{M}_2 | \mathbf{Y}) \mathbf{X}_2 \hat{\beta}_2$

- BMA model weights converge to 1 for the model that is "closest" to true model in Kullback-Leibler divergence
- BMA only uses predictions from that model
- ▶ In the limit BMA is not consistent if $M_T \notin M$
- Expand the list of models (prior specification on M)

Other model ensembles ?

Combining Models as a Decision Problem

▶ In \mathcal{M} -Complete or \mathcal{M} -Open viewpoints, if \mathcal{M}_T is not in the list of models M then $p(\mathcal{M}_m) = 0$ for $\mathcal{M}_m \in M$.

- ▶ In \mathcal{M} -Complete or \mathcal{M} -Open viewpoints, if $\mathcal{M}_{\mathcal{T}}$ is not in the list of models M then $p(\mathcal{M}_m) = 0$ for $\mathcal{M}_m \in M$.
- ► George Box: "All models are wrong, but some may be useful"

- In *M*-Complete or *M*-Open viewpoints, if *M*_T is not in the list of models *M* then *p*(*M*_m) = 0 for *M*_m ∈ *M*.
- ► George Box: "All models are wrong, but some may be useful"

$$a(\mathbf{w},\mathbf{Y}) = \sum w_m \hat{Y}_m^*$$

- In *M*-Complete or *M*-Open viewpoints, if *M*_T is not in the list of models *M* then *p*(*M*_m) = 0 for *M*_m ∈ *M*.
- George Box: "All models are wrong, but some may be useful"

$$a(\mathbf{w},\mathbf{Y}) = \sum w_m \hat{Y}_m^*$$

► Treat weights {w_m, m ∈ m} as part of the action space (rather than an unknown) and maximize posterior expected utility,

$$\mathsf{E}_{\mathbf{Y}^*|\mathbf{y},\mathcal{M}_{\mathcal{T}}}[u(\mathbf{Y}^*,a(\mathbf{w},\mathbf{y}))] = \int u(\mathbf{y}^*,a(\mathbf{w},\mathbf{y},))p(\mathbf{y}^*\mid\mathbf{y},\mathcal{M}_{\mathcal{T}})$$

- In *M*-Complete or *M*-Open viewpoints, if *M*_T is not in the list of models *M* then *p*(*M*_m) = 0 for *M*_m ∈ *M*.
- ► George Box: "All models are wrong, but some may be useful"

$$a(\mathbf{w},\mathbf{Y}) = \sum w_m \hat{Y}_m^*$$

► Treat weights {w_m, m ∈ m} as part of the action space (rather than an unknown) and maximize posterior expected utility,

$$\mathsf{E}_{\mathbf{Y}^*|\mathbf{y},\mathcal{M}_{\mathcal{T}}}[u(\mathbf{Y}^*,a(\mathbf{w},\mathbf{y}))] = \int u(\mathbf{y}^*,a(\mathbf{w},\mathbf{y},))\rho(\mathbf{y}^*\mid\mathbf{y},\mathcal{M}_{\mathcal{T}})$$

For negative squared error:

$$-\mathsf{E}_{\mathbf{Y}^*|\mathbf{y},\mathcal{M}_{\mathcal{T}}}\|\mathbf{Y}^*-a(\mathbf{w},\mathbf{y})\|^2 = -\int \|\mathbf{y}^*-\sum_m w_m \hat{\mathbf{Y}}_m^*\|^2 p(\mathbf{y}^*\mid\mathbf{y},\mathcal{M}_{\mathcal{T}})$$

- In *M*-Complete or *M*-Open viewpoints, if *M*_T is not in the list of models *M* then *p*(*M*_m) = 0 for *M*_m ∈ *M*.
- ► George Box: "All models are wrong, but some may be useful"

$$a(\mathbf{w},\mathbf{Y}) = \sum w_m \hat{Y}_m^*$$

► Treat weights {w_m, m ∈ m} as part of the action space (rather than an unknown) and maximize posterior expected utility,

$$\mathsf{E}_{\mathbf{Y}^*|\mathbf{y},\mathcal{M}_{\mathcal{T}}}[u(\mathbf{Y}^*,a(\mathbf{w},\mathbf{y}))] = \int u(\mathbf{y}^*,a(\mathbf{w},\mathbf{y},))\rho(\mathbf{y}^*\mid\mathbf{y},\mathcal{M}_{\mathcal{T}})$$

