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Poisson’s Equation Here, and Elsewhere

Poisson’s Equation
What is it?

All that is required here is the Langevin Diffusion with potential U :

dΦt = −∇U(Φt) dt+
√

2 dWt, Φ ∈ Rd

invariant density ρ ∝ e−U .

Function h ∈ C2 solves Poisson’s equation:

Dh = −c̃
where

c : Rd → R is the forcing function.

normalized forcing function: c̃ = c− η, η =
∫
c(x)ρ(x)dx.

Differential generator:

Df = −∇U · ∇f + ∆f, f ∈ C2
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Poisson’s Equation Here, and Elsewhere Gain solution for the Feedback Particle Filter

Feedback Particle Filter

Signal: dXt = a(Xt )dt+ dBt, X0 ∼ ρ∗0
Observation: dZt = c(Xt )dt+ dWt

X := {Xt : t ≥ 0} is the state process.

Z := {Zt : t ≥ 0} is the observation process.

a( · ), c( · ) are C1 functions.

{Bt},{Wt} are mutually independent Wiener processes.

ρ∗t posterior distribution: P (Xt | Zs : s ≤ t)

Nonlinear filter: PDE to compute ρ∗t
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Poisson’s Equation Here, and Elsewhere Gain solution for the Feedback Particle Filter

Feedback Particle Filter

Approximation of posterior :

ρ∗t (A) ≈ ρ(N)
t (A) =

1

N

N∑
i=1

I{Xi
t ∈ A}, A ∈ B(Rd).

Particle dynamics

dX
(i)
t = a(Xi

t)dt+ dBi
t + dU it , i = 1 . . . , N

Xi
t ∈ R is the state of the ith particle at time t

U it is the “control input”

{Bi
t} are mutually independent Wiener processes

– statistically identical to state disturbance
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Poisson’s Equation Here, and Elsewhere Gain solution for the Feedback Particle Filter

Feedback Particle Filter

Particle dynamics

dX
(i)
t = a(Xi

t)dt+ dBi
t + dU it , i = 1 to N

dU it = Kt(X
i
t) ◦ (

dIit︷ ︸︸ ︷
dZt − 1

2 [c(Xi
t) + ĉt]dt) ,

Iit : Innovations process
Kt : FPF gain, similar in nature to the Kalman gain.

Representation: Kt = ∇h
h solves Poisson’s equation: −c̃ = Dh = −∇U · ∇h+ ∆h.

Forcing function c is the observation function, dZt = c(Xt )dt+ dWt.

Potential Ut = − log(ρt)

4 / 25



Poisson’s Equation Here, and Elsewhere Gain solution for the Feedback Particle Filter

Feedback Particle Filter

Particle dynamics

dX
(i)
t = a(Xi

t)dt+ dBi
t + dU it , i = 1 to N

dU it = Kt(X
i
t) ◦ (

dIit︷ ︸︸ ︷
dZt − 1

2 [c(Xi
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K̂ =
N∑
i=1

[
β0∗
i S(x

i, · ) +
d∑

k=1

βk∗i
∂

∂xk
S(xi, · )

]

Monte-Carlo Techniques for Approximation



Monte-Carlo Techniques for Approximation TD-Learning

Monte-Carlo Approximation Methods

Goal of TD-Learning (in this context): for a given function class H, find
best approximation to Poisson’s equation in L2(ρ):

g := arg min
g∈H

‖h− g‖2L2

One of many challenges:

no algorithm exists for state spaces of dimension > 1 [12, 7]
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Monte-Carlo Techniques for Approximation Differential TD-Learning

Monte-Carlo Approximation Methods

Revisit TD-learning with our goal in mind:

g∗ := arg min
g∈H

‖∇h−∇g‖2L2

Two approaches for H have been considered:

Finitely parameterized family: [3] “differential TD Learning”

Choice of basis is not an easy task
=⇒ RKHS framework is far easier to implement.

See also the remarkable kernel approach of Taghvaei & Mehta [1].
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Monte-Carlo Techniques for Approximation Differential TD-Learning

Monte-Carlo Approximation Methods

Revisit TD-learning with our goal in mind:

g∗ := arg min
g∈H

‖∇h−∇g‖2L2

Challenge: the function h is not known,
and hence the objective function is not observable

Resolution: if h, g ∈ L2(ρ)

〈∇h,∇g〉L2 = −〈h,Dg〉L2 = −〈Dh, g〉L2 .

Applying this and Poisson’s equation Dh = −c̃:

‖∇h−∇g‖2L2 = ‖∇h‖2L2 + ‖∇g‖2L2 − 2〈∇h,∇g〉L2

= ‖∇h‖2L2 + ‖∇g‖2L2 − 2〈c̃, g〉L2
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Monte-Carlo Techniques for Approximation Differential TD-Learning

Monte-Carlo Approximation Methods

Revisit TD-learning with our goal in mind:

g∗ := arg min
g∈H

‖∇h−∇g‖2L2

Observable objective function:

g∗ = arg min
g∈H

{
‖∇g‖2L2 − 2〈c̃, g〉L2

}
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Monte-Carlo Techniques for Approximation Differential TD-Learning: finite dimensional function class

Monte-Carlo Approximation Methods

g∗ := arg min
g∈H

‖∇h−∇g‖2L2 = arg min
g∈H

{
‖∇g‖2L2 − 2〈c̃, g〉L2

}
Finite dimensional function class, H = {θTψ : θ ∈ R`}

:

θ∗ = M−1b,

Mij = 〈∇ψi,∇ψj〉L2

≈ 1

t

∫ t

0

∇ψ(Φs)∇ψT(Φs)ds

bi = 〈∇ψi,∇h〉L2 = 〈ψi, c̃〉L2

≈ 1

t

∫ t

0

ψ(Φs) c̃(Φs) ds
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Monte-Carlo Techniques for Approximation Differential TD-Learning: RKHS & ERM

Monte-Carlo Approximation Methods

RKHS provides a basis independent approach to function approximation
within a (potentially) richer function class.

