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Overview
The Bayesian Brain
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Content

Introduction
Existing work
Research goals
The case against conventional (weighted) particle filters

The Neural Particle Filter
An ansatz
Gain computation
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Existing work
Neural-like algorithms to perform Bayesian inference

Static inference
▶ Neural sampling: Aitchison & Lengyel (2016, 2017)

▶ Probabilistic Population Codes (PPC): Ma et al. (2006)
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Existing work
Neural-like algorithms to perform Bayesian inference

Filtering
▶ Probabilistic Population Codes: Sokoloski (2017)

▶ Sampling: Lee Mumford (2003)

▶ Direct interpretation of the filtering equation as neuronal
dynamics: Bobrowski et al. (2009), Legenstein et al. (2014)

▶ Synthetic approach: Ting-Ho Lo (1994)
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Research goals
Desiderata

1. Solve the nonlinear filtering problem, at least approximately (hard
just by itself),

2. using a sampling-based representation,
3. with a biologically plausible algorithm:

▶ neural dynamics,
▶ local learning rules

4. with a scalable algorithm.

Simone Carlo Surace | The Neural Particle Filter: Scalability and Biological Implementation



n(1)
t

n(k)
t

n(N)
t

…

…

…

…Wt

Wt

Wt
input neurons novelty neurons filtering neurons

dYt

h(Z(N)
t )

h(Z(k)
t )

h(Z(1)
t )

f(Z(1)
t )

f(Z(k)
t )

f(Z(N)
t )

Z(N)
t

Z(k)
t

Z(1)
t

6

Research goals
Desiderata

1. Solve the nonlinear filtering problem, at least approximately (hard
just by itself),

2. using a sampling-based representation,

3. with a biologically plausible algorithm:
▶ neural dynamics,
▶ local learning rules

4. with a scalable algorithm.

Simone Carlo Surace | The Neural Particle Filter: Scalability and Biological Implementation



n(1)
t

n(k)
t

n(N)
t

…

…

…

…Wt

Wt

Wt
input neurons novelty neurons filtering neurons

dYt

h(Z(N)
t )

h(Z(k)
t )

h(Z(1)
t )

f(Z(1)
t )

f(Z(k)
t )

f(Z(N)
t )

Z(N)
t

Z(k)
t

Z(1)
t

6

Research goals
Desiderata

1. Solve the nonlinear filtering problem, at least approximately (hard
just by itself),

2. using a sampling-based representation,
3. with a biologically plausible algorithm:

▶ neural dynamics,
▶ local learning rules

4. with a scalable algorithm.

Simone Carlo Surace | The Neural Particle Filter: Scalability and Biological Implementation



n(1)
t

n(k)
t

n(N)
t

…

…

…

…Wt

Wt

Wt
input neurons novelty neurons filtering neurons

dYt

h(Z(N)
t )

h(Z(k)
t )

h(Z(1)
t )

f(Z(1)
t )

f(Z(k)
t )

f(Z(N)
t )

Z(N)
t

Z(k)
t

Z(1)
t

6

Research goals
Desiderata

1. Solve the nonlinear filtering problem, at least approximately (hard
just by itself),

2. using a sampling-based representation,
3. with a biologically plausible algorithm:

▶ neural dynamics,
▶ local learning rules

4. with a scalable algorithm.

Simone Carlo Surace | The Neural Particle Filter: Scalability and Biological Implementation



n(1)
t

n(k)
t

n(N)
t

…

…

…

…Wt

Wt

Wt
input neurons novelty neurons filtering neurons

dYt

h(Z(N)
t )

h(Z(k)
t )

h(Z(1)
t )

f(Z(1)
t )

f(Z(k)
t )

f(Z(N)
t )

Z(N)
t

Z(k)
t

Z(1)
t

7

Weighted particle filters
Why are they not suitable as models for the brain?

Why are standard (weighted) particle filters not on the list?

They are sampling-based...
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Weighted particle filters
Why are they not suitable as models for the brain?

Generative model

dXt = f (Xt)dt + g(Xt)dWt , (1)
dYt = h(Xt)dt + dVt , (2)

Particle ensemble & unnormalized weights

dZ (i)
t = f (Z (i)

t )dt + g(Z (i)
t )dB(i)

t , i = 1, ...,N (3)

dM(i)
t = M(i)

t h(Z (i)
t )dYt , (4)

Bain & Crisan (2009), after Crisan & Lyons (1999)

Estimate

φ̂t = E[φ(Xt)|FY
t ] ≈

N∑
i=1

m(i)
t φ(Z (i)

t ), m(i)
t =

M(i)
t∑N

j=1 M(j)
t

. (5)
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Weighted particle filters
Why are they not suitable as models for the brain?

m(i)
t =

M(i)
t∑N

j=1 M(j)
t

, dM(i)
t = M(i)

t h(Z (i)
t )dYt , dYt = h(Xt)dt + dVt .

Normalized weight dynamics

dm(i)
t = m(i)

t (h(Z (i)
t )− h̄t) · (h(Xt)− h̄t)dt + m(i)

t (h(Z (i)
t )− h̄t) · dVt

▶ m(i)
t → {0,1}, with a rate proportional to DY .