For negative squared error:

$$-\mathsf{E}_{\mathbf{Y}^*|\mathbf{y},\mathcal{M}_{\mathcal{T}}}\|\mathbf{Y}^*-a(\mathbf{w},\mathbf{y})\|^2 = -\int \|\mathbf{y}^*-\sum_m w_m \hat{\mathbf{Y}}_m^*\|^2 p(\mathbf{y}^*\mid\mathbf{y},\mathcal{M}_{\mathcal{T}})$$

▶ Focus on *M*-Open case

▶ No explicit form for $p(\mathbf{y}^* | \mathbf{y}, \mathcal{M}_T)$ under \mathcal{M}_T

▶ No explicit form for $p(\mathbf{y}^* | \mathbf{y}, \mathcal{M}_T)$ under \mathcal{M}_T

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• partition the data: $\mathbf{Y} = (\mathbf{Y}_j, \mathbf{Y}_{(-j)})$

- ▶ No explicit form for $p(\mathbf{y}^* | \mathbf{y}, \mathcal{M}_T)$ under \mathcal{M}_T
- partition the data: $\mathbf{Y} = (\mathbf{Y}_j, \mathbf{Y}_{(-j)})$
 - ▶ **Y**_j is a proxy for **Y**^{*} (the future observation(s))

- ▶ No explicit form for $p(\mathbf{y}^* | \mathbf{y}, \mathcal{M}_T)$ under \mathcal{M}_T
- partition the data: $\mathbf{Y} = (\mathbf{Y}_j, \mathbf{Y}_{(-j)})$
 - ▶ **Y**_j is a proxy for **Y**^{*} (the future observation(s))

• $\mathbf{Y}_{(-j)}$ is a proxy for \mathbf{Y} (the observed data)

\mathcal{M} -Open Predictive Distribution

- ▶ No explicit form for $p(\mathbf{y}^* | \mathbf{y}, \mathcal{M}_T)$ under \mathcal{M}_T
- partition the data: $\mathbf{Y} = (\mathbf{Y}_j, \mathbf{Y}_{(-j)})$
 - ► Y_j is a proxy for Y^{*} (the future observation(s))
 - $\mathbf{Y}_{(-j)}$ is a proxy for \mathbf{Y} (the observed data)

randomly select J partitions,

$$\int u(\mathbf{Y}^*, \mathbf{a}(\mathbf{w}, \mathbf{y})) p(\mathbf{y}^* \mid \mathbf{y}, \mathcal{M}_T) \ d\mathbf{y}^* \approx \frac{1}{J} \sum_{j=1}^J u(Y_j, \mathbf{a}(\mathbf{w}, Y_{(-j)}))$$

\mathcal{M} -Open Predictive Distribution

- ▶ No explicit form for $p(\mathbf{y}^* | \mathbf{y}, \mathcal{M}_T)$ under \mathcal{M}_T
- partition the data: $\mathbf{Y} = (\mathbf{Y}_j, \mathbf{Y}_{(-j)})$
 - ► Y_j is a proxy for Y^{*} (the future observation(s))
 - $\mathbf{Y}_{(-j)}$ is a proxy for \mathbf{Y} (the observed data)

randomly select J partitions,

$$\int u(\mathbf{Y}^*, \mathbf{a}(\mathbf{w}, \mathbf{y})) p(\mathbf{y}^* \mid \mathbf{y}, \mathcal{M}_T) \ d\mathbf{y}^* \approx \frac{1}{J} \sum_{j=1}^J u(Y_j, \mathbf{a}(\mathbf{w}, Y_{(-j)}))$$

Key et al. + Clyde & lversen justification of cross-validation to approximate expected posterior utility.