Assumptions:

• Symmetric : S(x, y) = S(y, x) for any x, y ∈ Rd

• Positive definite: For any finite subset {xi} ⊂ Rd, the matrix
{Mij := S(xi, xj)} is positive definite.

• Smooth: S is C2.
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Monte-Carlo Techniques for Approximation Differential TD-Learning: RKHS & ERM

Monte-Carlo Approximation Methods

Vector space H◦: all finite linear combinations

gα(y) =

m∑
i=1

αiS(xi, y), y ∈ Rd ,

scalars {αi} ⊂ R and {xi} ⊂ Rd arbitrary.

Inner product: for gα, gβ ∈ H◦,

〈gα, gβ〉H :=
∑
i,j

αiβjS(xi, zj)

Reproducing property: gα(x) = 〈gα, S(x, · )〉 , x ∈ Rd.

Assume H◦ admits a completion H
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Monte-Carlo Techniques for Approximation Differential TD-Learning: RKHS & ERM

Monte-Carlo Approximation Methods

Recall goal:

g∗ = arg min
g∈H

{
‖∇g‖2L2 − 2〈c̃, g〉L2

}
Approximation via empirical risk minimization (ERM):

arg min
g∈H

1

N

N∑
i=1

[
‖∇g(xi)‖2 − 2c̃N (xi)g(xi)

]
+ λ‖g‖2H

where c̃ is also approximated:

c̃N (x) = c(x)− 1

N

N∑
i=1

c(xi) , x ∈ Rd .

Regularization parameter λ > 0 introduced to avoid overfitting.
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Monte-Carlo Techniques for Approximation Extended Representer Theorem for Differential Loss

Monte-Carlo Approximation Methods

Extended Representer Theorem [Zhou 08]

If loss function L(x, · , · ) is convex on Rd+1 for each x ∈ Rd, then the
optimizer g∗ over g ∈ H exists, is unique and has the form

g∗( · ) =

N∑
i=1

[
β0∗i S(xi, · ) +

d∑
k=1

βk∗i
∂

∂xk
S(xi, · )

]
,

where {βk∗i : i = 1, · · · , N, k = 0, · · · , d} are real numbers.

Our loss function is convex: L(x, g,∇g) = ‖∇g(x)‖2 − 2c̃(x)g(x)
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Monte-Carlo Techniques for Approximation Extended Representer Theorem for Differential Loss

Monte-Carlo Approximation Methods

Solution in one dimension:

g∗ = arg min
g∈H

1

N

N∑
i=1

{
(g′(xi))2 − 2c̃N (xi)g(xi)

}
+ λ‖g‖2H

g∗(y) =

N∑
i=1

{
β0∗i S(xi, y) + β1∗i Sx(xi, y)

}
, y ∈ R

Computation: β∗ = M−1b

M =
1

N

[
Sy

Sxy

]
[Sx |Sxy] + λ

[
S Sy

Sx Sxy

]
b =

1

N

[
S
Sx

]
ς , ςT = [c̃N (x1), . . . , c̃N (xN )]

βT = [β0
1 , . . . , β

0
N , β1

1 , . . . , β
1
N ]
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Numerical Examples

Application to Nonlinear filtering

Test the gain approximation:

min
K̂∈K
‖K− K̂‖2L2 = min

g∈H
‖∇h−∇g‖2L2

Using differential TD learning:

Finite dimensional function space

RKHS

For comparison: KBE∗ = ∇h◦,

h◦ = arg min
g∈H

‖c̃+Dg‖2L2
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Numerical Examples Differential TD learning with basis

Application to Nonlinear filtering

Example: ρ mixture of two Gaussian densities
c(x) ≡ x
Basis: “Polynomial×Gauss densities” {ψi,j(x) = xipj(x)}
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Bellman error optimal is very poor in this example
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Numerical Examples Differential TD learning using RKHS

Application to Nonlinear filtering

Example: ρ mixture of five Gaussians densities
c difference of indicator functions

RKHS : standard Gaussian kernel
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Numerical Examples Differential TD learning using RKHS

Applications to Nonlinear filtering

Example: Parameter Estimation with bimodal prior
Observations: parameter plus additive noise

0 5 10 15
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-0.5

0

0.5

1

1.5
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Actual state Cond. Mean estimate
ML estimate

t

State estimates (Maximum likelihood and conditional mean) from the FPF
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Numerical Examples Differential TD learning using RKHS

Applications to Nonlinear filtering

Example: Parameter Estimation with bimodal prior
Observations: parameter plus additive noise
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Histograms of the particles at t = 0 and t = 1.5
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Conclusions

Every paper in this domain raises more questions than answers:

The representation K = ∇h remains a deep mathematical mystery.
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The representation K = ∇h remains a deep mathematical mystery.

Absent are mathematical techniques to understand filter robustness

Myriad of algorithmic questions:

Kernel choices (see poster of Taghvaei last night)
Reduced complexity differential loss algorithms

all with the goal of a more “plug and play” architecture

Applications beyond nonlinear filtering:

Variance reduction using control variates
Reinforcement learning / approximate dynamic programming
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Conclusions

Thank You
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