Surace et al., arXiv (2017), soon to appear SIAM Review
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Weighted particle filters
Why are they not suitable as models for the brain?

Surace et al., arXiv (2017), soon to appear SIAM Review
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Weighted particle filters
Why are they not suitable as models for the brain?

Why are standard (weighted) particle filters not on the list?
They are sampling-based...

But they are not scalable with the dimensionality of
the observations! → Curse of dimensionality (COD)

Surace et al. (2017)

How to improve the situation
▶ Resampling: biologically implausible, cannot keep up with the

COD.
▶ Smarter dynamics for the particles

▶ dZ (i)
t = ...+ ...dYt , but importance weights cannot be defined

(mutual singularity of measures),
▶ dt → 0 limits of ‘optimal proposal’ (Doucet et al., 2000) are trivial,
▶ open question: are there other ways to incorporate observations

into the dynamics, while preserving importance weights (FPF is
fundamentally different). Goal: minimize rate of weight degeneracy!
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Neural Particle Filter
A sampling-based algorithm without importance weights

Ansatz (NPF)

dZ (i)
t = f (Z (i)

t )dt + g(Z (i)
t )dB(i)

t + K (i)
t (dYt − h(Z (i)

t )dt) (6)

▶ In contrast to the FPF, this was not derived from a variational
principle:

▶ It is a priori unclear how to set the gain Kt ,
▶ The hedging term in the feedback is missing (less interactions

between particles),

▶ As the FPF, this is fundamentally detached from the weighted
particle filter (even for very small Kt , the measures are still
mutually singular).

Kutschireiter et al. (2017)
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Gain computation
Online maximum likelihood parameter estimation

ext. world

learning algorithm

internal model filter model

filter

Yt

Yt

θ̂t Kt

Lt (θ) =
∫ t
0 ĥs (θ)dYs − 1

2
∫ t
0 ĥ2

s (θ)ds

∂θLt (θ) =
∫ t
0 ĥθs (θ)(dYs − ĥs (θ)ds)

dθ̂t ∝ h̃θt (dYt − h̃t dt)

Stochastic Gradient Ascent:

Surace & Pfister (2016), Kutschireiter et al. (2017)
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Gain computation
Online maximum likelihood parameter estimation

Update rules for elements of the gain matrix

dK (i,j,k)
t =

DY∑
l=1

∂jhl(Z
(i)
t )ξ

(i,j,k)
t

(
dY (l)

t − 1
N

N∑
n=1

hl(Z
(n)
t )dt

)
(7)

▶ The processes ξ(i,j,k)t measure the rate of change of the particles
with respect to the gain matrix elements (sensitivity equations),

▶ There are N × DX × DY additional variables,
▶ There are a lot of nonlocal interactions between the variables

(biology).
▶ But it works:

▶ Performance of the filter is surprisingly good,
▶ The behavior of the gain matrix is as expected, i.e. it properly

reflects uncertainty
▶ The performance is similar as for the empirical gain

Surace & Pfister (2016), Kutschireiter et al. (2017)
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Gain computation
Online maximum likelihood parameter estimation

What about Online Expectation Maximization (EM)?

Online EM
A variant of EM due to Mongillo & Deneve (2008) and Cappé (2011)
for HMMs.

▶ EM requires smoothing, online EM requires forward (recursive)
smoothing,

▶ In continuous time, the forward smoothing problem leads to a
modified Zakai equation similar to the Zakai equation for filtering,

▶ The associated modified Kushner-Stratonovich equation can be
used to derive a modified FPF.

▶ Unfortunately, this does not work for parameters that only appear
in the filter!

▶ The modified FPF also has a gain that needs to be set!
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Summary and Conclusions

▶ We phrased perceptual inference in a dynamic setting as
nonlinear filtering problem.

▶ When a sampling based representation is desired, it needs to be
unweighted.

▶ The NPF, which is very similar to the FPF, is biologically
interpretable and avoids the scaling problem in high dimensions.

▶ The main difficulty is the computation of the gain, for which
various methods have been proposed.

▶ A maximum likelihood approach to gain computation does not
produce biologically meaningful update rules, but may be of
interest for other applications if the dimensionality of the problem
is moderate.
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Online EM
Details

Jensen’s inequality:

LY
t (θ) ≥ LY

t (θ
′) + Q(θ, θ′),

Q(θ, θ′) = Eθ′

[
log

dPθ

dPθ′

∣∣∣FY
t

]
.

For a diffusion model,

log
dPθ

dPθ′
= R(θ′) +

∫ t

0
φ(Xt , θ)dXt +

∫ t

0
ψ(Xt , θ)dYt +

∫ t

0
ζ(Xt , θ)dt .

Use generalized measure:

ρ̃t [φ, ξ, θ]
.
= E

†
θ

[
φ(Xt)eξ·St

dPθ

dP†
θ

∣∣∣∣∣FY
t

]
, ξ ∈ RnS . (8)
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Experimental evidence
The Bayesian Brain
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Experimental evidence
The Bayesian Brain
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