\mathcal{M} -Open Predictive Distribution

- ▶ No explicit form for $p(\mathbf{y}^* | \mathbf{y}, \mathcal{M}_T)$ under \mathcal{M}_T
- partition the data: $\mathbf{Y} = (\mathbf{Y}_j, \mathbf{Y}_{(-j)})$
 - ▶ **Y**_j is a proxy for **Y**^{*} (the future observation(s))
 - $\mathbf{Y}_{(-j)}$ is a proxy for \mathbf{Y} (the observed data)

randomly select J partitions,

$$\int u(\mathbf{Y}^*, \mathbf{a}(\mathbf{w}, \mathbf{y})) p(\mathbf{y}^* \mid \mathbf{y}, \mathcal{M}_T) \ d\mathbf{y}^* \approx \frac{1}{J} \sum_{j=1}^J u(Y_j, \mathbf{a}(\mathbf{w}, Y_{(-j)}))$$

Key et al. + Clyde & lversen justification of cross-validation to approximate expected posterior utility.

Guterriez-Pena & Walker approximation to a (limiting)
Dirichlet process model for estimating unknown distribution F for M_T

$$\int u(y^*, a^*(\mathbf{w}, \mathbf{y})) dF_n(y^*) \to \frac{1}{n} \sum_{i=1}^n u(y_i, a^*(\mathbf{w}, \mathbf{Y}_{(-i)}))$$

Optimization Problem under Approximation Find weights

$$\hat{w} = \arg \max_{\mathbf{w}} -\frac{1}{J} \sum_{j=1}^{J} \left(Y_j - \sum_{m \in \mathcal{M}} w_m \hat{Y}_{(-j),\mathcal{M}_m} \right)^2$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Optimization Problem under Approximation Find weights

$$\hat{w} = \arg \max_{\mathbf{w}} -\frac{1}{J} \sum_{j=1}^{J} \left(Y_j - \sum_{m \in \mathcal{M}} w_m \hat{Y}_{(-j),\mathcal{M}_m} \right)^2$$

Constrained Solution:

Find weights:
$$\hat{w} = \arg \max_{\mathbf{w}} -\frac{1}{J} \sum_{j=1}^{J} \left(Y_j - \sum_{m \in \mathcal{M}} w_m \hat{Y}_{(-j),\mathcal{M}_m} \right)^2$$

subject to $\sum_i w_m = 1$
 $w_m \geq 0 \quad \forall m \in \mathcal{M}$

~

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Optimization Problem under Approximation Find weights

$$\hat{w} = \arg \max_{\mathbf{w}} \ -\frac{1}{J} \sum_{j=1}^{J} \left(Y_j - \sum_{m \in \mathcal{M}} w_m \hat{Y}_{(-j), \mathcal{M}_m} \right)^2$$

Constrained Solution:

Find weights:
$$\hat{w} = \arg \max_{\mathbf{w}} -\frac{1}{J} \sum_{j=1}^{J} \left(Y_j - \sum_{m \in \mathcal{M}} w_m \hat{Y}_{(-j),\mathcal{M}_m} \right)^2$$

subject to $\sum_{i} w_m = 1$
 $w_m \geq 0 \quad \forall m \in \mathcal{M}$

Equivalent representation (Lagrangian):

$$-\frac{1}{J}\sum_{j=1}^{J}\left(Y_{j}-\sum_{m\in\mathcal{M}}w_{m}\hat{Y}_{(-j),\mathcal{M}_{m}}\right)^{2}-\lambda_{0}\left(\sum_{m}^{M}w_{m}-1\right)+\sum_{m}^{M}\lambda_{m}w_{m}$$

Let $\mathbf{e} = [e]_{ji} = Y_j - \hat{Y}_{(-j)\mathcal{M}_i}$ denote the $n \times M$ matrix of residuals for predicting Y_j under model \mathcal{M}_i .

Let $\mathbf{e} = [e]_{ji} = Y_j - \hat{Y}_{(-j)\mathcal{M}_i}$ denote the $n \times M$ matrix of residuals for predicting Y_j under model \mathcal{M}_i .

 \blacktriangleright With sum to 1 constraint alone, $\hat{\mathbf{w}} \propto (\mathbf{e}^{\mathcal{T}} \mathbf{e})^{-1} \mathbf{1}$

Let $\mathbf{e} = [e]_{ji} = Y_j - \hat{Y}_{(-j)\mathcal{M}_i}$ denote the $n \times M$ matrix of residuals for predicting Y_j under model \mathcal{M}_i .

- With sum to 1 constraint alone, $\hat{\mathbf{w}} \propto (\mathbf{e}^T \mathbf{e})^{-1} \mathbf{1}$
- If residuals from models are uncorrelated, then weights are proportional to the inverse of the cross-validation MSE for model *M_i*, MSE_i = ∑_j e²_{ij}

Let $\mathbf{e} = [e]_{ji} = Y_j - \hat{Y}_{(-j)\mathcal{M}_i}$ denote the $n \times M$ matrix of residuals for predicting Y_j under model \mathcal{M}_i .

- \blacktriangleright With sum to 1 constraint alone, $\hat{\mathbf{w}}\propto(\mathbf{e}^{T}\mathbf{e})^{-1}\mathbf{1}$
- If residuals from models are uncorrelated, then weights are proportional to the inverse of the cross-validation MSE for model *M_i*, MSE_i = ∑_j e²_{ij}
- With highly correlated predictions/residual weights may be negative and highly unstable

Let $\mathbf{e} = [e]_{ji} = Y_j - \hat{Y}_{(-j)\mathcal{M}_i}$ denote the $n \times M$ matrix of residuals for predicting Y_j under model \mathcal{M}_i .

- \blacktriangleright With sum to 1 constraint alone, $\hat{\mathbf{w}}\propto(\mathbf{e}^{T}\mathbf{e})^{-1}\mathbf{1}$
- If residuals from models are uncorrelated, then weights are proportional to the inverse of the cross-validation MSE for model *M_i*, MSE_i = ∑_j e²_{ij}
- With highly correlated predictions/residual weights may be negative and highly unstable
- Non-negativity lasso-like constraint stabilizes weights, and may drive weights to 0 for similar models

Let $\mathbf{e} = [e]_{ji} = Y_j - \hat{Y}_{(-j)\mathcal{M}_i}$ denote the $n \times M$ matrix of residuals for predicting Y_j under model \mathcal{M}_i .

- \blacktriangleright With sum to 1 constraint alone, $\hat{\mathbf{w}}\propto(\mathbf{e}^{T}\mathbf{e})^{-1}\mathbf{1}$
- If residuals from models are uncorrelated, then weights are proportional to the inverse of the cross-validation MSE for model *M_i*, MSE_i = ∑_j e²_{ij}
- With highly correlated predictions/residual weights may be negative and highly unstable
- Non-negativity lasso-like constraint stabilizes weights, and may drive weights to 0 for similar models

Provides a Bayesian justification for classical stacking (Wolpert 1992, Breiman 1996)

Let $\mathbf{e} = [e]_{ji} = Y_j - \hat{Y}_{(-j)\mathcal{M}_i}$ denote the $n \times M$ matrix of residuals for predicting Y_j under model \mathcal{M}_i .

- \blacktriangleright With sum to 1 constraint alone, $\hat{\mathbf{w}}\propto(\mathbf{e}^{\mathcal{T}}\mathbf{e})^{-1}\mathbf{1}$
- If residuals from models are uncorrelated, then weights are proportional to the inverse of the cross-validation MSE for model *M_i*, MSE_i = ∑_j e²_{ij}
- With highly correlated predictions/residual weights may be negative and highly unstable
- Non-negativity lasso-like constraint stabilizes weights, and may drive weights to 0 for similar models

Provides a Bayesian justification for classical stacking (Wolpert 1992, Breiman 1996)

Super-Learners! h2oEnsemble

Predict short *vs.* long-term survival given primary tumor's molecular phenotype.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Predict short *vs.* long-term survival given primary tumor's molecular phenotype.

 Retrospective sample of survivors of advanced stage serous ovarian cancer

- ▶ n = 30 short-term (< 3 years)</p>
- n = 24 long-term (> 7 years)

Predict short *vs.* long-term survival given primary tumor's molecular phenotype.

 Retrospective sample of survivors of advanced stage serous ovarian cancer

- ▶ *n* = 30 short-term (< 3 years)
- n = 24 long-term (> 7 years)

Eleven early stage (I/II) cases for external validation.

Predict short *vs.* long-term survival given primary tumor's molecular phenotype.

- Retrospective sample of survivors of advanced stage serous ovarian cancer
 - n = 30 short-term (< 3 years)
 - n = 24 long-term (> 7 years)
- Eleven early stage (I/II) cases for external validation.
- ► Affymetrix U133a expression microarray; 22, 283 genes.

Predict short *vs.* long-term survival given primary tumor's molecular phenotype.

- Retrospective sample of survivors of advanced stage serous ovarian cancer
 - n = 30 short-term (< 3 years)
 - n = 24 long-term (> 7 years)
- ► Eleven early stage (I/II) cases for external validation.
- ► Affymetrix U133a expression microarray; 22, 283 genes.

6 clinical variables

Predict short *vs.* long-term survival given primary tumor's molecular phenotype.

- Retrospective sample of survivors of advanced stage serous ovarian cancer
 - n = 30 short-term (< 3 years)
 - n = 24 long-term (> 7 years)
- ► Eleven early stage (I/II) cases for external validation.
- ► Affymetrix U133a expression microarray; 22, 283 genes.

6 clinical variables

Three classes of models:

 Clinical Trees: (5 models) Prospective classification and regression tree models using only clinical variables such as age, post-treatment CA125 levels, etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Three classes of models:

- Clinical Trees: (5 models) Prospective classification and regression tree models using only clinical variables such as age, post-treatment CA125 levels, etc.
- Expression Trees: (4 models) Prospective Classification and regression tree models using only expression data.

Three classes of models:

- Clinical Trees: (5 models) Prospective classification and regression tree models using only clinical variables such as age, post-treatment CA125 levels, etc.
- Expression Trees: (4 models) Prospective Classification and regression tree models using only expression data.

Expression LDA: (4 models) Retrospective discriminant models built using expression data given survival.

Three classes of models:

- Clinical Trees: (5 models) Prospective classification and regression tree models using only clinical variables such as age, post-treatment CA125 levels, etc.
- Expression Trees: (4 models) Prospective Classification and regression tree models using only expression data.
- Expression LDA: (4 models) Retrospective discriminant models built using expression data given survival.

Find MOMA (\mathcal{M} -Open Model Averaging) weights \hat{w} using all long term and short term survivors

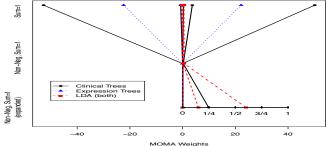
Three classes of models:

- Clinical Trees: (5 models) Prospective classification and regression tree models using only clinical variables such as age, post-treatment CA125 levels, etc.
- Expression Trees: (4 models) Prospective Classification and regression tree models using only expression data.
- Expression LDA: (4 models) Retrospective discriminant models built using expression data given survival.

Find MOMA (\mathcal{M} -Open Model Averaging) weights \hat{w} using all long term and short term survivors

- sum to 1 constraint
- + non-negativity constraint

MOMA Weights



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Validation Experiment

 5-fold cross validation; 5 splits of data into two groups: Training Y and Validation Y*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Validation Experiment

- 5-fold cross validation; 5 splits of data into two groups: Training Y and Validation Y*
- \blacktriangleright Use training data to obtain model weights \hat{w} via LOO

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Validation Experiment

- 5-fold cross validation; 5 splits of data into two groups: Training Y and Validation Y*
- \blacktriangleright Use training data to obtain model weights $\hat{\mathbf{w}}$ via LOO
- Construct *M*-Open Model Averaging (MOMA) estimates of probability of long term survival p̂_j = ∑_i ŵ_i Ŷ^{*}_{Mi}(Y) for validation samples

Validation Experiment

- 5-fold cross validation; 5 splits of data into two groups: Training Y and Validation Y*
- \blacktriangleright Use training data to obtain model weights $\hat{\mathbf{w}}$ via LOO
- Construct *M*-Open Model Averaging (MOMA) estimates of probability of long term survival p̂_j = ∑_i ŵ_i Ŷ^{*}_{M_i}(Y) for validation samples

• Classify as Long Term Survivor $\hat{p}_j \ge 1/2$

Validation Experiment

- 5-fold cross validation; 5 splits of data into two groups: Training Y and Validation Y*
- \blacktriangleright Use training data to obtain model weights $\hat{\mathbf{w}}$ via LOO
- Construct *M*-Open Model Averaging (MOMA) estimates of probability of long term survival p̂_j = ∑_i ŵ_i Ŷ^{*}_{M_i}(Y) for validation samples

- Classify as Long Term Survivor $\hat{p}_j \ge 1/2$
- Compute classification accuracy over 5 Splits

MOMA with Sum-to-1 Constraint

	set1	set2	set3	set4	set5
clin1	53.08	-4.43	-0.01	-24.41	15.94
clin2	-79.92	-5.16	0.90	0.80	-4.63
clin3	-1.25	-0.24	-0.90	-0.01	5.35
clin4	27.36	10.14	-0.33	23.73	-17.24
clin5	1.13	0.27	0.27	0.36	0.55
tree1	-0.05	-0.55	-2.92	0.03	27.93
tree2	-0.12	-0.07	-3.21	-0.62	0.63
tree3	0.51	0.53	0.15	0.48	-3.35
tree4	-0.28	0.22	6.26	-0.04	-24.10
lda100.P1	-0.40	0.04	-0.01	0.02	-0.11
lda100.P2	0.44	-0.02	0.53	-0.06	-0.07
lda200.P1	0.30	0.17	-0.32	0.09	-0.03
Ida200.P2	0.21	0.08	0.60	0.63	0.12
Accuracy	0.64	0.64	0.46	0.73	0.60

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

MOMA with Non-negativity Constraint

	set1	set2	set3	set4	set5
clin1	0.00	0.07	0.00	0.00	0.00
clin2	0.00	0.00	0.00	0.00	0.00
clin3	0.00	0.00	0.00	0.00	0.00
clin4	0.00	0.11	0.00	0.00	0.00
clin5	0.30	0.17	0.07	0.41	0.00
tree1	0.00	0.00	0.00	0.00	0.77
tree2	0.00	0.00	0.00	0.00	0.21
tree3	0.23	0.44	0.21	0.00	0.01
tree4	0.00	0.00	0.00	0.00	0.01
lda100.P1	0.00	0.00	0.00	0.00	0.00
lda100.P2	0.22	0.00	0.30	0.00	0.00
lda200.P1	0.00	0.00	0.00	0.00	0.00
lda200.P2	0.26	0.21	0.41	0.58	0.00
Accuracy	0.82	0.73	0.55	0.73	0.60

<□ > < @ > < E > < E > E のQ @

 Under negative squared error loss, only have optimal point predictions

- Under negative squared error loss, only have optimal point predictions
- Stacking probabilistic forecasts $P \in \mathcal{P}$

$$a(\mathbf{w},\mathbf{y}) = \sum_m w_m p(\mathbf{y}^* \mid \mathbf{y}, \mathcal{M}_m)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Under negative squared error loss, only have optimal point predictions
- Stacking probabilistic forecasts $P \in \mathcal{P}$

$$a(\mathbf{w},\mathbf{y}) = \sum_{m} w_{m} p(\mathbf{y}^{*} \mid \mathbf{y}, \mathcal{M}_{m})$$

▶ Proper Scoring rules: $S(Q, Q) \ge S(P, Q)$ for $P, Q \in P$

$$S(P,Q)\equiv\int S(P,\omega)dQ(\omega)$$

- Under negative squared error loss, only have optimal point predictions
- Stacking probabilistic forecasts $P \in \mathcal{P}$

$$a(\mathbf{w},\mathbf{y}) = \sum_{m} w_{m} p(\mathbf{y}^{*} \mid \mathbf{y}, \mathcal{M}_{m})$$

▶ Proper Scoring rules: $S(Q, Q) \ge S(P, Q)$ for $P, Q \in P$

$$S(P,Q) \equiv \int S(P,\omega) dQ(\omega)$$

Strictly Proper S(Q, Q) ≥ S(P, Q) with equality only when P = Q almost surely

- Under negative squared error loss, only have optimal point predictions
- Stacking probabilistic forecasts $P \in \mathcal{P}$

$$a(\mathbf{w},\mathbf{y}) = \sum_{m} w_{m} p(\mathbf{y}^{*} \mid \mathbf{y}, \mathcal{M}_{m})$$

▶ Proper Scoring rules: $S(Q, Q) \ge S(P, Q)$ for $P, Q \in P$

$$S(P,Q)\equiv\int S(P,\omega)dQ(\omega)$$

- Strictly Proper S(Q, Q) ≥ S(P, Q) with equality only when P = Q almost surely
- Negative Quadratic Loss is proper, but not a strictly proper scoring rule

- Under negative squared error loss, only have optimal point predictions
- Stacking probabilistic forecasts $P \in \mathcal{P}$

$$a(\mathbf{w},\mathbf{y}) = \sum_{m} w_{m} p(\mathbf{y}^{*} \mid \mathbf{y}, \mathcal{M}_{m})$$

▶ Proper Scoring rules: $S(Q, Q) \ge S(P, Q)$ for $P, Q \in P$

$$S(P,Q) \equiv \int S(P,\omega) dQ(\omega)$$

- ► Strictly Proper S(Q, Q) ≥ S(P, Q) with equality only when P = Q almost surely
- Negative Quadratic Loss is proper, but not a strictly proper scoring rule
- ► Logarithmic Score $S(P, y^*) = \log(p(y^*))$

 Ensemble BMA (Raftery + coauthors 2005 ...) weather forecasting

 Ensemble BMA (Raftery + coauthors 2005 ...) weather forecasting

$$\arg\max_{\mathbf{w},\sigma^2}\sum_i \log(\sum_m^M w_m p(y_i^* \mid \mathbf{y}, \mathcal{M}_m, \sigma^2))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Ensemble BMA (Raftery + coauthors 2005 ...) weather forecasting

$$\arg\max_{\mathbf{w},\sigma^2}\sum_{i}\log(\sum_{m}^{M}w_{m}p(y_{i}^{*} \mid \mathbf{y}, \mathcal{M}_{m}, \sigma^{2})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• p_m Gaussian distributions centered at $a_m + b_m \hat{\mathbf{Y}}_m^*$

 Ensemble BMA (Raftery + coauthors 2005 ...) weather forecasting

$$\arg\max_{\mathbf{w},\sigma^2}\sum_{i}\log(\sum_{m}^{M}w_{m}p(y_{i}^{*} \mid \mathbf{y}, \mathcal{M}_{m}, \sigma^{2})$$

- p_m Gaussian distributions centered at $a_m + b_m \hat{\mathbf{Y}}_m^*$
- allows for bias and calibration of computer model output

 Ensemble BMA (Raftery + coauthors 2005 ...) weather forecasting

$$\arg\max_{\mathbf{w},\sigma^2}\sum_{i}\log(\sum_{m}^{M}w_{m}p(y_{i}^{*} \mid \mathbf{y}, \mathcal{M}_{m}, \sigma^{2})$$

- p_m Gaussian distributions centered at $a_m + b_m \hat{\mathbf{Y}}_m^*$
- allows for bias and calibration of computer model output

- common unknown variance σ^2 in each component

 Ensemble BMA (Raftery + coauthors 2005 ...) weather forecasting

$$\arg\max_{\mathbf{w},\sigma^2}\sum_{i}\log(\sum_{m}^{M}w_{m}p(y_{i}^{*} \mid \mathbf{y}, \mathcal{M}_{m}, \sigma^{2})$$

- p_m Gaussian distributions centered at $a_m + b_m \hat{\mathbf{Y}}_m^*$
- allows for bias and calibration of computer model output

- common unknown variance σ^2 in each component
- weights evolve with time

 Ensemble BMA (Raftery + coauthors 2005 ...) weather forecasting

$$\arg\max_{\mathbf{w},\sigma^2}\sum_{i}\log(\sum_{m}^{M}w_{m}p(y_{i}^{*} \mid \mathbf{y}, \mathcal{M}_{m}, \sigma^{2}))$$

- p_m Gaussian distributions centered at $a_m + b_m \hat{\mathbf{Y}}_m^*$
- allows for bias and calibration of computer model output

- common unknown variance σ² in each component
- weights evolve with time
- multivariate outcomes
- West + coauthors Dynamic Linear Models (economic forecasting) with dynamic weights

 Ensemble BMA (Raftery + coauthors 2005 ...) weather forecasting

$$\arg\max_{\mathbf{w},\sigma^2}\sum_i \log(\sum_m^M w_m p(y_i^* \mid \mathbf{y}, \mathcal{M}_m, \sigma^2))$$

- p_m Gaussian distributions centered at $a_m + b_m \hat{\mathbf{Y}}_m^*$
- allows for bias and calibration of computer model output
- common unknown variance σ^2 in each component
- weights evolve with time
- multivariate outcomes
- West + coauthors Dynamic Linear Models (economic forecasting) with dynamic weights
- Gaussian Process emulators for computer models and statistical models

 Model Averaging for Uncertainty Quantification under different perspectives

 Model Averaging for Uncertainty Quantification under different perspectives

- Dependence on Choice of Utility Functions
 - squared error loss point estimates
 - proper scoring rules distributions
 - quantiles

- Model Averaging for Uncertainty Quantification under different perspectives
- Dependence on Choice of Utility Functions
 - squared error loss point estimates
 - proper scoring rules distributions
 - quantiles
- ▶ Partitions of data for approximation? LOO, *k*-fold, sequential

- Model Averaging for Uncertainty Quantification under different perspectives
- Dependence on Choice of Utility Functions
 - squared error loss point estimates
 - proper scoring rules distributions
 - quantiles
- ▶ Partitions of data for approximation? LOO, *k*-fold, sequential
- Incorporation of Model Complexity/Regularization in Utility (sum to one?)

- Model Averaging for Uncertainty Quantification under different perspectives
- Dependence on Choice of Utility Functions
 - squared error loss point estimates
 - proper scoring rules distributions
 - quantiles
- ▶ Partitions of data for approximation? LOO, *k*-fold, sequential
- Incorporation of Model Complexity/Regularization in Utility (sum to one?)
- Optimization: Quadratic programming, EM, variational, ABC

- Model Averaging for Uncertainty Quantification under different perspectives
- Dependence on Choice of Utility Functions
 - squared error loss point estimates
 - proper scoring rules distributions
 - quantiles
- ▶ Partitions of data for approximation? LOO, *k*-fold, sequential
- Incorporation of Model Complexity/Regularization in Utility (sum to one?)
- Optimization: Quadratic programming, EM, variational, ABC

Mixture Models and Mixtures of Experts

- Model Averaging for Uncertainty Quantification under different perspectives
- Dependence on Choice of Utility Functions
 - squared error loss point estimates
 - proper scoring rules distributions
 - quantiles
- ▶ Partitions of data for approximation? LOO, *k*-fold, sequential
- Incorporation of Model Complexity/Regularization in Utility (sum to one?)
- Optimization: Quadratic programming, EM, variational, ABC
- Mixture Models and Mixtures of Experts
- SAMSI Program 2018-19 Model Uncertainty and Uncertainty Quantification